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ABSTRACT 
It is common to use guided sound waves to detect leaks or cracks in pipelines. Applications include the non-
destructive testing of oil and gas pipelines, which normally takes places at ultrasonic frequencies, as well as the 
detection of leaks and ruptures in water filled pipes at much lower audio frequencies. However, if the pipe is buried 
then sound leaks out of the pipe into the surrounding medium and this lowers the acoustic energy travelling along 
the pipe wall. This has the potential to limit the applications of this technology, and so it is necessary to develop 
knowledge of the acoustic properties of the guided waves in order to optimise detection techniques. Accordingly, 
this work examines the properties of sound waves propagating in an infinitely long fluid-filled buried pipe, with 
application to leak detection at low audio frequencies. A parametric study is undertaken to examine the sensitivity 
of sound propagation to the properties of the internal liquid, pipe walls and of the surrounding medium. 

1 INTRODUCTION 
The use of sound waves to monitor the condition of structures such as pipelines is now very common. In the 
ultrasonic frequency range, elastic waves are guided down the walls of a pipe and they are used to detect cracks 
or regions of corrosion before they develop into ruptures. Alternatively, one may detect acoustic emissions gen-
erated by a leak or rupture in a pipe, and these are normally analysed in the low audio frequency range. This latter 
application is becoming increasingly important in the detection of leaks from water pipes, as the pipe networks 
begin to age. Accordingly, this article focusses on investigating the sensitivity of existing acoustic based detection 
techniques to those environmental conditions typically encountered when monitoring water-filled pipelines. 
 
The leakage or rupture of a water-filled pipe acts as an acoustic source, which then excites a sound wave that 
travels down the pipeline. When one moves away from the acoustic near field of the source, the acoustic energy 
propagates in a series of discrete eigenmodes that are characteristic of the coupled water-pipe system. At low 
audio frequencies, three axisymmetric modes can propagate in a water-filled pipe (Muggleton 2013): (i) a coupled, 
compressional, fluid type mode, in which the majority of the acoustic energy lies in the fluid, this is called here the 
ݏ ൌ 1 mode; (ii) a coupled, compressional, structural type mode, in which the majority of the acoustic energy lies 
in the pipe wall, this is called here the ݏ ൌ 2 mode; and, (iii) an uncoupled shear, or torsional, mode in which the 
acoustic energy lies in the pipe wall only, and this is known as the ݏ ൌ 0 mode. These modes are defined in terms 
of their low frequency limit, where the acoustic energy in each mode is normally clearly located either in the fluid 
or the pipe wall; however, as one increases frequency then it is possible for the energy from, say, the ݏ ൌ 1 mode 
to transfer from the fluid to the wall, and vice versa for the ݏ ൌ 2 mode. Moreover, at higher frequencies the energy 
may move back and forth as the frequency changes, and many more coupled modes will propagate so that this 
problem becomes significantly more complicated (Nilsson 2008). Therefore, for leak detection it is convenient to 
operate in the low frequency range so that the behaviour of one or two eigenmodes is more readily understood. 
 
It is, of course, common for pipelines carrying water to be buried underground, and this is known to further com-
plicate the propagation of acoustic energy (Muggleton 2002). This is because the surrounding material couples 
to the pipe wall, and this supports the leakage of sound waves away from the wall in the form of compressional 
and shear waves (if the pipe is buried in a nominally solid material such as soil or sand). This leakage, or radiation, 
of acoustic energy is experienced as sound attenuation in the axial direction of then pipeline and this causes 
significant problems in ultrasonic applications where the amplitude of the guided wave can quickly become too 
small to detect (Leinov 2013, Duan 2016). However, at lower audio frequencies the axial attenuation imparted by 
the presence of surrounding material for the ݏ ൌ 1 mode is normally much lower, and so this mode can be used 
relatively successfully in the detection of leaks over relatively long lengths of pipe (Brennan 2017, Gao 2016). 
Moreover, the energy in the ݏ ൌ 1 mode is located primarily in the fluid and a number of commercial products take 
advantage of this by picking up the acoustic wave in the fluid rather than the pipe wall. The coupled nature of the 
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ݏ ൌ 1 mode also means that it is possible to detect this mode by placing sensors on the outside of the pipe wall. 
It is possible also to take advantage of the energy leaking from the pipe walls into the surrounding material and 
to try and detect compressional and shear waves travelling to the ground surface remote from the pipe location 
(Gao 2017). However, the radiation of acoustic waves from the pipe surface is complex and so it is necessary to 
build up an understanding of how the properties of the different elements of the coupled system affect the ability 
to develop a reliable detection methodology. Accordingly, this article investigates the influence of the material 
surrounding the pipe on the propagation of the ݏ ൌ 1 mode. 

