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ABSTRACT 
Modelling the propagation of sound waves in the ocean is challenging because one must account for spatial 
variation in properties of the fluid and in the ocean geometry, as well as couple the fluid to a seabed that supports 
both shear and compressional waves. This article presents a finite element based approach to obtaining the 
eigenmodes for an axial uniform ocean waveguide. Once these modes have been computed, an orthogonality 
relation is used to compute the sound pressure field for ranges of up to 5 km. This approach avoids the traditional 
heavy computational expenditure associated with the finite element method, at least for a uniform waveguide. 
Furthermore, the numerical approach properly accounts for the depth dependent properties of the ocean, and 
couples the ocean to a full elastodynamic representation of the seabed, which supports both shear and compres-
sional waves. This permits the implementation of the physically correct transverse boundary conditions, as well 
as the addition of a perfectly matched layer to enforce the correct boundary conditions at infinite depth in the 
seabed.  

1 INTRODUCTION 
Developing a mathematical model suitable for analysing sound propagation in the ocean presents a considerable 
challenge. This relates to the size and complexity of a typical ocean environment and so it is common to explore 
different ways to try and simplify the problem. One popular approach is to reduce the problem to a two dimensional 
uniform waveguide and to then compute the normal modes for the guide. This approach was pioneered by Pekeris 
(1946) and many different variations have followed, see Etter (2013) for a comprehensive review. A typical normal 
mode solution does however contain many approximations and many additional challenges also need to be ad-
dressed. The most significant of these include the variation of density and sound speed in the ocean, as well as 
coupling the ocean to the seabed. To address these problems, the ocean waveguide literature generally adopts 
an analytic approach and here the use of ray tracing is popular because of the size of the ocean and the typical 
frequency range encountered, see for example discussions of various ray tracing methods by Etter (2013), as 
well as discussions on the use of parabolic equations. One of the most popular examples is the normal mode 
approach of Westwood et al. (1996), which is commonly referred to as the ORCA model. This approach is a 
comprehensive analysis that attempts to account for the changes in fluid density, as well as coupling the ocean 
to an elastic representation of the seabed. The approach relies on separating the guide into multiple ducts in 
which the sound speed is either constant or varies linearly; the method also introduces some assumptions about 
interactions at the interface between an elastic solid and a fluid. Moreover, the method also relies on analytic 
expansions and so this will make the problem progressively more challenging as the frequency is increased. This 
makes it very difficult to properly capture the terminating boundary condition at the bottom of the seabed, in the 
limit that the seabed tends to infinity. Nevertheless, the analytic normal mode method of ORCA is often used as 
a benchmark solution and is considered to provide a good approximation of true performance, as well as delivering 
solutions in a relatively short timescale. 
 
This article introduces an alternative approach to obtaining a modal solution for a uniform ocean waveguide. The 
approach is based on the so-called semi-analytic finite element (SAFE) method that has been developed in the 
structural mechanics and acoustics literature. The method involves expanding the unknown variables in the axial 
direction of the waveguide as an infinite sum over the guide eigenmodes in the usual way, but then uses the finite 
element method to discretise the guide in the transverse direction in order to solve the eigenproblem numerically. 
This method has been used to obtain eigenmodes for elastic waveguides, see for example Duan and Kirby (2015). 
More recently the method has been extended to buried pipelines (Duan et al. 2016) and fluid filled buried pipes, 
Kirby et al. (2017) and Kalkowski et al. (2018). This approach for buried pipelines has seen the development of 
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an efficient one dimensional method that makes use of a perfectly matched layer to accommodate the boundary 
condition at infinity in the surrounding [elastic] material, which is often soil or sand. It is interesting to note that the 
problem analysed in fluid filled buried pipes is very similar to the one being addressed in ocean waveguides: there 
exists a region of fluid that is coupled to an elastic structure and then to another elastic structure in which a 
transverse boundary condition must be applied at infinity. Accordingly, the SAFE method offers an interesting 
alterative approach for obtaining the eigenmodes of an acousto-elastic environment. 
 
The advantage of the SAFE method is that by using a numerical discretisation of the problem one may easily 
account for variations in fluid density (and sound speed). Furthermore, one can properly enforce the continuity 
conditions between the fluid and the seabed without any accompanying approximations, as well as enforce the 
appropriate transverse boundary condition within the seabed. This can be achieved with a method that is fast and 
efficient and so has the potential to address larger ocean waveguide problems. Accordingly, this article describes 
the underlying concept behind the application of the SAFE method to ocean acoustics, and shows that the method 
can be used to plot the acoustic pressure in an ocean environment. However, a full derivation of the mathematics 
that supports this analysis is rather lengthy and so this will be reported elsewhere. 

