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ABSTRACT 

The present author showed previously that, if the sound speed profile (SSP) in a vertically stratified fluid half-
space is described by a specific formula, the exact solution of the depth-separated Helmholtz equation is a Bes-
sel function with the argument exponentially depending on depth. As, according to this formula, the square of 
the refraction index “n” changes exponentially with depth, it is suggested here that this SSP be called the “n

2
-

exponential SSP”. It is shown that the n
2
-exponential SSP in a limiting case can approximate the linear SSP in 

the isothermal surface duct. This approximation is compared with a commonly used approximation by means of 
the n

2
-linear SSP. It is shown that the equation for the horizontal wavenumbers in a medium with the n

2
-

exponential SSP in its approximate form coincides with the corresponding approximate equation for the n
2
-linear 

SSP. Green’s function for the acoustic field trapped in the duct with the n
2
-exponential SSP is obtained from a 

known equation. The acoustic field calculated with the use of the Green’s function is compared with the acoustic 
field obtained by means of numerical models BELLHOP and RAMGeo. It is shown that the spatial distribution of 
the acoustic field described by the Green’s function is close to the one calculated by these models. 

1 Introduction 
Formation of an acoustic duct in the mixed layer of water below the ocean surface is a well-known phenome-
non.  It occurs when the temperature in the layer is uniform due to mixing and the sound speed increases linear-
ly with depth due to rising hydrostatic pressure. As the sound waves are refracted towards the surface within the 
duct, successive reflections from the surface lead to significant increase in the propagation range. 

The exact analytical solution for the acoustic field within the duct with the linear SSP is not known. Instead, vari-
ous numerical models are used for prediction of acoustic field in such a duct. In addition, the linear SSP is often 
approximated by the n

2
-linear SSP, where the inverse of the sound speed squared changes linearly with depth 

(Jensen et al., 2011). In this case, the corresponding solution for the acoustic pressure is represented via Airy 
functions with their argument being a linear function of depth. 

The main purpose of this paper is to suggest an alternative technique to model the sound field in the duct with 
the linear SSP. The technique is based on the solution derived previously by the present author (Zinoviev, 2016) 
for a special case of the “transitional“ layer described by Brekhovsikh (1960).  

In Section 2, the previously derived SSP and the corresponding solution for the acoustic field are presented. It is 
suggested that this SSP be called  the “n

2
-exponential SSP”, as, for this SSP, the inverse sound speed squared 

exponentially tends to an asymptotic value. In Section 3,  the n
2
-exponential SSP and the corresponding solu-

tion for the acoustic field are adapted for the modelling of the linear SSP. In Section 4, the approximation by 
means of the n

2
-exponential SSP is compared with the commonly used approximation utilising the n

2
-linear SSP 

in terms of its accuracy and mathematical compactness. Section 5 is devoted to the derivation of the Green’s 
function of the duct based on the obtained solution for the n

2
-exponential SSP and to the comparison of the re-

sults of calculations of the acoustic field using the Green’s function with the results obtained with the use of nu-
merical models BELLHOP and RAMGeo. 
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2 The n
2
-exponential SSP and the corresponding equation for the acoustic field 

Consider an acoustic medium that is a fluid half-space where the sound speed values at the surface and far be-
low the surface, cs and c0, are such that 𝑐0 > 𝑐𝑠. The boundary of the half-space is considered to be pressure-
release and smooth. As the harmonic time dependence is assumed and the medium is range-independent, in 
the cylindrical coordinates the acoustic pressure in the far field, 𝑃(𝑟, 𝑧, 𝑡), is considered to be of the form 
 
 

𝑃(𝑟, 𝑧, 𝑡) =
𝐴

√𝑟
𝑒𝑖(𝑘𝑟𝑟−𝜔𝑡)𝑝(𝑧), (1) 

 
where 𝑟 is the horizontal range, 𝑧 is depth, 𝑡 is time, 𝐴 is the complex pressure amplitude, 𝑘𝑟 is the horizontal 
wavenumber, 𝜔 = 2𝜋𝑓, 𝑓 is the acoustic frequency, and 𝑝(𝑧) satisfies the depth-separated Helmholtz equation 
for the medium (Jensen et al., 2011). 
 