2 THEORY 
The prediction of coupled acoustic wave propagation in fluid-filled buried pipelines presents a significant chal-
lenge, especially if one wishes to analyse all propagating eigenmodes over a wide frequency range. However, at 
lower audio frequencies, and for the detection of acoustics emissions, it is possible to simplify the problem and to 
focus only on the ݏ ൌ 1 mode. For example, many papers are now available that use approximate analytic tech-
niques to find the properties of the ݏ ൌ 1 mode (Muggleton 2013, Gao 2016). Alternatively, Brennan et al. (Brennan 
2017) show that numerical methods can also deliver good results, and they show good agreement between pre-
dictions obtained using the commercial software COMSOL and experimental measurements of the real part of the 
wavenumber and modal attenuation. However, parametric investigations tend to be easier to do using optimised 
computational methods and so the one-dimensional numerical approach described by Duan and Kirby (2016) is 
used here, as this is quick to use when finding coupled eigenmodes. This approach is based on the Semi Analytic 
Finite Element (SAFE) method and has the advantage of requiring only a one dimensional discretisation of the 
problem, and so this method is modified here to include the fluid in the pipe. This method involves expanding the 
pressure (݌ᇱ) and displacement fields (ܝᇱ) as a sum over the system eigenmodes, so that  

,ݎᇱሺ݌ ,ߠ ;ݖ ሻݐ ൌ ∑ ∑ ሻ݁௜ሺఠ௧ି௡ఏିఊ೘௭ሻஶݎ௠,௡ሺ݌
௡ୀ଴

ஶ
௠ୀ଴  (1) 

,ݎᇱሺ࢛ ,ߠ ;ݖ ሻݐ ൌ ∑ ∑ ሻ݁௜ሺఠ௧ି௡ఏିఊ೘௭ሻஶݎ௠,௡ሺ࢛
௡ୀ଴

ஶ
௠ୀ଴  (2) 

where ݎ, ,ߠ ݅ is time, ߱ is the radian frequency, and ݐ ,form a cylindrical co-ordinate system ݖ ൌ √െ1. In addition, 
for mode ሺ݉, ݊ሻ, ݌ሺݎሻ and ܝሺݎሻ are the eigenvectors and ߛ is the coupled eigenvalue. In the analysis that follows, 
only axisymmetric modes are considered, so that ݊ ൌ 0. The modal expansions in Eqs. (1) and (2) are then sub-
stituted into the governing equations for the fluid and solid, which are given as 

′݌2׏ െ
1

ܿ0
2

′݌2߲

2ݐ߲
ൌ 0 (3) 

ሺߣ ൅ ׏ሺ׏ሻߤ ∙ ሻ′࢛ ൅ ′࢛2׏ߤ ൌ ߩ
′࢛߲

2ݐ߲
 (4) 

where, ܿ଴ is the speed of sound in the fluid, ߣ and ߤ are the Lamé constants, and ߩ is density. Note that ߤ is also 
known as the shear modulus and henceforth this terminology will be used here. The modal expansions are then 
substituted into the governing equations and following the application of the appropriate boundary conditions an 
eigenproblem may be generated. At the internal diameter of the pipe, the appropriate boundary conditions are: 