2 Theory 
A schematic of the ocean waveguide is presented in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Geometry of waveguide with governing PDE. 

The waveguide is intended to fully characterise the problem and so includes air above the ocean, which is then 
coupled to seawater in which the density and sound speed may change continuously with depth. The seawater is 
then coupled to an elastic seabed in which two layers are included. The first layer in this article is chosen to be 
sand and the second layer limestone for most of the predictions that follow; however, the choice of material is 
entirely arbitrary. Note that damping or absorption can easily be included in any of the layers shown in Fig. 1. 
 
Each fluid region is modelled using the acoustic wave equation, which for variable density is given by the Berg-
mann equation (Bergmann 1946) 

𝜌𝜌𝑓𝑓∇ ∙ �
1
𝜌𝜌𝑓𝑓
∇𝑝𝑝′� − 1

𝑐𝑐𝑓𝑓
2
𝜕𝜕2𝑝𝑝′

𝜕𝜕𝑡𝑡2
= 0. (1) 

This equation reduces to the well-known Helmholtz equation in regions of constant density (after substituting in 
the time dependence). Here, 𝑝𝑝′ is the acoustic pressure, and 𝜌𝜌𝑓𝑓 and 𝑐𝑐𝑓𝑓 are the density and speed of sound in the 
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fluid, respectively. For a solid region the elastodynamic wave equation is used, which is also known as Navier’s 
equation, and this is given as 

(𝜆𝜆 + 𝜇𝜇)∇(∇ ∙ 𝒖𝒖′) + 𝜇𝜇∇2𝒖𝒖′ = 𝜌𝜌
𝜕𝜕𝒖𝒖′

𝜕𝜕𝑡𝑡2 (2) 

In the solid, 𝜆𝜆 and 𝜇𝜇 are the Lamé constants, 𝜌𝜌 is the density and 𝒖𝒖′ is the displacement vector. The relevant 
boundary conditions are: 

� ∂
𝜕𝜕𝜕𝜕
− 𝑖𝑖𝑘𝑘𝑓𝑓� 𝑝𝑝′ = 0;    𝑥𝑥 → +∞. (3) 

𝑝𝑝air′ = 𝑝𝑝ocean′     and   𝑣𝑣𝜕𝜕,air
′ = 𝑣𝑣𝜕𝜕,ocean

′ ;    𝑥𝑥 = 0. (4) 

𝑝𝑝ocean′ = −𝜎𝜎𝜕𝜕𝜕𝜕′     and   𝑣𝑣𝜕𝜕,ocean
′ = 𝑢𝑢𝜕𝜕′ =;    𝑥𝑥 = −𝐻𝐻. (5) 

𝜎𝜎𝜕𝜕𝜕𝜕′ = 𝜎𝜎𝜕𝜕𝑥𝑥′ = 0      𝑥𝑥 → −∞. (6) 

Here, 𝑣𝑣𝜕𝜕′  is the acoustic velocity in the 𝑥𝑥 direction in either the air or the ocean, and 𝜎𝜎𝑗𝑗𝑗𝑗′  is a stress tensor. Additional 
boundary conditions also apply at the interface between air and seawater, and the two layers in the seabed, 
however these boundary conditions can be applied naturally thought the finite element discretisation provided 
each governing equation is scaled appropriately. The boundary conditions at 𝑥𝑥 → +∞, and 𝑥𝑥 → −∞  are applied 
using perfectly matched layers (PMLs), which make use of complex coordinate stretching functions, so that  

𝑥𝑥� = ∫ 𝜉𝜉(𝑠𝑠)𝑑𝑑𝑠𝑠𝜕𝜕
0  (7) 

where values for 𝜉𝜉(𝑠𝑠) are chosen to ensure that the boundary conditions are enforced in the most computationally 
efficient way. For example, Duan et al. (2016) show that through the appropriate choice of 𝜉𝜉(𝑠𝑠), the PML can be 
attached directly to the first layer of an elastic solid, so that in Fig. 1 the PML would start at 𝑥𝑥 = −𝑏𝑏1. This facilitates 
a reduction in the size of the PML and so enables the development of a fast and efficient way of enforcing the 
terminating boundary conditions. 
 
