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ABSTRACT 

In various sonar applications it is important to model the acoustic response of a bubble cloud to a sonar pulse of 
different types. In a typical approximate approach, a bubble cloud is modelled as a set of point scatterers. The 
purpose of this research is to analyse the accuracy and limitation of such a representation. For this, a high-
fidelity Monte Carlo model of scattering of an acoustic pulse from a bubble cloud is developed. In this model a 
bubble cloud is represented by a set of individual bubbles randomly selected from a known bubble size and spa-
tial distribution. The acoustic signals scattered from individual bubbles are coherently summed into a collective 
response from the bubble cloud. The building block of the model is the forced oscillations of an individual bubble 
in an acoustic field. In this research we use the state-of-the-art equation of bubble oscillation. We then consider 
the acoustic response of a bubble cloud to an acoustic pulse in single scattering approximation and compare it 
with the analytically calculated backscattering cross section per unit volume. A comparison of the results of the 
high-fidelity model with the representation of the bubble cloud by a set of discrete scatterers is conducted. 

1 INTRODUCTION 
Modern simulations of sonar performance in military applications require higher fidelity models of sonar echoes 
from underwater objects. Various bubbly wakes play important part in these simulations. Examples of such 
wakes are surface ship wakes, exhaust gas bubbles behind a torpedo, the bubble cloud created by an underwa-
ter explosion. All of them can be described as bubble clouds of certain shape with a certain size and spatial dis-
tribution of bubbles. All these parameters define how a pulse from an active sonar will be scattered by a bubble 
cloud. In the current approach to sonar simulation, bubbly wakes are modelled as a set of point scatterers. It is 
of interest, therefore, to analyse the accuracy and limitation of such a representation. For this, a high-fidelity 
model of scattering of an acoustic pulse from a bubble cloud should be developed. Here we consider a Monte 
Carlo type model. In this model a bubble cloud is represented by a set of individual bubbles randomly selected 
from a known bubble size and spatial distribution. The acoustic signals scattered from individual bubbles are 
summed coherently into a collective response from the bubble cloud. Acoustic interaction between bubbles is 
ignored. The main element of the model is the forced oscillations of an individual bubble in an acoustic field of 
incident acoustic pulse. In this article we will describe the equation of bubble oscillation and verification of its 
numerical implementation by comparison of a numerically calculated acoustic scattering cross section of an in-
dividual bubble with the analytical solution of a linearized equation of bubble oscillation. We then consider the 
acoustic response of a bubble cloud to different acoustic pulses in the single scattering approximation and com-
pare it with the analytically calculated backscattering cross section per unit volume. A comparison of the results 
of the high-fidelity model with the representation of the bubble cloud by a set of discrete scatterers will be con-
ducted. 

2 MODEL DESCRIPTION 

2.1 Forced oscillation of an individual bubble 
We base our model on the following equation of the forced oscillation of an individual bubble originally derived in 

Keller and Miksis (1980). Here we write it in the form presented in (Zhang 2013, Zhang and Li 2015): 
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Here, 𝑅 is the instantaneous bubble radius, the overdot denotes the time derivative; 𝑐𝑙 is the speed of sound in 
the liquid; 𝜌𝑙 is the density of the liquid; 𝑡 is the time; 𝑃0 is the ambient pressure; 𝜎 is the coefficient of surface 

tension; 𝑅0 is the equilibrium bubble radius; 𝜅 is the polytropic exponent; 𝜇𝑙 is the viscosity of the liquid; 𝜇𝑡ℎ is 
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the additional effective “thermal” viscosity; 𝑝𝑠(𝑡) is the pressure outside the bubble at bubble wall. For a contin-

uous wave (CW) acoustic signal of frequency 𝑓𝑠, 𝑝𝑠(𝑡) can be expressed as 

𝑝𝑠(𝑡) = 𝑃0[1 + 𝜀𝑠cos(2𝜋𝑓𝑠𝑡)]. (3) 

where 𝜀𝑠 is the non-dimensional amplitude of the external pressure oscillation. 