డ௣ᇱ

డ௥
ൌ ௥ᇱݑ଴߱ଶߩ , ᇱ݌ ൌ െߪ௥௥ᇱ , and		ߪఏ௥

ᇱ ൌ ௭௥ᇱߪ ൌ 0. (5) 

Here, ߩ଴ is the density of the fluid, ݑ௥ is the pipe wall displacement in the ݎ direction, and ߪ௤௟
ᇱ ሺݍ, ݈ ൌ ,ݎ  ሻ is aݖ	or	ߠ

symmetric stress tensor of rank two. To solve the problem the SAFE method is used, and this is carried out by 
using a weak form of the governing equations and applying a perfectly matched layer (PML) in the outer region 
where the surrounding material is placed. The PML is necessary because the SAFE method requires the outer 
domain to be closed, and at the exterior of this domain the following boundary conditions are applied: 

௥௥ᇱߪ ൌ ఏ௥ߪ
ᇱ ൌ ௭௥ᇱߪ ൌ 0. (6) 

The boundary conditions at the outer perimeter of the PML are arbitrary, and so those in Eq. (6) are chosen 
because they are the most convenient for implementing the SAFE method. This technique is described in more 
detail by Duan and Kirby (2016). Solution of the eigenproblem is then implemented here using MATLAB, with a 
finite element mesh that uses three-noded quadratic line elements for each region, as well as an exponential 
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complex co-ordinate for the PML (Duan 2016). This yields an unordered list of eigenvalues and associated eigen-
vectors, which must then be sorted to separate radiation type modes from the leaky (axially propagating) modes, 
which are of interest in the current problem. This is accomplished by computing the kinetic energy density in each 
region, and then comparing the kinetic energy density in the PML with that in the fluid and pipe wall: those modes 
where the kinetic energy density in the fluid/pipe wall dominates are retained, all others are discarded. This is 
relatively straightforward for the ݏ ൌ 1 mode because the energy for this mode lies predominately in the fluid at 
low frequencies. Following the identification of the relevant eigenmodes(s), the phase speed, ܿ, and attenuation, 
∆, is then given as 

ܿ ൌ Reሺ߱ ⁄ߛ ሻ and ∆ൌ െ20 Imሺߛሻ ln	ሺ10ሻ⁄ . (7a,b) 

In addition, the energy located in the fluid and the pipe wall is also analyzed here in order to gain some under-
standing of how the system properties influence the distribution of energy within the system. Accordingly, the 
sound power in the fluid, W଴, is given as  

W଴ ൌ
గ

ଶఘబఠ
∗݌∗ߛ݌Reሾ׬ ൅  (8) ݎ݀ݎሿ݌ߛ∗݌

and in the pipe wall, 

W௣ ൌ െ׬ߨReሾߪ௭௥ݑ௥∗ ൅ ఏݑ௭ఏߪ
∗ ൅  (9) .ݎ݀ݎ௭∗ሿݑ௭௭ߪ

Here, ࢛ ൌ ሾݑ௥ ఏݑ  ௭ሿ, and * denotes complex conjugate. The ratio of sound power, then gives the relativeݑ
distribution in energy between the pipe and the fluid, so that W ൌ W଴ W௣⁄ . In the analysis that follows, the 
eigenproblem is solved using a finite element mesh with 10 elements in the fluid, 10 elements in the pipe, and 
100 elements in a PML that is attached directly to the outer pipe wall. This takes approximately 2 seconds to 
obtain and sort the eigenmodes for each frequency using a desktop computer with 8 GB RAM and a 3.2 GHz 
processor.  