To solve the problem, the acoustic pressure and the displacement in the solid are expanded over the (coupled) 
waveguide eigenmodes to give 

𝑝𝑝′(𝑥𝑥, 𝑧𝑧; 𝑡𝑡) = ∑ 𝐴𝐴𝑚𝑚𝑝𝑝𝑚𝑚(𝑥𝑥)𝑒𝑒𝑖𝑖(𝜔𝜔𝑡𝑡−𝑗𝑗𝑚𝑚𝑥𝑥)∞
𝑚𝑚=0  (8) 

𝒖𝒖′(𝑥𝑥, 𝑧𝑧; 𝑡𝑡) = ∑ 𝐴𝐴𝑚𝑚𝒖𝒖𝑚𝑚(𝑥𝑥)𝑒𝑒𝑖𝑖(𝜔𝜔𝑡𝑡−𝑗𝑗𝑚𝑚𝑥𝑥)∞
𝑚𝑚=0  (9) 

Here, 𝑝𝑝𝑚𝑚 and 𝒖𝒖𝑚𝑚 are the eigenvectors, and 𝑘𝑘𝑚𝑚 are the eigenvalues, for the coupled problem. In addition, 𝐴𝐴𝑚𝑚 are 
the modal amplitudes. The substitution of Eqs. (8) and (9) back into the governing equations and the addition of 
the boundary conditions enables, after some effort, one to write the problem as a standard eigenequation that can 
be solved for 𝑝𝑝𝑚𝑚, 𝒖𝒖𝑚𝑚 and 𝑘𝑘𝑚𝑚. This is accomplished using a standard finite element discretization, which can easily 
accommodate a change in the density of the fluid (and the solid if so desired). 
 
Finally, this article also plots the acoustic pressure in the waveguide and to do this it is necessary to compute the 
modal amplitudes 𝐴𝐴𝑚𝑚. In this article a monopole source is used to excite the waveguide, and this enables the 
modal amplitudes to be found using the following expression: 

𝐴𝐴𝑚𝑚 = 𝑄𝑄s𝜌𝜌𝑓𝑓(𝜕𝜕s)𝑐𝑐𝑚𝑚𝑝𝑝𝑚𝑚(𝜕𝜕s)

Λ𝑚𝑚𝑚𝑚
. (10) 

 
Here, 𝑄𝑄s is the monopole source strength, 𝜌𝜌𝑓𝑓(𝑥𝑥s) is the density of the fluid at the location of the source 𝑥𝑥 = 𝑥𝑥𝑠𝑠 
(which is assumed to lie in the fluid); 𝑐𝑐𝑚𝑚 is the modal phase speed and Λ𝑚𝑚𝑚𝑚 is an appropriate orthogonality relation 
(Scandrett and Frenzen 1995). 
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3 RESULTS 
Results are presented here for the geometry and material properties used by Westwood et al. (1996) in their 
ORCA paper, see Tables 1 and 2. However, variations in density and the speed of sound within the fluid are taken 
from Fahy and Walker (1998). 

Table 1: Dimensions of waveguide 

Parameter Value 
𝑎𝑎𝑚𝑚 (m) 8 
𝑎𝑎1 (m) 4 
𝐻𝐻 (m) 200 
𝑏𝑏1 (m) 210 
𝑏𝑏2 (m) 230 

 

Table 2: Properties of elastic materials 

Parameter Sand Limestone Concrete 
𝜇𝜇 (GPa) 0.224+0.000713i 3.987+0.00633i 16 
𝜆𝜆 (GPa) 3.3635+0.00464i 6.421-0.00122i 9 

Density, ρ (kg/m3) 1400 2300 2300 
 
In Figure 2, the mode shapes for the first four modes in which the acoustic energy lies predominantly in the 
seawater are presented at a frequency of 50 Hz.  

 
Figure 2: Mode shapes for pressure/𝜎𝜎𝜕𝜕𝜕𝜕 at 50 Hz for the first four modes  

with energy concentrated in the seawater. 
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The modes in Fig. 2 have been sorted from those in which the energy lies either in the air or the seabed. Figure 
2 shows a reasonably standard profile and it is seen that the approximate boundary condition of zero acoustic 
pressure at the top and bottom of the seawater generally holds. However, it is noted that this only applies to these 
fluid type modes, and one can also see that as the mode order increases the zero pressure boundary condition 
becomes progressively more inaccurate at the seafloor. Figure 2 also illustrates the enforcement of the relevant 
boundary conditions in the respective PMLs in the air and the seabed. 
 