According to (Prosperetti 1977) the effective thermal viscosity and the polytropic exponent can be expressed as 

𝜇𝑡ℎ =
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In the above equations the following dimensionless parameters are introduced: 

𝐺1 = 𝑀𝑔𝐷𝑔𝜔/𝛾𝑅𝑔𝑇∞,  𝐺2 = 𝜔𝑅0
2/𝐷𝑔,  𝐺3 = 𝜔𝑅0

2/𝐷𝑙, 

where 𝑀𝑔 is the molecular weight of the gas contained in the bubble, 𝐷𝑔 = 𝑘𝑔/𝜌𝑔𝑐𝜈,𝑔 is its thermal diffusivity, 

𝛾 = 𝑐𝑝,𝑔/𝑐𝜈,𝑔 is the ratio of its specific heats, 𝑅𝑔 is the universal gas constant, 𝑇∞ is the liquid temperature, 

𝐷𝑙 = 𝑘𝑙/𝜌𝑙𝑐𝜈,𝑙 is the thermal diffusivity of the liquid, and 𝑘 = 𝑘𝑙/𝑘𝑔 is the ratio between the liquid and gas thermal 

conductivities. 

The radiation pressure at the distance 𝑟 from the bubble centre can be given as (Yang and Church 2005): 

𝑃𝑟𝑎𝑑(𝑟, 𝑡) =
𝜌𝑙𝑅

𝑟
(2�̇�2 + 𝑅�̈�). (11) 

The integral characteristic of the acoustic scattering from a bubble is the total acoustical scattering cross section 
defined as (Wildt 1946) 

𝜎𝑠 = 4𝜋|𝐵/𝐴|2. (12) 

Here, 𝐴 is the amplitude of the incident wave, 𝐵 is the amplitude of the divergent spherical scattered wave gen-
erated by bubble oscillations at the distance of 1 m from the bubble centre. So the amplitude of the radiated 
pressure can be written as 

|𝑃𝑟𝑎𝑑| = |
𝐵

𝑟
|. (13) 

It is interesting to compare the acoustic scattering cross-section obtained from the non-linear solution of the 
equation (1) with the analytical solution obtained from a linear approximation of the equation (1) for the case of 
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small-amplitude bubble oscillations. The analytical solution used for this comparison is taken from (Zhang 
2013). We reproduce it here for completeness: 
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The effective thermal viscosity 𝜇𝑡ℎ and the polytropic exponent 𝜅 are given by the above equations (4)-(5), with 

the parameter 𝜑 given by the above equations (6)-(10) reproduced from (Prosperetti 1977), where  approximate 
expressions for equations (6)-(10) were also provided. These expressions were recently reproduced in (Zhang 
and Li 2014). Another analytical solution for 𝜎𝑠 is reproduced in (Medwin and Clay 1998) from the work of Eller 
(1970), which in its turn is based on work by Devin (1959). 

Comparison between non-linear and analytical solutions was conducted for an air bubble in water. The equilibri-
um bubble radius varied in the range 10𝜇𝑚 ≤ 𝑅0 ≤ 1𝑚𝑚 with a step of 1𝜇𝑚. The acoustic frequency of external 

pressure wave is 𝑓𝑠 = 10𝑘𝐻𝑧. Two values of the pressure wave non-dimensional amplitude, 𝜀𝑠, are used in the 
numerical solution of equation (1): 0.01 and 0.1. Continuous wave pulse of 100 cycles length was used in this 
simulation. The results are shown in Figure 1. One can see from the figure that the numerical solution at smaller 
amplitude is close to the analytical solution. The numerical solution at larger amplitude deviates from the analyt-
ical solution significantly near the main resonance and at an additional resonance at lower non-dimensional fre-
quency. 

 

Figure 1. Normalized acoustic scattering cross-section. Comparison between non-linear and linear analytical 
solution. 

It should be noted here that it takes several cycles for bubble oscillations to settle into the steady mode. To cal-
culate the amplitude of radiated pressure the second half of the scattered pulse was used where oscillations 
were already settled into the steady mode. However, when we consider the combined scattered pulse from 
many bubbles, we will not be able to separate the steady mode response. It is, therefore, of interest to see how 
different the scattering cross-section calculated from steady oscillations is to that calculated from the whole 
pulse. The amplitude of the radiated pressure is calculated as the peak-to-peak value: 

|𝑃𝑟𝑎𝑑| = max(𝑃𝑟𝑎𝑑) − min(𝑃𝑟𝑎𝑑). (17) 

One can see from Figure 2 that at some frequencies the scattering cross-section calculated from the whole 
pulse is higher than that calculated from the steady oscillations. This occurs in the areas adjacent to resonance 
but not at resonance itself.  
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Figure 2. Scattering cross-section calculated from steady oscillations and whole pulse. a): εs = 0.01; b): εs = 0.1. 