3 RESULTS AND DISCUSSION 
In this section, predictions obtained using the SAFE-PML model described in the previous section are presented 
for two example problems. The properties of pipes A and B are listed in Table 1, and here soil is chosen as the 
surrounding medium. The properties of pipes A and B are chosen to follow those analysed recently by Brennan 
et al. (Brennan 2017), as this facilitates validation of the numerical predictions before then investigating changes 
in parameters.  

Table 1: Properties of example systems for pipes A and B. 

Parameter Pipe A (Soil) Pipe B (Soil) Pipe A (Concrete)

Fluid Density  (kg/m3) 1000 1000 1000 

Fluid speed of sound c0 (m/s) 1500 1500 1500 

Pipe Internal Radius, a0 (mm) 34.1 79.0 34.1 

Pipe wall thickness, t (mm) 3.4 11 3.4 

Pipe Density,  (kg/m3) 900 900 900 

Pipe: Young’s Modulus, E (GPa) 2(1+0.06i) 2(1+0.06i) 2(1+0.06i) 
Pipe: Poisson’s ratio, v 0.3 0.3 0.3 

Surround: Density,  (kg/m3) 2000 2000 2300 

Surround: Shear modulus  (MN/m2) 241(1+0.15i) 20 1600 

Surround: Bulk modulus, B (GN/m2) 4.5 0.053 19.6671 
 
In Figs. 1 to 4, the real part of the wavenumber and the attenuation for pipes A and B are shown for the ݏ ൌ 1 
mode. Direct comparison with Brennan et al. (Brennan 2017) may be obtained through the centre values on each 
plot, and these agree very well with those in the reference article computed using COMSOL. Moreover, additional 
comparisons that are not shown here also indicate that, as one would expect, very good agreement may be 
achieved between the SAFE-PML model and a two dimensional COMSOL model, provided sufficiently large PML 
layers are used in each approach.  
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 Figure 1: Effect of changing the shear modulus (MN/mଶሻ	on the real part of the axial wavenumber for pipe A.  
ߣ,          ൌ ߣ,            ;1 ൌ ୱ୭୧୪ߣ ,            ;50 ൌ ߣ,            ;241 ൌ ୡ୭୬ୡ୰ୣ୲ୣߣ		           ;1000 ൌ 9000. 

 

 
Figure 2: Effect of changing the shear modulus (MN/mଶሻ	on the axial attenuation for pipe A.  
ߣ,          ൌ ߣ,            ;1 ൌ ୱ୭୧୪ߣ ,            ;50 ൌ ߣ,            ;241 ൌ ୡ୭୬ୡ୰ୣ୲ୣߣ		           ;1000 ൌ 9000. 
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Figure 3: Effect of changing the shear modulus (MN/mଶሻ	on the real part of the axial wavenumber for pipe B.  

ߣ,          ൌ ߣ,            ;0.1 ൌ ୱ୭୧୪ߣ ,            ;5 ൌ ߣ,            ;20 ൌ ୡ୭୬ୡ୰ୣ୲ୣߣ		           ;100 ൌ 9000. 
 
 

 
Figure 4: Effect of changing the shear modulus (MN/mଶሻ	on the axial attenuation for pipe B.  