 

[
𝑑2

𝑑𝑧2
+

𝜔2

𝑐2(𝑧)
] 𝑝(𝑧) = 0, (2) 

 
where 𝑐(𝑧) is the depth-dependend sound speed. 
 
Based on Brekhovskikh’s (1960) equations for the “transitional” layer, Zinoviev (2016) showed that, if 𝑐(𝑧) is 
determined by the following equation: 
 
 𝑐(𝑧) =

𝑐0𝑐𝑠

√(𝑐0
2 − 𝑐𝑠

2)𝑒−𝑚𝑧 + 𝑐𝑠
2

,      𝑧 > 0,   𝑚 > 0, (3) 

 
then the exact solution of Eq. (2) can be described via a Bessel function of the first kind, 𝐽2𝜅(𝑥), of the order 2𝜅 
with the argument exponentially depending on 𝑧:  
 
 𝑝(𝑧) = 𝐽2𝜅(2𝜙𝑒−𝑚𝑧/2). (4) 

 
In Eq. (4), 𝜙 is the non-dimensional frequency defined as  
 
 

𝜙 =
𝜔√𝑐0

2 − 𝑐𝑠
2

𝑚𝑐0𝑐𝑠

, (5) 

 
and the order of the Bessel function, 2𝜅, can be determined from conditions at 𝑧 = 0 and 𝑧 → ∞.  
 
Zinoviev (2016) showed that, if the difference ∆𝑐= 𝑐0 − 𝑐𝑠 is small in comparison with 𝑐0, then the SSP described 
by Eq. (3) can be reduced to an important limiting case, the exponential SSP, where the sound speed exponen-
tially tends to its asymptotic value, 𝑐0, with increasing depth: 
 
 

𝑐𝑒𝑥𝑝(𝑧) = 𝑐0 (1 −
∆𝑐

𝑐0

𝑒−𝑚𝑧),    ∆𝑐 𝑐0 ≪ 1⁄ . (6) 

 
The solution for pressure in this case is determined by Eq. (4) with the non-dimensional frequency, 𝜙, being in 
the form of 
 
 

𝜙 =
𝜔

𝑚𝑐0

√
2Δ𝑐

𝑐0

. (7) 

 
It can be shown that Eq. (3) can be rewritten in terms of the refraction index, 𝑛(𝑧) = 𝑐0 𝑐(𝑧):⁄  
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𝑛2(𝑧) = 1 + (

𝑐0
2

𝑐𝑠
2

− 1) 𝑒−𝑚𝑧 . (8) 

 
Eq. (8) shows that the refraction index exponentially tends to its asymptotic value, one, with increasing 𝑧. There-
fore, it is suggested here that the SSP described by Eqs. (3) and (8) be called the “n

2
-exponential SSP”. 

3 Modelling the SSP and the acoustic field in an isothermal surface duct 

3.1 Linear SSP 
In an isothermal surface duct the sound speed increases linearly with depth due to rising hydrostatic pressure. If 
the sound speed gradient in the duct is 𝑔 and the sound speed at the surface is 𝑐𝑠 then the linear dependence 
of the sound speed on depth can be defined as 
 
 𝑐𝑙𝑖𝑛(𝑧) = 𝑐𝑠 + 𝑔𝑧. (9) 

 
As an exact analytical solution for the acoustic pressure in the linear SSP is not known, to enable analytical der-
ivations for a surface duct the “n

2
-linear” sound speed profile is commonly utilised (Jensen et al., 2011). This 

technique is briefly described in the next subsection. 

3.2 The n
2
-linear SSP 

The n
2
-linear sound speed profile is determined by an equation for sound speed where the refraction index 

squared, or the inverse square of sound speed, depends linearly on depth: 
 
 1

𝑐𝑛𝑠𝑙
2 (𝑧)

= 𝑎𝑧 + 𝑏,     𝑎 = const,    𝑏 = const. (10) 

 
To model a linear SSP described by Eq. (9), the constants 𝑎 and 𝑏 are usually assumed to be in the following 
form: 
 
 

𝑎 = −
2𝑔

𝑐𝑠
3

,   𝑏 =
1

𝑐𝑠
2

. (11) 

