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ABSTRACT

In the present paper, the role of the flow pulsation in the scale-dependent complex vibration of ultrasmall tubes
under the action of an axial pretention is investigated. The main focus of the present study is on the chaotic
vibration response of the ultrasmall system. The effect of the internal energy friction is also considered via help of
the Kelvin-Voigt model. In practical applications, tubes and pipes are usually surrounded by an elastic foundation.
Therefore, in the current study, it is assumed that the ultrasmall tube is embedded in a nonlinear elastic medium.
The theory of couple stress as well as the theory of an Euler-Bernoulli beam are utilised to develop a modified
scale-dependent model. An energy/work principle is also utilised for the derivation of the energy potential, motion
energy and the external work as well as the equations of motions. Employing Galerkin’s procedure gives the
discretised version of the differential equations of the pulsatile fluid-conveying ultrasmall tube embedded in a
nonlinear elastic foundation. Finally, application of a time-integration scheme gives the nonlinear characteristics
of the complex vibration. It is found that the flow pulsation has a significant role in the complex vibrations of
ultrasmall tubes in the super critical regime. Various types of transverse motions are found depending on the
amplitude of flow pulsation.

1 INTRODUCTION

In ultrasmall fluid-conveying systems such as microfluidics- and nanofluidics-based devices (Warkiani et al. 2014),
solid structures such as microscale/nanoscale tubes and plates interact with the fluid part. In practical situations,
the velocity of the flowing fluid can change over time. In addition, the mixing of microfluid flows is troublesome as
at microscale levels, Reynolds numbers are often low. It has recently been reported that creating pulsatile fluid
flows is one way of mixing microfluid flows (Cheaib et al. 2016). The source of the pulsatile fluid flow at microscale
levels can be a micropump or the nature of the microfluid flow itself. Taking into account this flow pulsation is
important to better these systems since it can affect mechanical characteristics. Due to the fact that the mechan-
ical behaviour of ultrasmall structures is size-dependent, modified continuum models have been introduced in the
literature by amending the classical continuum mechanics (Simsek 2010, Aydogdu 2015, Murmu, Adhikari, and
Wang 2011, Ke et al. 2012, Hadi, Nejad, and Hosseini 2018, Farajpour et al. 2018). In the present analysis, the
modified couple stress theory (MCST) is employed as the modified continuum model.

In recent years, modified continuum models have been utilised in order to study the mechanics of fluid-conveying
ultrasmall tubes. Wang (Wang 2010) examined the linear vibrational response of ultrasmall tubes conveying fluid
flow with a constant velocity using the MCST. Kural and Ozkaya (Kural and Ozkaya 2017) also analysed the
vibrational response of ultrasmall fluid-conveying pipes surrounded by a linear elastic medium; they explored the
influence of the elastic medium on the vibrational response. In addition, in a study done by Hosseini and Bahaadini
(Hosseini and Bahaadini 2016), a modified continuum model was proposed for the instability analysis of cantilever
microtubes conveying fluid based on a strain gradient theory. The nonlinear vibrational response of fluid-convey-
ing tubes at microscales was also investigated by Dehrouyeh-Semnani et al. (Dehrouyeh-Semnani, Nikkhah-
Bahrami, and Yazdi 2017) via a modified couple stress model. In addition to microscale pipes conveying fluid, the
mechanical characteristics of fluid-conveying nanoscale tubes have been also examined by developing nonlocal
continuum models (Bahaadini and Hosseini 2016, Ansari et al. 2016, Liu, Lv, and Li 2017). The influence of a
geometrical imperfection on the nonlinear buckling of microscale fluid-conveying pipes was examined by
Dehrouyeh-Semnani et al. (Dehrouyeh-Semnani, Nikkhah-Bahrami, and Yazdi 2017). Furthermore, Tang et al.
(Tang et al. 2014) applied the MCST, as a size-dependent theory, to curved tubes containing fluid flow at mi-
croscales; they found that the vibration characteristics of curved microtubes are substantially different from those
of straight ones. The mechanical behaviour of nonlocal strain gradient pipes conveying fluid (Li et al. 2016) and
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the vibration of piezoelectric inhomogeneous micropipes conveying fluid (Hosseini, Maryam, and Bahaadini 2017)
have been recently studied using modified continuum models.