ߣ,          ൌ ߣ,            ;0.1 ൌ ୱ୭୧୪ߣ ,            ;5 ൌ ߣ,            ;20 ൌ ୡ୭୬ୡ୰ୣ୲ୣߣ		           ;100 ൌ 9000. 
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Figures 1 – 4 also include calculations for different values of the shear modulus, and here it is seen that as the 
shear modulus is increased the wavenumber and attenuation drops. This is most obvious in the extreme case of 
substituting concrete as the external material, and here the real part of the wavenumber drops so that the phase 
speed (roughly equal to 1305.9 m/s over the frequency range shown) begins to approach that of the speed of 
sound in water (1500 m/s). This is because the increase in shear wave speed in the concrete is higher than in the 
pipe so that the energy in the pipe is now trapped and cannot escape into the surroundings. This means that when 
concrete is present the attenuation experienced by the ݏ ൌ 1 mode appears because of the losses in the pipe 
itself, which are included here in the form a loss factor that makes Young’s modulus complex. The limiting cases 
in Figs. 1-4 also illustrate that high values of the shear stiffness in the surrounding medium tend to lower the 
attenuation of the ݏ ൌ 1 mode by limiting energy radiation into the surrounding medium. This effect is consistent 
in both pipes A and B, and one can also see that as the shear modulus is reduced the attenuation begins to rise 
when the frequency is increased. This is evidence of greater coupling between the pipe and the surrounding 
material so that in Figs. 3 and 4 the relatively low values of shear modulus lead to significantly higher levels of 
attenuation. Therefore, for lower values of shear modulus, the outer displacement of the pipe walls increases for 
the ݏ ൌ 1 mode and so the pipe couples more strongly to the outer material and this will generate acoustic energy 
that radiates away from the pipe and which can be picked up at the surface. 
 
It is interesting to compare the behaviour observed for the fluid type mode ݏ ൌ 1 with the structural type mode 
ݏ ൌ 2 over the low frequency range. This is illustrated for modal attenuation in Fig. 5, where a similar set of limiting 
cases for the shear modulus are also included. It can be seen in Fig. 5 that the ݏ ൌ 2 mode undergoes much 
higher levels of axial attenuation than the ݏ ൌ 1 mode. This is especially true for higher values of shear modulus, 
where the axial attenuation for concrete is over 200 dB/m.. Accordingly, these very high levels of axial attenuation 
indicate that this mode is unlikely to be detected in testing methodologies that seek to measure the axial propa-
gation of the ݏ ൌ 2 mode. Furthermore, it is known to be difficult to excite this particular compressional mode, at 
least this has been the case for studies in the ultrasonic frequency range [where this mode is known as L(0,1)], 
and so one can expect leaks and ruptures to preferentially excite the ݏ ൌ 1, and for the ݏ ൌ 2 mode to remain 
undetected. 
 
 

 
Figure 5: Axial attenuation: Solid line ݏ ൌ 1, dashed line ݏ ൌ 2.  

              , Pipe A, ߣ ൌ 241MN/mଶ;            , Pipe B, ߣ ൌ 20MN/mଶ; 
           , Pipe A, ߣ ൌ 1MN/mଶ;             , Pipe A, ߣ ൌ 9000MN/mଶ (concrete). 
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In the previous discussion, the importance of energy distribution was introduced, and so in Fig. 6 the relative 
distribution of sound power between the fluid and the pipe wall is analysed, where W is the ratio of the energy in 
the fluid divided by the energy in the pipe wall [see Eqs. (8) and (9)]. Note that the relative distribution of sound 
power is shown here only for the fluid and the pipe wall because it is inappropriate to compute sound power in 
the surrounding material where a PML is used, as this region uses numerical means to artificially damps down 
the energy in the outer layer. 
 

 
 Figure 6: Distribution of energy between the fluid and the pipe wall: Solid line ݏ ൌ 1, dashed line ݏ ൌ 2.  

              , Pipe A, ߣ ൌ 241MN/mଶ;            , Pipe B, ߣ ൌ 20MN/mଶ; 
           , Pipe A, ߣ ൌ 1MN/mଶ;             , Pipe A, ߣ ൌ 9000MN/mଶ (concrete). 