 
Eqs. (10) and (11) lead to the following equation for the sound speed in a medium with the n

2
-linear SSP: 

 
 𝑐𝑛𝑠𝑙(𝑧) =

𝑐𝑠

√1 −
2𝑔

𝑐𝑠
𝑧

. 
(12) 

 
Eq. (12) can be reduced via Taylor series to Eq. (9) if 2𝑔𝑧 𝑐𝑠 ≪ 1⁄ . As the typical values for 𝑔 and 𝑐𝑠 are  
0.016 s

-1
 and 1500 m/s respectively, it is clear that this condition is satisfied even for the deepest of realistic 

ducts. 
 
In a medium with SSP in the form of Eq. (12), the dependence of the acoustic pressure on 𝑧 is determined via 

Airy functions, Ai(𝜁) and Bi(𝜁). As shown by Jensen et al. (2011), the solution for the pressure via the function 

Ai(𝜁) is: 
 
 

𝑝𝑛𝑠𝑙(𝑧) = Ai (
𝑘𝑟

2 − 𝜔2(𝑎𝑧 + 𝑏)

(𝜔2𝑎)2/3
) ,      𝑘𝑠 =

𝜔

𝑐𝑠

. (13) 

 
Substitution of 𝑎 and 𝑏 in the form of Eq. (11) into Eq. (13) leads to the following solution for the acoustic pres-
sure in the n

2
-linear SSP: 

 

𝑝𝑛𝑠𝑙(𝑧) = Ai (
𝑘𝑟

2 − 𝑘𝑠
2 (1 −

2𝑔

𝑐0
𝑧)

(−𝑘𝑠
2 2𝑔

𝑐0
)

2/3
). (14) 
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The function Ai(−𝑥) can be represented via Bessel functions 𝐽±1 3⁄ (𝑥): 

 
 

Ai(−𝑥) =
1

3
√𝑥 (𝐽−1 3⁄ (

2

3
|𝑥|3 2⁄ ) + 𝐽1 3⁄ (

2

3
|𝑥|3 2⁄ )). (15) 

 
The pressure-release boundary conditions at 𝑧 = 0 lead to the following equation for horizontal wavenumbers, 

𝑘𝑟,𝑛: 

 
 

𝑘𝑟,𝑛 = 𝑘𝑠
√1 + (

2𝑔

𝜔
)

2/3

𝜁𝑛 , 𝑛 = 1, 2, 3 …, (16) 

 
where 𝑛 are duct mode numbers and 𝜁𝑛 are zeros of the Airy function Ai(𝜁), which can be approximated as 
(Jones et al., 2016): 
 
 

𝜁𝑛 ≈ − (
3𝜋(𝑛 − 1 4⁄ )

2
)

2 3⁄

. (17) 

 

As the value of (
2𝑔

𝜔
)

2/3

 is small, the horizontal wavenumbers 𝑘𝑟,𝑛 for the infinite duct under consideration are 

real and positive.  
 
Eq. (16) can be simplified via Taylor series as follows: 
 
 

𝑘𝑟,𝑛 ≈ 𝑘𝑠 [1 −
1

2
(

3𝜋𝑔

𝜔
)

2/3

(𝑛 −
1

4
)

2/3

]. (18) 

 
Eqs. (14) – (18) are commonly used to model the linear sound speed profile and the acoustic field in an iso-
thermal surface duct. The next subsection describes an alternative technique for such modelling by means of 
the n

2
-exponential SSP. 

3.3 The n
2
-exponential SSP 

When deriving Eqs. (3) – (5) for the n
2
-exponential SSP no assumptions have been made about the asymptotic 

value of sound speed, 𝑐0. Therefore, it can be considered to be very large. If the sound speed gradient at the 

surface (𝑧 = 0) is 𝑔𝑠 and 𝑐0 → ∞ , then Eqs. (3) and (4) can be simplified and reduced to the following equa-
tions: 
  
 

𝑐𝑛𝑠𝑒(𝑧) = 𝑐𝑠𝑒
𝑔𝑠𝑧

𝑐𝑠 , (19) 

 
 

𝑝𝑛𝑠𝑒(𝑧) = 𝐽𝑘𝑟𝑐𝑠
𝑔𝑠

(
𝜔

𝑔𝑠

𝑒
−

𝑔𝑠𝑧

𝑐𝑠 ). (20) 

 
In Eq. (20), 𝐽𝑘𝑟𝑐𝑠

𝑔𝑠

(𝑥) is Bessel function of the first kind of the order 𝑘𝑟𝑐𝑠/𝑔𝑠. 