In all of the studies mentioned above, the fluid velocity is assumed to be constant. Nonetheless, in practical situ-
ations, the speed of the flowing fluid can change over time. In this study, the influence of the flow pulsation on the
size-dependent complex vibrational response of ultrasmall tubes subject to an axial pretention is analysed. The
emphasis is placed on the chaotic vibration response of the ultrasmall tube. The MCST s utilised to capture size
effects on the chaotic vibration response. Moreover, the influence of the internal energy friction is captured via
the Kelvin-Voigt model. The ultrasmall tube is surrounded by a nonlinear elastic medium. An energy/work principle
is employed to derive the governing differential equations of the ultrasmall tube. The influences of the amplitude
of the fluid velocity as well as the mean value of the fluid velocity on the size-dependent complex vibration are
discussed.

2 SIZE-DEPENDENT NONLINEAR MODELLING

A viscoelastic tube conveying pulsatile flow at ultrasmall levels is shown in Fig. 1. The viscoelastic tube is resting
on a nonlinear elastic medium. The ultrasmall tube is of cross-sectional area A, length L, internal radius R;, and
external radius Ro. The nonlinear elastic medium is characterised by ki (the linear stiffness coefficient) and kz (the
nonlinear stiffness coefficient). An axial pretention denoted by To is also applied to the ultrasmall tube. The Young
modulus, the viscosity constant and Poisson’s ratio of the tube are denoted by E, ¢, and v, respectively. More-

over, in the present formulation, | denotes the scale parameter.

Elastic medium Microscale tube, L

Pulsatile flow

Figure 1: An ultrasmall tube conveying pulsatile flow resting on an elastic medium.

Using the Kelvin-Voigt theory, the stress-strain equation of ultrasmall tubes can be written as

o¢
J— — XX
O-XX - O-xx(el) + o-xx(vis) - ngx + Cvis 8t ’ (1)
where o,,, O, Twwis aNd &, represent the axial stress, the elastic stress, the viscoelastic stress and the

strain, respectively (Wang 2010, Farajpour et al., 2018). The axial strain of the ultrasmall tube is expressed as
oulx,t) Y (ovix,t)Y d0(x,t
Ex(X,2,t)=,[ 1+ ulx,b) + vix,t) —1—z$, 2)
ox ox ox

in which u, v and € denote the axial mid-plane displacement, the transverse mid-plane displacement and the
cross-section rotation of the tube. In a similar way, one can write the deviatoric couple stresses (m;) as follows

. oy
_ — ~ Xy
mxy - mxy(el) + mxy(vis) - Eny + Cvis at ’ (3)
. oy,
— — ~ yz
myz - myz(el) + myz(vis) - Ezyz + Cvis at ’
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in which £=E1’/(1+v) and ¢, =c,|>/(1+v). In Eq. (3), m,,, and m,,, stand for the elastic and viscous

parts of mj, respectively. Moreover, y,, and y,, are symmetric rotation gradient components determined as

1 8( ov acosé’j
Xy =———|sin0+—+z ,

4 0Ox ox ox
4
__10cosé
Hye 4 ox
The energy/work principle can be written as
(6T, —8U,, —6U,, +6W,, )dt =0. 5)

Here Tke, Upe, Usp and W,is stand for the kinetic energy, the potential energy, the elastic energy of the elastic
medium and the work performed by viscoelastic stresses, respectively. The fluid velocity is assumed as

u=u,+U, cos(a)ft), (6)
where @, , Uo and Us are the pulsation frequency, the mean and amplitude of the fluid velocity, respectively.

For developing a numerical solution, the following dimensionless parameters are employed
1

X 1 1( B Y _ ¢,
a=T <§,77'7>=§<“'Vi>r T=¢t, (/’:_z( j » Gis = 2o
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I 2(1+v)! @ El M+m El
L4
—_ — — 2
u, =EU, u,, =2U,, u,=EU,, <K1,K2>=E<kl,4k2Ro>.