In the case of pulses of finite length, it is more correct to use the pulse acoustic energy in the definition of the 
scattering cross-section. So, equation (12) should be written as: 

𝜎𝑠 = 4𝜋𝐸𝑠/𝐸𝑖, (18) 

where 𝐸𝑖 and 𝐸𝑠 are the energy of the incident and scattered pulses, respectively: 

𝐸𝑖 = ∫ 𝑝𝑖
2(𝑡)𝑑𝑡, (19) 

𝐸𝑠 = ∫ 𝑝𝑠
2(𝑡)𝑑𝑡, (20) 

where integration is performed over the pulse duration. 

2.2 Scattering from an ensemble of non-interacting bubbles 
Here we consider simulation of the acoustic response of an ensemble of bubbles to an incident acoustic pulse. 
Bubbles are assumed acoustically non-interacting with each other, in other words: multiple scattering is ignored. 
The resulting scattered pulse is a coherent summation of pulses scattered by individual bubbles contained in the 
insonified volume. 

𝑃𝑏𝑐 = ∑ 𝑃𝑠(𝑡; 𝑅0𝑘, 𝑅𝑡𝑏
(𝑘)

, 𝑅𝑟𝑏
(𝑘)

)
𝑁𝑏
𝑘=1 , (21) 

where 𝑁𝑏 is the number of bubbles in the insonified volume, 𝑡 is the time, 𝑅0𝑘 is the equilibrium radius of the kth 

bubble, 𝑅𝑡𝑏
(𝑘)

 and 𝑅𝑟𝑏
(𝑘)

 is the distance from kth bubble to the transmitter and receiver, respectively.  

The insonified volume is defined by the geometry of the sonar beam and the pulse length. In the simulation con-
sidered in this section we use a beam geometry based on that of the Imagenex profiling sonar (Imagenex 2015), 
which is a pencil beam with a small beam angle of about 2 degrees. The angle slightly depends on the sonar 
frequency, and here we assume the frequency of 𝑓𝑠 = 450𝑘𝐻𝑧 and the beam angle 𝛾 = 2°. The pulse length is 
𝜏 = 100𝜇𝑠. The volume insonified by a sonar pulse is illustrated in Figure 3 with a few randomly positioned bub-

bles. The length of the volume is 0.5𝑐𝑙𝜏. The volume of the insonified beam element is 

𝑉 =
1

3
𝜋 {(𝑟 +

1

4
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− (𝑟 −
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4
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} tan2 (
𝛾

2
), (22) 

where 𝑟 is the distance from the transmitter to the centre of the beam element. 

a) b) 
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Figure 3. Insonified volume illustration. 

Bubble sizes and their position in the insonified volume are selected randomly. The bubble sizes were generat-
ed from the power bubble size distribution: 𝑛𝑑𝑅 = 𝐴𝑅−𝑚𝑑𝑅, where the coefficient 𝐴 is calculated from the given 

gas volume fraction, 𝜈𝑓, and the volume of the insonified beam element, 𝑉: 

𝐴 =
3(4−𝑚)𝜈𝑓𝑉

4𝜋(𝑅max
4−𝑚−𝑅min

4−𝑚)
, (23) 

where 𝑅min and 𝑅max are the minimum and maximum bubble radius in the bubble size distribution.  

The total number of bubbles of all sizes in the insonified volume is 

𝑁𝑏𝑠 = ∫ 𝑛𝑑𝑅 =
𝐴

1−𝑚
(𝑅max

1−𝑚 − 𝑅min
1−𝑚)

𝑅max

𝑅min
. (24) 

Thus, assuming the above bubble size distribution, the size of a bubble is calculated as 

𝑅 = [𝑅min
1−𝑚 + 𝑢(𝑅max

1−𝑚 − 𝑅min
1−𝑚)]

1

1−𝑚, (25) 

where 𝑢 is a random, uniformly distributed number, 0 ≤ 𝑢 ≤ 1. The bubble size distribution for the random reali-
sation is then obtained by binning the obtained bubble sizes into the specified size intervals [𝑅𝑘 , 𝑅𝑘 + ∆𝑅]. In this 

simulation we used the following values: 𝑅min = 4 𝜇𝑚, 𝑅max = 40 𝜇𝑚, ∆𝑅 = 0.1 𝜇𝑚, and 𝜈𝑓 = 10−6. This results 

in 1492514 bubbles in a single realisation of the bubble population in the insonified beam element. Bubble size 
distribution for a single realisation and that averaged over 500 realisations are shown in Figure 4.  

