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ABSTRACT 

Correct and efficient model of the dynamics of the laminated core structure is essential for the design of quiet 
power transformers. In this paper, the viscosity and friction between two adjacent laminas of a laminated beam 
were included in the derivation of the equivalent bending stiffness of the beam subject to transverse vibration. As 
a result, the equivalent stiffness and loss factor of the beam were obtained as functions of the lamina number and 
relative deformation ratio due to the friction factor between the layers. The equivalent material properties were 
then used to determine the frequency response functions of laminated beams using the finite element method. 
The comparison between the simulated and measured frequency response functions of laminated beams showed 
good agreement. 

1 INTRODUCTION 

Transformer noise is becoming a pressing environmental issue and driving manufacturers to develop quiet trans-
formers. The design of quiet transformers relies on accurate modelling of the transformer core vibration (Girgis et 
al. 2008). However, there is still a lack of transformer core models, which can correctly predict the core vibration 
based on electric input. The main obstacle is the lack of a clear understanding of the dynamic properties of the 
transformer core, consisting of laminated structures with incomplete bonded and glued conditions. The finite ele-
ment method (FEM) is a common tool for modelling such laminated systems. However, modelling hundreds of 
the laminas within one core will consume enormous computation resources. Hence, an equivalent material prop-
erties is a preference (Wang et al. 2011) in describing the vibration of the laminated structure in terms of that of a 
solid structure with equivalent material properties. Due to the laminated configuration, small shear stress between 
the lamina causes it to exhibit orthotropic properties of structural stiffness, which reduces the bending stiffness in 
the direction perpendicular to the lamination and increase the damping ratio of the whole core structure signifi-
cantly. Several models were developed to obtain equivalent properties (Pirnat et al. (2013) and (Du et al. 2017). 
The former used two contact parameters to define the elastic and dissipative forces and optimised them via FEM 
and the experimental results. Good agreement (13% error) was obtained for the natural frequencies under differ-
ent stacking structures. However merely modelling the natural frequencies correctly is not adequate for vibration 
prediction and noise performance because the forced vibration of a structure is also dependent on the mode 
shapes and damping ratios. Du et al. (2017) developed an empirical model based on the experimental result. 
Good agreement was obtained on both the natural frequencies and damping ratios while the model provides little 
physical understanding of the system. Besides, the damping model was developed between two laminas from a 
bolted friction two-beam-column system (Bournine et al. 2011). They started modelling the damping by consider-
ing the work done by friction and potential energy of bending.  A very close agreement was obtained between 
experiment and model. However, their study was limited to two laminas. Transformer cores are made of multi-
lamina structural components. 

In this paper, the frequency response function (FRF) of a multi-lamina structure was modelled by considering the 
relative displacement between the adjacent laminas generated by incomplete bonding. Both the equivalent stiff-
ness and loss factor were calculated as a function of lamina numbers and relative strain, which were modelled 
from a set of experimental results. The remainder of the paper is constructed as the follows: the second section 
presents the derivation of the analytical model including the equivalent stiffness and structure loss factor. The 
third section gives the experimental results including the parameters optimisation and their application to FEM. 
The results from FEM with the estimated equivalent stiffness and loss factor are compared with the experimental 
result. 
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2 ANALYTICAL MODEL  
To assemble the transformer core, each lamina is insulated on all external surface and then stack as a laminated 
beam by the clamp or cable tie. Then, all the external surface of the whole laminated bar is painted. Due to the 
capillary effect, the adhesive penetrates into the space between laminas. The contact between adjacent laminas 
and resulting bond are therefore not uniform. This complicates modelling. To simplify the modelling, an assump-
tion of uniform glue adhesive is made and uniform stiffness and friction between the laminas are described by 
spring-damper elements, as shown in Fig. 1. The force introduced by the spring-damper element is proportional 
to the relative displacement and energy is dissipated during the beam deflection. The spring-damper model is a 
non-linear system and will be derived in the following sections. 
 

 
 

Figure 1: Spring-damper model between adjacent laminas 

2.1 Equivalent Stiffness 
Small deflection of the laminated beam is assumed to ensure the thickness of each lamina remains constant and 
Poisson effects ignored. Subsequently, three conditions of relative slip between adjacent lamina surfaces under 
various bonded condition are presented in Fig. 2, where (a) represents a fully bonded or solid beam, (b) is with 
some friction such that slip occurs between laminas and (c) is entirely frictionless. For (b) to remain valid in addition 
to the small transverse displacement, it assumed that the coefficient of friction is sufficient to transmit the required 
shear at each interface without further slip. 

