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ABSTRACT 

The effectiveness of acoustic classification is highly dependent on the features that can be extracted from a giv-
en signal. It is possible to employ a range of features simultaneously during classification to improve accuracy 
and redundancy, though certain features can degrade performance when used together. Mel Frequency 
Cepstral Coefficient (MFCC) and Linear Predictive Cepstral Coefficient (LPCC) algorithms provide a method for 
acoustic feature extraction through the processing of the short term power spectrum of a signal. Features gen-
erated using these coefficients may enhance classification performance in active sonar applications due to their 
robustness against background noise in low frequency bandwidths (20-2000Hz). This paper discusses the inte-
gration of these features into the Binary Classification Research Tool (BCRT); a research tool for the testing of 
feature and classifier performance. The analysis examines their compatibility with established feature sets as 
well as their overall potential in the area of sonar classification.  
 
Through testing on a range of underwater signals, MFCC features were found to have strong isolated perfor-
mance and to increase classification accuracy when combined with established feature sets. LPCC features had 
a poor performance in isolation but achieved the highest classification accuracy when combined with other fea-
ture sets. 

 INTRODUCTION 1

Active sonar provides a means for detecting and identifying underwater objects by emitting a sound pulse and 
analysing its echo return. Information about the object, defined as features, can be extracted from the return 
through signal processing and analysis. The goal of this process is to obtain informative and non-redundant da-
ta on the object to facilitate classification - the assignment of an object into a particular category.  

1.1 Motivation 
Lower frequencies of sound are absorbed less and can propagate further underwater. The signal to noise ratio 
(SNR) of an echo decreases with distance as the strength of the original signal compared to the level of back-
ground noise diminishes. Feature algorithms need to be robust against the effects of noise to facilitate sonar 
detection and classification at longer ranges. MFCC features may meet these requirements since “the method 
for extracting MFCC is robust to resist the disturbance of background noise in the auditory range (20-2000Hz)” 
(Wenbo et al, 2016). LPCC features are derived in a similar fashion to MFCC but differ in their methods of pre-
emphasis and lack specific weighted filtering. LPCC are included in this study to benchmark the specific effects 
of the Mel filter as well as provide a more quantitative analysis of overall feature compatibility.  

1.2 Background  
MFCC and LPCC make use of the power cepstrum to obtain information on the rates of change in the spectral 
bands of a signal. Both methods include pre-emphasis techniques to more accurately “approximate areas of 
high energy concentration while smoothing out the fine harmonic structure of other less relevant spectral details” 
(Hermanxky, 1989). The Mel frequency is tailored to human cochlea, scaling the frequency of a signal to closely 
mimic the way human’s bracket and categorise frequencies of sound or “phonemes”. The human ear is more 
sensitive to changes in pitch for lower frequency sound and a Mel filter scales a signal to place higher emphasis 
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on this region. MFCC are used to great effect in the field of speech recognition. LPCC are also popular in this 
context despite lacking the filter bank processing - they extract features by calculating the smoothed Auto-
Regressive power spectrum of a signal. 
 
Mel Frequency Cepstral Coefficients were found to be effective features for the identification of radiated ship 
noise in a study by Zhang et al (Zhang, 2016), achieving identification rates of 85% and above for data with poor 
to neutral SNR (-10 dB to 0 dB). MFCC and PLPCC features among others were used to describe the sonar 
echoes of a range of surface vessels in testing performed by Korany (Korany 2012). The study concluded that 
an optimal number of Mel Frequency Cepstral Coefficients for maximised identification rate was 24-26. These 
tests involved the use of a single classifier, involved training and testing on the same data set, and provided no 
other features with which to benchmark performance. These concepts are built upon in this study to provide a 
quantitative assessment of cepstral coefficient performance in the field of sonar.  

1.3 Structure  
Section 2 describes the development of the MFCC and LPCC feature algorithms and their implementation using 
the Binary Classification Research Tool (BCRT). Section 3 details the classifiers and features used in this paper 
then outlines the testing procedure undertaken for the benchmarking of the new algorithms. Section 4 displays 
the results of this testing and discusses the associated trends and implications of the data, and Section 5 con-
cludes the findings of the paper and presents areas for further development. Finally, an Appendix is included 
that presents expanded results from the testing. 