 
In Fig. 6 the differences between the fluid (ݏ ൌ 1) and structural (ݏ ൌ 2) modes can clearly be seen. Up to a 
frequency of 1 kHz the energy in the ݏ ൌ 1 mode is located primarily in the fluid, whereas the opposite is true for 
the ݏ ൌ 2 mode. However, it should be remembered that when the frequency is increased above 1 kHz the location 
of energy may change, so that the energy in the fluid mode transfers into the pipe wall, and vice versa. This is 
why it is important to limit the current experimental methodologies for detecting leaks and ruptures to lower audio 
frequencies so that energy in the ݏ ൌ 1 remains predominantly in the fluid. Furthermore, if the outer region is 
concrete then it can be seen that the energy is largely trapped in the fluid and, as noted previously, the attenuation 
drops almost to zero. When concrete is replaced by soil, and the shear modulus drops, the levels of energy in the 
fluid also begin to drop, although it is seen that for all the examples studied here the energy for the ݏ ൌ 1 mode 
remains predominantly in the fluid. However, there is still energy present in the pipe wall and this can radiate into 
the surrounding medium and be picked up at the ground surface, although Fig. 6 suggests that this is more likely 
to happen for lower values of shear modulus.  
 
In Fig. 6 it is interesting also to note the peaks in the energy curves that occur for the ݏ ൌ 1 mode, and these are 
seen to be present for each example. These peaks represent a sudden concentration of energy in the fluid and it 
may be the case that over these narrow frequency bands the energy available to leak out from the pipe into the 
surrounding material suddenly drops. The reasons behind this type of behaviour have yet to be identified, however 
Fig. 6 does illustrate that the propagation of energy in this coupled system is complex, and that small changes in 
materials properties and/or frequency have the potential to deliver significant changes in the response of the 
system. The behaviour observed in Figs. 5 and 6 can be further explored by analysing the modes shapes obtained 
from the numerical simulations. Accordingly, in Fig. 7 the normalised radial displacement is shown at a frequency 
of 400 Hz, and in Fig. 8 the normalised distribution of pressure (fluid) and shear stress (ߪ௥௥) is shown, also at 400 
Hz. 
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Figure 7: Modal displacement in the radial direction for ݏ ൌ 1 at 400 Hz.              , Pipe A, ߣ ൌ 241MN/mଶ;  
           , Pipe B, ߣ ൌ 20MN/mଶ;            , Pipe A, ߣ ൌ 1MN/mଶ;             , Pipe A, ߣ ൌ 9000MN/mଶ (concrete). 

 
 

 
 

Figure 8: Modal pressure and shear stress (ߪ௥௥) distribution for ݏ ൌ 1 at 400 Hz. 
               , Pipe A, ߣ ൌ 241MN/mଶ;            , Pipe B, ߣ ൌ 20MN/mଶ;           , Pipe A, ߣ ൌ 1MN/mଶ; 

             , Pipe A, ߣ ൌ 9000MN/mଶ (concrete). 
 

 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

N
o

rm
a

lis
e

d 
D

is
pl

ac
e

m
en

t

Normalised Radius (r/a0)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

N
or

m
al

is
ed

 S
he

ar
 S

tr
es

s 
/ P

re
ss

ur
e

Normalised radius (r/a0)



Proceedings of ACOUSTICS 2017  
19-22 November 2017, 
Perth, Australia 

ACOUSTICS 2017 Page 9 of 9 

It can be seen in Figs. 7 and 8 that the modal patterns are rather complex, and for this reason the other displace-
ment and shear stresses have been omitted for clarity. Moreover, to compare different examples of pipe geometry, 
these plots have been normalised against the internal pipe radius. Nevertheless, in Fig. 7 it is seen that, as ex-
pected, a very high shear modulus delivers a correspondingly low radial displacement in the surrounding material, 
although as the shear modulus is reduced these differences are less obvious. This trend tends to be reversed for 
the shear stress in Fig. 8, and here the fluid pressure in the pipe is seen to be almost constant over this frequency 
range. A planar sound pressure distribution is consistent with energy being located predominantly in the fluid, and 
here it is not surprising to see that when concrete surrounds the pipe the fluid pressure is almost constant.  