 
Figure 2: The edge deformations at the free end of the cantilever beam with their angle notation 

For the case presented in Fig. 2(a), which is a solid beam with the same thickness, the free end is described by 
a straight and flat edge surface, implying that the strain of the lower surface of ith lamina is equal to the strain of 
the upper surface of ith -1 lamina. For the frictionless case as presented in Fig. 2(c), no shear force is transmitted 
between adjacent laminas, which means stiffness of the spring in Fig. 1 is equal to 0. For this case, the edge of 
the free end is jagged, and the upper corners at the free end of all laminas lie on a vertical line and in parallel with 
the supporting boundary. Additionally, the strain of all the upper and lower surface are the same respectively. The 
condition shown in Fig. 2(b) is the intermediate case. Even though the bond condition is different based on the 
glue condition, it is reasonable to assume that all upper and lower corners lie on the same lines, although they 
may not be in parallel with the supporting boundary. Fig. 3 shows an element of the ith lamina under bending 
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condition. The upper and lower lengths of the element and the relationship of the element with respect to the 
neutral axis and the centre of the curvature are also illustrated in Fig. 3.  

Defining strains of the upper and lower surfaces of the element of the ith lamina as  𝜀𝑢
𝑖  and 𝜀𝑙

𝑖. The lengths of the 
upper and lower surfaces are expressed respectively as: 
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where 𝐿𝑛 is the length of the element in the neutral axis. Since the corners of the element lie on a straight line, 
the strain difference between adjacent laminas should be the same for all laminas, and the strain difference be-
tween contacting upper and lower surfaces of adjacent laminas are the same as well. Therefore following two 
strain differences: 
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are defined to represent the internal and the external strain differences respectively. There are N laminas in Fig. 
3. The bottom lamina is noted as the 1st lamina and the top one is the 𝑁th lamina. Since the beam is symmetrical 
about its neutral axis, without losing generality, N is assumed to be an odd number and thus the central geometric 
plane of the middle lamina is the neutral axis. As a result, the strains of the upper and lower surfaces of the ith 

lamina element can be expressed in terms of 𝛿𝐼 and 𝛿𝐸 as: 
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The bending moment associated with the bending of the element can be calculated. 
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where the differential force on the ith lamina of the element is calculated by 
i
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iR is the radius of 

the curvature of the ith lamina. In Eq. (7) 𝑙 is the thickness of a single lamina and di is distance from neutral axis 
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to lower surface of ith lamina, and  𝑏 is the width of the beam.  𝑟 is the distance to the neutral axis, 𝐸 is Young’s 

modulus.  From the geometry shown in Fig. 3, the 𝑑𝑖 and 𝑅𝑖 can be expressed by their strains 𝜀𝑢
𝑖 , 𝜀𝑙

𝑖. 

  
Figure 3: The configuration between the bending radius, neutral axis and the ith lamina 

In Fig. 3, the upper and lower surfaces are the integration boundaries as 𝑑𝑖 and 𝑑𝑖 + 𝑙. The relationship among 
each length can be concluded in Eq. (9). 
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Simplifying Eq. (9), the bending radius and the integration boundaries can be obtained as: 
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As a result, the bending moment can be expressed as a function of the strain difference ratio 𝜁 ≡
𝛿𝐸

𝛿𝐼
  and 
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Considering the fully bonded and frictionless conditions, the strain difference ratios 𝜁 equal to 0 and -1, respec-
tively. Thus the corresponding bending moments are: 

2

3

,
12

I
x fully bounded

Ebl
M N


  (12)  

2

,
12

I
x frictionless

Ebl
M N


  (13)  

Based on the theory of uniform elastic beam, the bending stiffness is proportional to the bending moment (Morse. 

1936) by 
2

2x

W
M EI

x


 


. Therefore, with increasing lamina number for the fully bounded beams, the stiffness 

increases with𝑁3. On the other hand, for the frictionless case, the stiffness increases with 𝑁. These two cases 
match with previous research results (Pytel et al. 2011). To calculate the equivalent bending stiffness of a lami-
nated beam using FEM it is possible to compare the results to those corresponding to an equivalent fully bounded 
one of the same overall height, the ratio is found to be 
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where (𝐸𝐼)𝑏  is the stiffness of beam shown in Fig. 2(b). 