 
It is clear that Eq. (19) can be reduced to Eq. (9) for the linear SSP if 𝑔𝑠𝑧/𝑐𝑠 ≪ 1, which is the case in realistic 
ocean ducts. Therefore, Eqs. (19) and (20) can be used for modelling the sound speed profile and the pressure 
field in the surface duct with the linear SSP. 
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The pressure-release conditions at 𝑧 = 0 lead to the following equation for the horizontal wavenumbers, 𝑘𝑟,𝑛: 

 
 𝐽𝑘𝑟,𝑛𝑐𝑠

𝑔𝑠

(
𝜔

𝑔𝑠

) = 0. (21) 

 
Eqs. (19) – (21) represent one of the results of this work. Eq. (19) describes the sound speed profile in a medi-
um with the n

2
-exponential SSP with the condition 𝑐0 → ∞, whereas Eq. (20) is the exact solution for the vertical 

pressure profile in such a medium. Eq. (21) is the exact equation for finding the horizontal wavenumbers, 𝑘𝑟,𝑛. 

The use of these equations for modelling sound propagation in the surface duct with the linear SSP is demon-
strated further in this paper. A detailed derivation of these equations is considered to be outside the scope of 
this work. 

4 Comparison of approximations of the linear SSP by means of the n
2
-linear and n

2
-exponential SSPs 

4.1 Equations for the horizontal wavenumbers 
Since the order of the Bessel function in Eq. (21) is large, an approximation of the Bessel function can be uti-

lised to simplify this equation. As a result, it is possible to obtain an approximate equation for 𝑘𝑟,𝑛 and show that 

it coincides with Eq. (18). Therefore, although the exact equations for finding the horizontal wavenumbers 𝑘𝑟,𝑛 

(Eqs. (16) and (21)) are different for the n
2
-linear and n

2
-exponential sound speed profiles, their approximations 

are the same in the form of Eq. (18). This confirms that these two SSPs are approximations of the same linear 
SSP with some degree of accuracy. Differences between the two approximations are discussed in the next two 
subsections. 

4.2 Accuracy 
Accuracy of an approximation of the linear SSP by another SSP can be represented by a measure of deviation 
of the sound speed gradient in the approximate SSP from the constant gradient 𝑔 in the linear SSP. This meas-

ure, Δ𝑔, can be calculated by the following equation: 

 
 

Δ𝑔 =
𝑐′(𝑧) − 𝑔

𝑔
=

𝑐′(𝑧)

𝑔
− 1, (22) 

 
where 𝑐′(𝑧) is the derivative of the approximate sound speed profile over 𝑧. 

 
Figure 1 shows the value of Δ𝑔 for the two approximate sound speed profiles discussed here. Figure 1a with the 

maximum depth of 30 km shows that the n
2
-linear SSP deviates much more significantly from the linear SSP at 

very large depths. Although it is obvious that such depths are not realistic for ocean surface ducts, this Figure 
demonstrates that the approximation of the linear SSP by the n

2
-exponential SSP is much more accurate than 

the approximation by the n
2
-linear SSP.  

 
The better accuracy of the approximation by means of the n

2
-exponential SSP can be also seen in Figure 1b for 

a duct with the maximum depth of 1000 m, which can be observed in polar regions (Jensen et al., 2011). This 
Figure shows that the difference between the sound speed gradient in the n

2
-linear SSP and the one in the line-

ar SSP is about three times larger than the difference between the gradients in the n
2
-exponential and the linear 

SSPs at any given depth. 