In Figure 3 the transverse displacement (𝑥𝑥 direction) is shown for the same problem as that studied in Fig 2. The 
solid line represents the solution with the PML present in the model, and overlaid on top of this is the equivalent 
solution obtained using the geometry and material properties in the ORCA model (Westwood et al. 1996). In the 
ORCA model, the boundary condition in the seabed is approximated by using a very deep section of limestone 
with very heavy damping. It is easy to replicate this geometry with the SAFE method, and so it is the SAFE 
predictions that appear in Fig 3 (and not predictions taken using the ORCA solution). Thus, Figure 3 illustrates 
the physical  limitations of the way in which ORCA enforces the boundary conditions in the seabed.  
 

 
Figure 3: Mode shapes for displacement at 50 Hz for the first four modes with energy concentrated  

in the seawater. Solid lines, SAFE + PML; dashed lines, SAFE with ORCA boundary condition in seabed. 
 
In Fig. 3 it can be seen that in principle the modes shapes within the fluid region can be obtained accurately, 
however the boundary condition applied in ORCA is only an approximation in the lower section of the seabed and 
this is observed in the incorrect limiting behaviour of the displacement. In contrast, the PML is seen to properly 
enforce this boundary condition and does this quickly and efficiently over a short distance. 
 
The modal solutions obtained from the eigenproblem can be used to find the sound pressure distribution in the 
axial direction using Eq. (10) for a given number of modes, 𝑀𝑀, and these are chosen to deliver convergence in 
the sound pressure distribution. In Fig. 4 the sound transmission loss at 𝑥𝑥 = −150 m for a sound source placed 
at 𝑥𝑥s = −50 m is shown for various different mesh densities and values of 𝑀𝑀, at a frequency of 50 Hz (for the 
example studied previously). The sound transmission loss follows the usual definition (Westwood et al. 1996). 
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Figure 4: Convergence of predictions for sound transmission loss at 50 Hz  

with source at −50 m and receiver at −150 m. 
 
In Fig.4, three different solutions are obtained, and these range from 950 to 2826 degrees of freedom (eigenmatrix 
order), and with 𝑀𝑀 = 50, or 150. It can be seen in Fig. 4 that all three solutions overlay one another and this 
illustrates that convergence for this problem is readily achieved for a relatively modest problem size, at least at 
this frequency. 
 
One of the main advantages of the SAFE method is that it can properly account for the coupling between the 
ocean and the seabed, including implementing the appropriate boundary at 𝑥𝑥 = −∞. Clearly, the effect of this 
coupling will become progressively more important for shallower oceans and it is here that the advantages of the 
SAFE approach are likely to become more pronounced. For example, the influence of the seabed on sound trans-
mission loss is illustrated in Fig. 5, for a waveguide of depth 𝐻𝐻 =  25 m. In Fig. 5 the solid black line is the reference 
solution taken using the properties of the seabed described in the previous examples (Westwood et al. 1996), but 
with 𝑏𝑏1 = 35 m and 𝑏𝑏2 = 85 m. The solid grey line is for the same dimensions as the first case, but this time 
replacing limestone with concrete (see Table 2). The final case, which is the dashed line, increases the depth of 
sand to 30 m and has a 50 m layer of concrete below the sand. It can be seen in Fig. 5 that the sound transmission 
loss changes significantly with different properties in the seabed.  This is to be expected because in this particular 
example the coupling between the fluid and the solid is strong. This illustrates the ability of the SAFE method to 
capture the changes in behaviour associated with the conditions present in the seabed, however it also illustrates 
that the predictions are likely to be very sensitive to the acoustic properties used to represent each material, at 
least for shallower waveguides. 
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Figure 5: Transmission loss at 50 Hz for with source at -10 m and receiver at -20 m. 

              , seabed of sand with depth 10 m and limestone of depth 50 m; 
               , seabed of sand with depth 10 m and concrete of depth 50 m; 
                , seabed of sand with depth 30 m and concrete of depth 50 m. 