2.2 Damping property 

To calculate the loss factor of the system, the work done by friction and potential energy of bending is required. 
The friction between adjacent laminas, which is assumed to be a function of the relative slip distance, can be 
derived from the force equilibrium equation using the spring model, as shown in Eq. (15). 
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where the first term is the inner force caused by the lamina deformation. 𝐹𝑢,𝑖 and 𝐹𝑙,𝑖−1 are the force caused by 

the deformation of the spring-damping element, which equal to 𝐹𝑢,𝑖 = 𝑘𝑖𝜀𝑢
𝑖 𝐿𝑛 and 𝐹𝑙,𝑖−1 = 𝑘𝑖−1𝜀𝑙

𝑖−1𝐿𝑛. It is also as-

sumed that the free surfaces, i.e. the bottom and top surface, do not take any force such that 𝐹𝑙,0 = 𝐹𝑢,𝑁 = 0. 

Therefore, the stiffness of the spring between ith and i+1th can be expressed by Eq. (16). 
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The dissipation of energy, or work, is calculated by the friction force multiplied by the relative displacement be-
tween adjacent laminas, which is constant as mentioned above. Therefore, the dissipation energy is a function of 
𝑁 as shown in Eq. (17). 
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On the other hand, as shown in Fig. 2, the deflection of the whole beam along the x-axis can be expressed as 
(Bournine et al. 2011) 
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where 𝑊 is the time-dependent deflection at the free end, which is approximately equal among all the laminas. 
Therefore, the potential energy due to bending is defined as the summation of the potential energy of all laminas.  
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Subsequently, the loss factor 𝜂 can be expressed as a function of the lamination layers. 
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Hence, the loss factor can be obtained for given strain 𝛿𝐼 and strain difference ratio 𝜁. Using the equivalent pa-
rameters expressed in Eqs. (14) and (20), it is possible to predict the natural frequencies, as well as FRF of the 
beam.   

3 Experimental and FEM Setup 
The configuration of the experimental setup is shown in Fig. 4, and geometric and material parameters of a single 
Si-Fe sheet for the laminated beam are given in Table 1. The number of the laminas varied from 1 to 115. Laminas 
were held together by rubber bands at three locations along the beam’s length to keep them tight.  
 

 
Figure 4: Experimental setup for obtaining the FRFs of the laminated cantilever beam 

Table 1: Parameters of the Si-Fe sheets used for the laminated beam 

Parameter Value 

Length, Ln (m) 0.12 

Width, b (mm) 20 

Thickness, l (mm) 0.5 

Young’s modulus, E (GPa) 133 

Density,  (kg/m3) 7650 

Poisson’s ratio, v 0.28 

The FRFs of the beam were measured using the impact force as the input and measuring the acceleration as the 
output. A PCB model 086C02 impact hammer was used to produce the impact force and a B&K 4517-002 accel-
erometer used to collect the response. Both locations of the impact force and accelerometer are 50 mm from the 
free end but one on the top and one at the bottom, as shown in Fig. 4. A National Instruments USB-6259 signal 
acquisition board with a LabVIEW interface program was used for data acquisition and signal processing.  
 
To verify the analytical model, the experimental measured FRFs of laminated beams when 𝑁 equals to 1, 8, 32 
and 115 were used to optimise the parameters in Eqs. (14) and (20). These equations with fitted parameters were 
then used to estimate the stiffness and loss factors of the laminated beams with 𝑁 equal to 2, 4, 16 and 64. FEM 
was used to calculate the FRF by using the equivalent bending stiffness and loss factor as input parameters.  

x

y
z
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It is recognised that for the real system it may be more likely that the changing physical parameter affecting the 
equivalent stiffness is the second moment of the area of the cross section. However, in the FEM simulation, when 
the solid beam configuration is used, this second moment of the area of the beam is equivalent to the solid beam. 
Therefore, the most efficient way to use equivalent bending stiffness is to use the equivalent Young’s modulus. 

 

4 Result and Discussion 

4.1 Experimental result 
Experimental measured FRFs up to 1000 Hz are shown in Fig. 5. The grey levels correspond to different numbers 
of the lamina. It is apparent in Fig. 5 that the loss factor rises with an increase in lamina number. The increase is 
caused by the greater potential for friction to do work between adjacent laminas. The natural frequencies slightly 
increase with the rise of lamina number, which is caused by the increase in thickness and the shear force from 
friction. However, this increase is much smaller compared to the fully bounded beam, according to Eq. (14).  