4.3 Mathematical compactness 
The depth dependence of the pressure field in the n

2
-linear SSP is described by Eqs. (14) and (15). Eq. (14) 

determines the pressure field via an Airy function of an argument 𝑥 depending linearly on depth. The equation 
for the Airy function (Eq. (15)) shows that this function is a sum of two Bessel functions of the order ±1/3 multi-

plied by square root of 𝑥. The argument of the Bessel functions is proportional to |𝑥|3/2. In the case of the n
2
-

exponential SSP the pressure field is determined by a single Bessel function with the argument exponentially 
depending on depth (Eq. (20)). It is clear that this representation is simpler and can lead to more convenient 
analytical derivations and better approximations. Also, it may benefit numerical modelling by facilitating faster 
and more accurate calculations. 
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Figure 1: Relative deviation Δ𝑔 (Eq. (22)) of the vertical derivative of the sound speed in the n

2
-linear and n

2
-

exponential SSPs from the constant gradient in the linear SSP. 

5 Green’s function for the duct with the n
2
-exponential SSP 

5.1 Formulation 
Knowledge of the Green’s function of a medium is crucial for modelling acoustic propagation in the medium, 
since this function represents the field of a single monopole source. Ye (1995) considered a surface layer where 
gas bubbles generated by breaking waves lead to the exponential vertical sound speed profile described by  
Eq. (6). He demonstrated that an approximate solution for the pressure field in such a layer has the form of Eqs. 
(4) and (7). Based on this solution, he derived the Green’s function for such a layer as a series with terms rep-
resenting modes trapped in the layer. The field propagating below the layer was excluded from his considera-
tion. Since the solution determined by Eqs. (4) and (7) differ from the solution described by Eq. (19) only by the 
appearance of the order and the argument of the Bessel function, it is justified to utilise the Green’s function ob-
tained by Ye (1995) in the case considered here. As a result, the Green’s function for the fluid half-space with 
the linear SSP approximated by the n

2
-exponential SSP can be written as the following series where each term 

represents a mode of the layer: 
 

𝐺(𝑧, 𝑟) = ∑ 𝐴𝑛𝐽𝑐𝑠𝜅𝑟,𝑛
𝑔𝑠

(
𝜔

𝑔𝑠

𝑒
−

𝑔𝑠𝑧

𝑐𝑠 )

∞

𝑛=1

𝐻0
(1)

(𝑘𝑟,𝑛𝑟). (23) 

 
The modal coefficients, 𝐴𝑛, are determined by 
 
 

𝐴𝑛 = 𝜋2√𝜋(−1)𝑛+1
𝑘𝑟,𝑛𝑐𝑠

2𝑔𝑠arccos (
𝑐𝑠𝑘𝑟,𝑛

𝜔
)

(
𝜔2 − 𝑐𝑠

2𝑘𝑟,𝑛
2

4𝑔𝑠
2

)

1/4

𝐽𝑐𝑠𝜅𝑟,𝑛
𝑔𝑠

(
𝜔

𝑔𝑠

𝑒
−

𝑔𝑠𝑧𝑠
𝑐𝑠 ) 𝐻𝑐𝑠𝜅𝑟,𝑛

𝑔𝑠

(1)
(

𝜔

𝑔𝑠

). (24) 

 

In Eqs. (23) and (24), 𝐻𝜈
(1)(𝑥) is the Hankel function of the first kind of the order 𝜈 and argument 𝑥, 𝑧𝑠 is the 

source depth, and the modal horizontal wavenumbers, 𝑘𝑟,𝑛, are calculated by means of either the exact Eq. (21) 

or the approximate Eq. (18). It can be noted that the summation in Eq. (23) is infinite, as the n
2
-exponential SSP 

extends to infinite depths and, as a result, all modes are considered to be trapped. Eqs. (23) and (24) represent 
another result of this work. 

5.2 Comparison with numerical modelling results 
As a verification of the Green’s function in the form of Eqs. (23) and (24), a comparison has been carried out 
between the acoustic field predicted with the use of the Green’s function as well as two numerical models. Two 
frequencies, 600 Hz and 6000 Hz, were considered. A high-frequency beam tracing model BELLHOP was used 
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in the latter case, whereas a parabolic equation model RAMGeo was used for the lower frequency. The source 
depth, 𝑧𝑠, was considered to be 5 m in the high-frequency case and 50 m in the low-frequency case. Other duct 
parameters were the same for both cases. Their values were as follows: the sound speed at the surface, 
𝑐𝑠 = 1500 m/s, the duct depth, 𝐻 = 150 m, the sound speed gradient in the duct, 𝑔 = 0.016 s

-1
. The environment 

below the duct was considered to be an isovelocity half-space with the sound speed of 1502.4 m/s.  
 