 

Figure 4. Bubble size distribution for single realisation (black curve) and averaged over 500 realisations (red 
curve). 
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The position of a bubble within insonified volume was generated randomly assuming a uniform distribution of 
bubbles within the beam element. In this simulation we used CW incident pulse modified by a Tukey window 
with parameter 𝛼 = 0.2. The amplitude of the pulse at the centre of the insonified volume can be calculated from 

the given source level of the transmitter, 𝑆𝐿: 

𝑃𝑎𝑖𝑛𝑐 = 𝜀𝑠𝑃0 = 10−610(𝑆𝐿 20⁄ )/(2𝑅𝑡𝑏). (26) 

For 𝑅𝑡𝑏 = 10𝑚 and 𝑆𝐿 = 190𝑑𝐵, the incident pulse is shown in Figure 5. 

 

Figure 5. Incident pulse at the centre of insonified volume. 

The total scattered pulse from the beam element is calculated according to equation (21). The scattered pulses 
from individual bubbles are pre-calculated for bubble radii at the centre of size bins at 1 m from bubbles. The 

pulse amplitude is then scaled by the distance from a specific individual bubble to the receiver, 𝑅𝑟𝑏
(𝑘)

. The time of 

arrival of the scattered pulse at the receiver is calculated as 𝑡𝑘 = (𝑅𝑡𝑏
(𝑘)

+ 𝑅𝑟𝑏
(𝑘)

)/𝑐𝑙. The pulses scattered from 

individual bubbles are summed coherently to form the total scattered pulse. An example of a scattered pulse 
from the beam element for a single realisation of bubble size and spatial distributions is shown in Figure 6.  

 

Figure 6. Scattered pulse as a summation of pulses scattered by individual bubbles in the insonified volume. 

In simulation we can calculate the resulting scattered pulse from bubbles of a single size bin, and then compute 
the scattering cross-section by applying equations (18)-(20). The result of this for a single random realisation of 
bubble population in the insonified volume is presented as a black curve in Figure 7a. The red curve in this plot 
represents the scattering cross-section of a single bubble obtained from the numerical solution of the bubble 
oscillation equations. The results in the figure are presented in non-dimensional form. One can see significant 
fluctuations of the scattering cross-section for a single random realisation of the bubble population. Averaging 
results over many random realisations of the bubble population in the insonified volume smooths results as can 
be seen from Figure 7b, which shows results averaged over 500 random realisations. It is interesting to note 
that the scattering cross-section obtained from an ensemble of bubbles is slightly greater than that of a single 
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bubble of the same size in a small area near the resonant size of bubbles. This is because the solution for an 
ensemble of bubbles is based on the numerical solution for bubble oscillations, and the red curve in the plot rep-
resents the linear solution. Apparently, near resonance, the bubble oscillation is nonlinear, hence the difference 
in the scattering cross-section, similar to what we have seen in Figure 1 and Figure 2. 

 

Figure 7. Scattering cross-section obtained from an ensemble of bubbles. a): single realisation of size and spa-
tial distribution in the insonified volume. b): averaged over 500 realisations of bubble size and spatial distribution 

in the insonified volume. 

By applying equations (18)-(20) to the total scattered pulse from the beam element, we can obtain the backscat-
tering cross-section of the ensemble of bubbles per unit volume.  

𝑆𝑏𝑠 = 10(𝑇𝑆−log10𝑉) 10⁄ , (27) 

where 𝑇𝑆 is the target strength of the insonified beam element: 

𝑇𝑆 = −𝑆𝐿 + 𝑅𝐿 + 20log10𝑅𝑡𝑏 + 20log10𝑅𝑟𝑏, (28) 

and 𝑅𝐿 is the received signal level in dB: 

𝑅𝐿 = 20log10(|𝑃𝑟𝑎𝑑| 10−6⁄ ). (29) 

Figure 8 shows the results for 4500 random realisations of the bubble ensemble. One can see that the back-
scattering cross-section fluctuates significantly from realisation to realisation (black curve). The mean value 
(green curve) of the back-scattering cross-section per unit volume is higher than that based on the analytical 
linear solution for a single bubble (red curve): 

𝑆bs
lin = ∫ 𝑛(𝑅)𝜎𝑠

lin(𝑅)𝑑𝑅
𝑅max

𝑅min
, (30) 

where 𝜎𝑠
lin is calculated from equation (14). It should be noted here that the red curve in Figure 8 shows not the 

mean value of the analytical backscattering cross-section but its value at a given random realisation of the bub-
ble size distribution. One can see from the figure that it has only a very small variation. The magenta line in Fig-
ure 8 shows the backscattering cross-section per unit volume 𝑆bs

num calculated via a similar method to equation 

(30) but based on the numerical solution for scattering cross-section of an individual bubble, 𝜎𝑠
num. One can see 

that in this case, the mean value of the simulated backscattering cross-section per unit volume is very close to 
that based on the scattering cross-section of individual bubbles. 

a) b) 
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Figure 8. Variation of the backscattering cross-section per unit volume over 4500 realisations of bubble size and 
spatial distribution in the insonified volume. 