 
Figure 5: Measured FRFs of the laminated cantilever beam with different laminated layers 

4.2 Parameters optimization and application 
 

The loss factor and equivalent stiffness were calculated from the FRFs to be 0.025, 0.23, 0.38, 0.78 and 133, 2.1, 
0.2, 0.08 GPa when 𝑁 equaled 1, 8, 32 and 115, respectively. These two sets of parameters were used in FEM 
for subsequent FRF simulation and the predictions depicted in Fig. 6. The simulation result indicates the correct-
ness by using equivalent material properties for modeling the vibration of the laminated cantilever beam. 
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Figure 6: Experimental (solid lines) and FEM simulated (dash lines) FRFs of the cantilever laminated beams 

with lamina numbers 𝑁 = 1, 8, 32, 115 

 
By fitting Eqs. (14) and (20) with equivalent stiffnesses and loss factors, the equivalent stiffness and loss factor 
as functions of lamina number were obtained and the strain difference ratio 𝜁 turns out to be −0.978, which sub-
sequently produces the estimated loss factor under different layer numbers, as shown in Fig. 7(a) and (b). Recall 
that 𝜁 = 0 under the fully bonded case and 𝜁 = −1 under the frictionless case, the strain difference ratio 𝜁 =
−0.978 in our experimental beam means the laminated bar with rubber band behaved similarly to the frictionless 
case. Small friction force and large slip displacement happened between adjacent laminas in our laminated beam. 
The calculated strain difference ratio is reasonable because most of the friction is introduced by the rough surface 
of the silicon steel sheet and rubber bands.    

 
(a)                                                                                                      (b)  

Figure 7: (a) Equivalent Young’s modulus in log scale (𝑁 = 1 as reference) and (b) loss factor versus lamina 
numbers with stars represent the samples used for parameters optimization, dash lines represent the fitted 

curve according to Eqs. (14) and (20), and dots represent the estimated equivalent Young’s modulus and loss 
factor that is using for FEM simulation 

 
The obtain of equivalent stiffnesses and loss factors are shown in both Fig. 7(a) and (b). Stars denote samples 
used for fitting of Eqs. (14) and (20) and dash lines are the fitted curve based on that. Then, the equivalent 
stiffnesses and loss factors to laminated beams with 𝑁 equal to 2, 4, 16 and 64 were estimated from the fitted 
curves and applied to the FEM simulation.  
 
Fig. 8 presents the simulated FRF via FEM based on estimated equivalent stiffness and loss factors. Results are 
compared between the simulated output (red dash) with experiment result (dark solid). It is apparent that both the 
natural frequencies and the loss factors present a close agreement.  
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Figure 8: FRFs of different cantilever laminated beams simulated by equivalent stiffnesses and loss factors 

5 CONCLUSIONS 
To facilitate the calculation of frequency response functions for laminated structure by finite element method via 
equivalent material properties, a model was developed for calculating the equivalent bending stiffness and loss 
factors based on the relative strain and spring-damping model. The assumption is made that the whole beam 
performs a small deflection and the surface strain differences are constant within one lamina and between adja-
cent laminas. The internal strain difference and strain difference ratio are used as the key indicators to represent 
the friction and bonded condition between adjacent laminas. The equivalent stiffness is expressed as a function 
of lamina number and strains different ratio, which can be used for calculating the equivalent stiffness compare 
to the solid condition. The loss factor is calculated as the ratio between the dissipation of energy that is consumed 
by friction and the bending potential energy, which resolves to be as a function of lamina number and strain 
difference ratio. Finally, experimentally measured frequency response functions were obtained to calculate the 
strain difference ratio and other parameters when the lamina numbers were 1, 8, 32, and 115. The equivalent 
stiffnesses and loss factors when the lamina numbers were 2, 4, 16, and 64 were estimated based on the devel-
oped model and are used in the finite element method simulation. The finite element simulated frequency re-
sponse function shows very close agreement with the experimental result, giving confidence to the model devel-
oped in this paper. In future, the strain difference ratio and other parameters will be obtained on a real transformer 
and the frequency response functions on the transformer core will be simulated and compared. 
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