4 CONCLUSIONS 
The propagation of acoustic energy in water-filled buried pipes is complex and very sensitive to the relative values 
of the different parameters that make up the coupled system. At low frequencies, acoustic energy is seen largely 
to be concentrated in the fluid for the ݏ ൌ 1 mode. Moreover, it is difficult to excite the ݏ ൌ 2 mode and, even if this 
was possible, this mode is likely to experience high levels of axial attenuation over this low frequency range. For 
this reason, the ݏ ൌ 1 mode is the one used to detect leaks and ruptures in water-filled buried pipes at low fre-
quencies. However, it is seen that whilst this approach is likely to work well when one is attempting to detect axial 
wave propagation, the problem becomes more complex when detecting energy radiating to the ground surface 
above a buried pipeline. For example, high values for the shear modulus in the surrounding material, such as that 
associated with concrete, supresses radial wall motion in the pipe so that the energy remains largely trapped 
within the fluid. For lower values of shear modulus, such as those associated with soil, then the energy is still 
predominantly located in the fluid. However the displacement of the outer wall is sufficient to enable energy to 
leak out from the pipe and this can be picked up at the ground surface, although the levels of energy radiating will 
depend on the relative properties of the pipe/soil interface, and it also appears to be possible that over narrow 
frequency bands energy may suddenly concentrate in the fluid. This means that the levels of energy radiating 
outwards from the pipe are likely to be very sensitive to relative material properties and small changes in fre-
quency. This suggests that it is likely to be difficult to obtain very good quantitative agreement between theoretical 
predictions and experimental measurements and ground surface vibrations, especially if one also accounts for 
the likely inhomogeneities in a surrounding material such as soil or sand, and the effects of porosity (which have 
not been included here). Accordingly, a qualitative investigation of expected behaviour, such as the one conducted 
here, is likely to remain useful when helping to guide future experimental understanding and to improving the 
ability to locate leaks and ruptures at the ground surface. 

ACKNOWLEDGEMENTS 
Michael Brennan would like to acknowledge the financial support from FAPESP, Process Nos. 2013/50412-3 and 
2015/50312-4. 

REFERENCES 
Brennan, M.J., Karimi, M., Almeida, F.C.L., Kroll de Lima, F., Ayala, P.C., Obata, D., Paschoalini, A.T., Kessisso-
glou, N. 2017. ‘On the role of vibro-acoustics in leak detection for plastic water distribution pipes’. International 
Conference on Structural Dynamics, EURODYN 2017, In Press. 
Duan, W., Kirby, R., Mudge, P., Gan, T-H. 2016. ‘A one dimensional numerical approach for computing the 
eigenmodes of elastic waves in buried pipelines’. Journal of Sound and Vibration 384: 177-193. 
Gao, Y., Sui, F., Muggleton, J.M., Yang, J. 2016. ‘Simplified dispersion relationships for fluid-dominated axisym-
metric wave motion in buried fluid-filled pipes’. Journal of Sound and Vibration 375: 386-402. 
Gao, Y., Muggleton, J.M., Liu, Y., Rustighi, E. ‘An analytical model of ground surface vibration due to axisymmetric 
wave motion in buried fluid-filled pipes’. Journal of Sound and Vibration 395: 142-159.  
Leinov, E., Lowe, M.J.S., Cawley, P. 2015. ‘Investigation of guided wave propagation and attenuation in pipe 
buried in sand’. Journal of Sound and Vibration 347: 96-114. 
Muggleton, J.M., Brennan, M.J., Pinnington, P.J. 2002. ‘Wavenumber prediction of waves in buried pipes for water 
leak detection’. Journal of Sound and Vibration 249: 939-954. 
Muggleton, J.M., Yan, J. 2013. ‘Wavenumber prediction and measurement of axisymmetric waves in buried fluid-
filled pipes: inclusion of shear coupling at a lubricated pipe/soil interface’. Journal of Sound and Vibration 332: 
1216-1230.  
Nilsson, C.-M., Finnveden, S. 2008. ‘Waves in thin-walled fluid-filled ducts with arbitrary cross-sections’. Journal 
of Sound and Vibration 310: 58-76. 