Figure 9 shows the probability density function (pdf) of the simulated backscattering cross-section relative to its 
analytical value calculated from the given realisation of the bubble size distribution. The red curve in this figure 
shows that the simulated data can be fit well with the lognormal probability density function.  

 

Figure 9. Probability density function of the relative backscattering cross-section per unit volume. Simulated da-
ta are based on 4500 bubble size and spatial distribution realisations. The red curve is a lognormal fit of the 

simulated pdf. 

2.3 Representation of bubble cloud by point scatterers 
Let us now consider a representation of the insonified bubble cloud volume (Figure 3) by a discrete number of 
point scatterers of uniform strength. The scattering strength of an individual point scatterer is calculated as fol-
lows: 

𝜎𝑠,𝑝𝑠 = 〈𝑆𝑏𝑠〉
𝑉

𝑁𝑝𝑠
, (31) 

where 〈𝑆𝑏𝑠〉 is the mean value of the simulated backscattering cross-section per unit volume calculated from a 

set of random realisations of the bubble size and spatial distribution in the insonified volume, 𝑁𝑝𝑠 is the number 

of point scatterers in the insonified volume, 𝑉 is the insonified volume (equation 22). We consider the following 
number of the point scatterers: 3, 5, 10, and 100. For each number of the point scatterers we consider 4500 
random realisations of their position within the insonified volume to simulate the backscattered pulse and the 
backscattering cross-section per unit volume of the insonified volume.  
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Figure 10. Representation of the insonified volume by point scatterers. a): example of a scattered pulse for one 
realisation of the point scatterers’ positions. b): distribution of normalised values of the backscattering cross-

section per unit volume for 4500 realisations of the point scatterers’ positions. The number of point scatterers in 
one realisation, from top down: 3,5,10,100, as indicated also in the titles of the plots. 

a) b) 
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Figure 10 shows results of simulations for various numbers of point scatterers in the insonified volume. The left-
hand side plots (Figure 10a) display an example of simulated backscattered pulses. Of course we should note 
here that the specific shape of the backscattered pulse changes significantly from realisation to realisation of the 
point scatterers’ positions in the insonified volume. However, in the case of three or even five point scatterers 
one can clearly see that the backscattered pulse is a superposition of a corresponding number of individual 
scattered pulses, which are, for point scatterers, are scaled incident pulses. For ten and more point scatterers 
the scattered pulse has a more stochastic nature similar to the pulse simulated for the collection of large number 
of bubbles (Figure 6). Similar indications give the right-hand side plots (Figure 10b) showing the probability den-
sity function of the backscattering cross-section per unit volume relative to its analytical value based on a linear 
solution for individual bubbles (equation 30): for ten and more point scatterers the pdf is close to that obtained 
from a simulation using large number of bubbles (Figure 9). 

3 CONCLUSIONS 
A Monte Carlo model of acoustic scattering from a bubble cloud has been developed. Currently it is based on 
single scattering from individual bubbles, but a future model will take into account multiple scattering The scat-
tered pressure from individual bubbles is calculated from numerical solution of forced bubble oscillation in the 
acoustic field of incident pulse. The backscattered pulse from an insonified volume is calculated as a coherent 
summation of pulses scattered from individual bubbles. Simulations were performed for many realisations using 
realistic bubble size distributions, volume fractions, and sonar parameters. The simulations show, that the 
backscattered cross-section per unit volume of an ensemble of bubbles varies significantly with the realisation of 
the bubbles’ positions in the insonified volume. The statistical distribution of the values of the backscattered 
cross-section per unit volume is well described by a log-normal probability density function for simulated param-
eters of sonar and bubble cloud.  

Using the same model, representation of the insonified volume by a small number of point scatterers was test-
ed. The scattering strength of the point scatterers was calculated from the mean value of the numerically simu-
lated backscattering cross-section per unit volume of a bubble cloud. The results show that as few as ten point 
scatterers in the insonified volume are sufficient to produce a realistically looking backscattered pulse and re-
produce sufficiently accurately the probability density function of the distribution of values of the backscattering 
cross-section per unit volume. The point scatterers’ strength can be calculated from a known bubble size distri-
bution and the scattering cross-section of individual bubbles, obtained either from a linear solution or from a 
numerical solution of bubble oscillation, if non-linear effects are estimated to be significant. 
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