 
Finally, in Figs. 6-8, the sound pressure level generated by a monopole source is presented for an ocean wave-
guide at different frequencies. The sound pressure level is normalised against the source strength. In Figs. 6-8 
the geometry used in the ORCA model (Table 1) is used, as well as sand and limestone (Table 2). The sound 
pressure distribution at 50 Hz is plotted in Fig. 6, with 250 Hz in Fig. 7, and 500 Hz in Fig. 8. 

 
Figure 6: Normalised sound pressure level at 50 Hz using 50 modes. 
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Figure 7: Normalised sound pressure level at 50 Hz using 250 modes. 

 
Figure 7: Normalised sound pressure level at 50 Hz using 400 modes. 

It is reminded here that in Figs. 6-8, these pressure plots have been obtained without discretisation in the axial 
direction (range). All that is required is the one dimensional mesh in the 𝑥𝑥-coordinate at 𝑧𝑧 = 0. This means that 
the time taken to solve the problem is also independent of the range that is plotted, and here the range is reduced 
for the higher frequencies only in order to show up detail. Accordingly, these plots can be generated relatively 
quickly, so that each of these pressure plots takes between about 1 and 2 seconds to generate on a standard 
laptop computer (using MATLAB®). This speed can be improved upon for real applications once one has decided 
upon the tolerance levels/errors that are acceptable for a particular application. Note also that when generating 
plots of sound pressure it is not necessary to sort the modes into different categories. Each mode will be excited 
according to their mode shape, so that some modes that have energy lying predominately in the sold, or air, will 
not be strongly excited by a monopole source in the seawater. This means that the modal amplitude for these 
modes will be small and they will not contribute to the final sound pressure plots. That is, this method does not 
require one to spend time sorting through each mode type and distinguishing say, Scholte and Stoneley waves 
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from other types of waves. All that is necessary is that a sufficient number of modes are retained when computing 
sound pressure level to achieve a converged solution, and the numbers used are listed on Figs. 6-8.  Of course, 
as the frequency increases, then the number of modes required will also increase and the problem will become 
progressively more challenging. 
 
The sound pressure distributions seen in Figs. 6-8 generally exhibit the behaviour expected in ocean waveguides, 
especially in terms of the diffraction of the propagating sound field. This article is designed to demonstrate the 
ability of the model to generate sound pressure plots and of course it remains for these predictions to be bench-
marked in the future.  

4 CONCLUSIONS 
The purpose of this article is to demonstrate that finite elements can be used to generate sound pressure distri-
butions for ocean waveguides without the use of large numbers of elements. The SAFE method requires only the 
transverse (depth) dimension to be meshed and, provided one uses an appropriate orthogonality relation, it is 
then straightforward to calculate the amplitudes of each mode and to recover the sound pressure distribution. This 
means that the approach is computationally fast and efficient, and sound pressure plots can generally be recov-
ered in under 10 seconds for frequencies up to 500 Hz. A key advantage of the SAFE method is that one can 
readily include depth dependence for fluid density and sound speed in the ocean, as well as properly capture the 
continuity conditions between the ocean and the seabed and accurately enforce the appropriate boundary condi-
tions at the bottom of the seabed. 
 
This approach does, of course, depend on the assumption of a uniform ocean waveguide, and so the SAFE 
method should be seen as complementary to those analytic methods that investigate the normal mode problem. 
However, the speed of the method means that it is capable of going to higher frequencies and it is possible that 
the method could also supplement some ray acoustics models as well. Furthermore, it has been shown in articles 
on pipelines (Duan et al. 2017) that a fast and efficient frequency domain method can then be used to compute 
time domain predictions, so that the approach presented here has the potential for studying wave propagation in 
the ocean in the time domain. 
 
The computation of normal modes in a two dimensional waveguide is only an approximation of the true problem. 
However, once one has found the eigenvalues for a uniform section of the ocean, it is possible to extend this 
analysis to discontinuities, or finite regions in which a non-uniform section is present. For example, for uniform 
discontinuities, say when an ice sheet is present, mode matching can be used to join uniform regions together, 
see Kirby et al. (2014) and Duan et al. (2017). For non-uniform sections, one can also use mode matching to join 
modal solutions for uniform sections to a full finite element discretisation of non-uniform sections using a so-called 
hybrid method, see Kirby (2008) and Duan and Kirby (2015). This method provides an approach to minimising 
regions in which it is necessary to apply a full finite element discretisation, and so offers the potential to reduce 
problem size and hence generate more accurate predictions over a wider frequency range, even for more complex 
geometries than those discussed in this article. 
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