 ALGORITHM IMPLEMENTATION 2

Functions were created in Matlab to derive MFCC and LPCC and integrate them into the BCRT. The methods of 
calculating the coefficients can be broken into three stages: signal framing, filter bank processing and feature 
extraction. Both MFCC and LPCC utilise the same method of signal framing but LPCC do not use any filtering. 
Both methods differ slightly in their manipulation of the power spectrum to obtain features. 

2.1 Signal Framing 
An input signal file of time series snippets is broken into overlapping frames based on the sampling frequency 
and a specified frame size and overlap. This analysis uses a length of 25 ms and an overlap of 5ms for both 
MFCC and LPCC calculations and the signal is zero padded if required. 

2.2 Filter bank Processing 
The Mel filter is a triangular shaped filter bank created between a specified cut off and Nyquist frequency using 
methodology outlined by Lyons (Lyons 2012). The frequency limits are converted to Mel frequency using Equa-
tion 1 and n points (where n is the number of filters) are generated evenly spaced between them along the Mel 
scale.  

 
𝑀(𝑓) = 1125 ln (1 +

𝑓

700
) (1) 

To achieve the required weighted spacing, the Mel frequencies are converted back to conventional frequencies 
(Hertz) and rounded to the nearest FFT bin, resulting in n+2 points for the creation of the filter bank. Filter n be-
gins when filter n-1 reaches its peak and filter n reaches its peak as filter n-1 returns to zero. This is described in 

Equation 2 with 𝐻(𝑘) defining the slopes of each filter, n is the filter number and f() is the list of Mel spaced fre-
quencies calculated in Equation 1.  
 

 

𝐻𝑛(𝑘) =

{
 
 
 
 

 
 
 
 
             0                                          𝑘 < 𝑓(𝑛 − 1)

−
𝑘 − 𝑓(𝑛 − 1)

𝑓(𝑛) − 𝑓(𝑛 − 1)
         𝑓(𝑛 − 1) ≤ 𝑘 ≤ 𝑓(𝑛) 

−
𝑓(𝑛 + 1) − 𝑘

𝑓(𝑛 + 1) − 𝑓(𝑛)
         𝑓(𝑛) ≤ 𝑘 ≤ 𝑓(𝑛 + 1) 

−
             0                                        𝑘 > 𝑓(𝑛 + 1) 

 

 

(2) 

 
MFCC featues calculated in this analysis use 26 filters which was found to be optimal for feature extraction in 
previous studies (Korany, 2012), Figure 1 displays one such filter bank and a typical signal power spectrum. 
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The second and third rows of the Figure demonstrate the windowing effect of applying the filters. The emphasis 
placed on lower frequency bands can be clearly observed in the spacing of the triangular filters along the fre-
quency axis. 

 

Figure 1: Example Mel Frequency filter bank and windowed power spectrums 

 
2.3 Feature Extraction 
MFCC: For each frame of the signal, a periodogram estimate of the power spectrum is calculated by taking the 
absolute value of the Discrete Fourier Transform (DFT) and squaring it. This process is shown in Equations 3 
and 4 where 𝑆(𝑘) is the DFT of length K, 𝑠(𝑛) is the time domain signal and ℎ(𝑛) is an N-sample long analysis 
window. 

 
𝑆(𝑘) = ∑𝑠(𝑛)ℎ(𝑛)𝑒−

𝑗2𝜋𝑘𝑛

𝑁
 

𝑁

𝑛=1

 
(3) 

 
 
 

𝑃(𝑘) =
1

𝑁
|𝑆(𝑘)|2 (4) 

 
The power spectrum 𝑃(𝑘) is then windowed by each Mel filter and the logs of the resulting output energies are 
taken. Finally, a Discrete Cosine Transform (DCT) is applied to these to obtain the final features - the Mel Fre-
quency Cepstral Coefficients. There is coefficient for every filter in each frame of the signal. 
 