Here M, m and | stand for the mass per unit length of the fluid, the mass per unit length of the tube and the cross-
sectional moment of inertia, respectively. Let us assume that both ends of the ultrasmall tube are clamped. These
end conditions are assumed as in practical situations, especially in microfluidics-based devices, ultrasmall tubes
are usually fixed at their ends. Using Galerkin’s approach, the displacement components are as follows

©)

{5(0: r)} ler, #)® (@)

nla,t) v '

Y

2.6, (0)¥ (@)
1=1

where (¥, ,®@,) and (g

lating energy and work terms in Eq. (5), and then applying Egs. (6)-(8), the discretised governing equations of the
ultrasmall tube are derived. For the transverse motion, one obtains

ZJ”)q ~JBou,,sin(a, )ZJ‘Z’q +[uf0+uf1cos(wfr)}2§:1}j3’qj

j=1 j=1

N, N,
FZJ“”q +2B [ufo +uy, cos(wfr)]ZJ,.‘f’qj +(1+7)> 19,
j=1 j=1

) represent the shape functions and generalised coordinates, respectively. Formu-

m’m

E 3 NV NV NV
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v|2y j=1 k=1 I=1 =1 k=1
N, N, N, N,
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9)
/uk) and J(k) are obtained by implementing the Galerkin approach. For solving the ordinary differential equations

described by Eg. (9), a continuation method is finally used. It should be noticed that in the present analysis,
numerical calculations are performed using 16 shape functions. The present model captures the size influence
via incorporating the scale parameter of the couple stress theory.

3 NUMERICAL RESULTS

For numerical results, the geometrical properties of the viscoelastic ultrasmall tube are taken as Ri=17.5 um,
Ro=25 um, and L/R, = 280. Moreover, the system material properties are assumed as v=0.38 and E=1.44 GPa,
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p=1220 kg/m3 and p; =1000 kg/m?3 (Simsek and Reddy 2013) in which p denotes the mass density; “t” and “f’
denote the tube and fluid, respectively. These material properties are often employed for beams at microscale

levels. The dimensionless parameters are » =140, I' =6.0, ¢, =0.0003, K1=K>=80, $=0.4406, u =0.4821, @

lwi=2 and = =2.1047x10°. Unless noted otherwise, the transverse deflection is plotted at & =0.45. The non-

dimensional critical fluid velocity related to the divergence of the fluid-conveying ultrasmall tube is obtained as
8.4001.

The bifurcation plots of Poincaré sections of ultrasmall viscoelastic tubes containing pulsatile flowing fluid for a
mean velocity a bit higher than the critical value (u=8.5 > 8.4001) are plotted in Fig. 2. The ultrasmall system is
in the supercritical regime. The first natural frequency of ultrasmall tubes containing pulsatile flowing fluid is ob-
tained as wi= 5.29. From this figure, it can be concluded that the size-dependent nonlinear motion of the tube is
of period-2 type for small values of un. As the amplitude of the fluid velocity further increases, a wide range of
distinct motion types such as period-1, period-2, period-6 and chaos is seen in the nonlinear complex vibrational
response of the viscoelastic ultrasmall tube under longitudinal pretension. The first chaotic region starts at around
unn=0.84, and the last one is around uu=2. To give more details, the Poincaré sections of the transverse motion
for the system of Fig. 2 at un=1.106 are plotted in Fig. 3. From this figure, it is seen that the type of the transverse
motion for un=1.106 is chaos. In addition, the size-dependent time history of the transverse motion for this case
is illustrated in Fig. 4.
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Figure 2: Bifurcation plots of ultrasmall viscoelastic tubes containing pulsatile flowing fluid for u=8.5.
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Figure 3: Poincaré sections of the transverse motion for the system chaos observed in Fig. 2 at un=1.106.
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Figure 4: Time history of the transverse motion for the system chaos observed in Fig. 2 at un=1.106.

4 CONCLUSIONS

The influence of the pulsation of the fluid flow on the complex vibrational behaviour of ultrasmall viscoelastic tubes
surrounded by a nonlinear elastic medium was investigated. The emphasis was put on the chaos of the ultrasmall
system. The MCST is employed for capturing the size influence on the vibrational behaviour. The influence of the
internal friction was also incorporated by the Kelvin-Voigt model. The ultrasmall tube was under pretention along
the axial direction. Employing an energy/work principle, the Galerkin approach and a continuation method, the
governing equations were derived, discretised and solved. It was found that both the amplitude and mean value
of the fluid velocity have a significant role in the complex vibrational response of ultrasmall viscoelastic tubes. In
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the super critical regime, various types of transverse motion are found depending on the value of the amplitude
of the fluid flow. As a future work in this area to carry this research further, one can calibrate the scale parameter
using molecular dynamics simulations or conducting experiments.
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