In the analysis provided in the previous sections, the fluid layer extends to infinite depth, so that the number of 
trapped modes in Eq. (23) is infinite. As is well-known, for a duct of finite depth only the lowest modes are 
trapped in the duct. Based on the equation for the modal trapping frequency provided by Jones et al. (2017), the 
number, 𝑁, of the modes taken into account in Eq. (23) is determined as follows: 
 
 

𝑁 ≤
4√2𝑔

3
𝑓 (

𝐻

𝑐𝑠

)
3/2

+
1

4
. (25) 

 
In the modelling described here, 𝑁 was equal to 45 in the high-frequency case and 4 in the low-frequency case. 
For the acoustic field determined by the Green’s function (Eq. (23)), there was no coupling between the modes 
trapped in the layer and the isovelocity space below. 
 
Figure 2 shows the results of calculations of transmission loss (TL) in decibels versus range and depth obtained 
by the three methods. The Figures 2a and 2b are for the frequency 𝑓 = 6000 Hz. It is clear from the Figures that 
the spatial TL distributions calculated by means of the Green’s function obtained here and by means of the 
BELLHOP model are very similar both at large and small scales. The main difference between the distributions 
is in the area just below the source. This difference can be explained by the fact that the Green’s function takes 
account of the modes propagating in the layer only, whereas the BELLHOP model describes the total acoustic 
field including its part propagating towards the sea floor. The same explanation is also valid for the small-scale 
variations of TL calculated using the Green’s function in the bottom half of the duct at ranges up to 15 km. 
 
Figures 2c and 2d show TL distributions for the lower frequency 𝑓 = 600 Hz produced by means of the 
RAMGeo parabolic equation model and the Green’s function obtained here. The difference between the two 
figures is more noticeable than in the high-frequency case due to lower number of propagating modes. Howev-
er, spatial distributions of TL in these two figures are still quite similar. 
 
Overall, the comparison of TL calculated using the Green’s function with TL obtained by means of the two nu-
merical models based on different principles confirms the validity of the representation of the acoustic field de-
scribed by Eqs. (23) and (24). The observed differences with the results of numerical modelling due to a limited 
number of trapped modes can be overcome in the future by taking into consideration leakage of the acoustic 
energy from the duct. 
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Figure 2: Transmission loss calculations by means of the Green’s function (Eqs. (23) and (24)) as well as 
the numerical models BELLHOP and RAMGeo. Top row: 𝑓 = 6000 Hz, bottom row: 𝑓 = 600 Hz, the left column: 

numerical models, the right column: Green’s function. 𝐻 is the duct depth, 𝑓 is frequency, 𝑧𝑠 is the source depth. 

 

6 Conclusions 
In this paper, the n

2
-exponential sound speed profile (SSP) is considered. It is shown that this profile in a limiting 

case can approximate well the linear SSP in the isothermal surface layer. A general solution for the acoustic 
pressure in such a layer is obtained. The obtained approximation for the linear SSP is compared with the well-
known approximation by means of the n

2
-linear SSP and shown to be more accurate and more compact math-

ematically. 
 
The Green’s function for the layer with the approximated linear SSP is obtained as a series of modes trapped in 
the layer. This Green’s function is used to calculate the transmission loss (TL) distributions vs range and depth 
for two frequencies: 600 Hz and 6000 Hz. The comparison of these results with the ones obtained using two 
numerical models shows overall agreement. The observed differences can be explained by the limited number 
of trapped modes taken into account in the Greens’ function. It is proposed that these differences can be re-
duced in the future research by considering energy leakage from the layer to the space below. 
 
In general, as the n

2
-exponential SSP describes a family of curves with various vertical dependencies, it can be 

suggested that the obtained solution for the acoustic pressure as well as the corresponding Green’s function 
can become the basis of a layered model describing sound propagation in realistic sound speed profiles. 

a) b) 

c) d) 
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