LPCC: A forward linear predictor of order 𝑝 is applied to each frame by computing the least squares solution to 

𝑋𝑎 = 𝑏 as shown in Equation 5, where 𝑥 is the input signal in the time-amplitude domain. 
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𝑏 = [

1
0
:
0

] 

 

(5) 

 

 
The autoregressive estimate of the power spectrum is then calculated using the formula in Equation 6 where 𝑎𝑘 

are the linear prediction coefficients, G is the prediction error variance, and 𝑓(𝑛) are the final Linear Prediction 
Cepstral Coefficients. 

 

𝑓(𝑛) =

{
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−
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(6) 

 
 BENCHMARKING 3

3.1 Data Sets Used 
The data used for classification training and analysis was 36 sets of recorded or synthesised acoustic echo re-
turns, each set containing between 108 and 361 individual snippets. The data sets covered four classes; returns 
from artificial entities in the ocean such as wellheads categorised as Structure (9 sets total), returns from natural 
features in the ocean such as sandstone categorised as Terrain (9 sets total), scaled returns from generic ship 
models categorised as Vessel (6 sets total), and ambient noise data collected at sea or synthesised from exper-
imental models categorised as Clutter (12 sets total). 
 
The classification performance of the cepstral features was benchmarked by testing their ability to differentiate 
between each combination of signal category. Table 1 displays the testing outline. 
 

Table 1: Class combinations for testing 

 Class 1 Class 2 

Test 1 Structure Clutter 

Test 2 Structure Terrain 

Test 3 Vessel Clutter 

Test 4 Vessel Terrain 

Test 5 Vessel Structure 
 
For each Test, every data set in Class 1 was tested against every data set in Class 2. For example, Test 1 is the 
average of 108 individual tests as there were 9 data sets in Class 1 each tested against the 12 data sets in 
Class 2.  

 
3.2 Classifiers Used 
Three classifiers were used for the training and classification of data in this study. Each classifier has several 
parameters which are discussed briefly below. For each of the three classifier categories below, the average 
performance among the parameter variations was used for the results in section 4. 

Nearest Neighbours: The nearest neighbour rule is a simple classification algorithm that assigns each test 
point based the average class of the k nearest training points. The adaptive nearest neighbour classifier ex-
pands on this algorithm through the application of a weighted modifier, taking into account the "influence size" of 
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each training data point and adjusting its contribution accordingly (Ray 2017). A K Nearest Neighbour (KNN) 
and an Adaptive Nearest Neighbour (ANN) classifier were used in this testing.  

Kernel Ridge Regression: Ridge Regression uses a linear least squares estimate to extrapolate co-linear data 
(Ray 2017). The kernel trick is applied to map the inner product of the regression onto a projected space allow-
ing for well-defined separation of classes. The formation of this space is determined by the kernel used; this 
testing employed a KRR classifier using a Linear Kernel, Polynomial Kernel, and Gaussian Kernel. 

Support Vector Machine: SVM classifiers operate by deriving a two dimensional hyperplane from the training 
data and using it to discriminate test data points into separate classes (Ray 2017). This plane or "support vec-
tor" is derived during training using a Linear, Polynomial or Gaussian Kernel. All three were used in this analy-
sis. 
 
3.3 Features Used 
In this study, Cepstral Coefficient features have been benchmarked against the “Baseline” set of 16 established 
features derived from the statistical moments of the signal in the time and frequency domain. These features are 
outlined in Table 2 and have demonstrated effectiveness in sonar classification (Kouzoubov, Nguyen, Wood). 
 

Table 2: Baseline features, time and frequency domain 

Baseline 

Time Domain Frequency Domain 

Shape Mean Shape Mean 

Shape Variance Shape Variance 

Shape Skewness Shape Skewness 

Shape Kurtosis Shape Kurtosis 

Amplitude Mean Amplitude Mean 

Amplitude Variance Amplitude Variance 

Amplitude Skewness Amplitude Skewness 

Amplitude Kurtosis Amplitude Kurtosis 

 
Testing was conducted on each feature set individually as well as each combination of feature set. The combi-
nation of MFCC and LPCC is referred to as CC All and is achieved by simply combining the two individual fea-
ture vectors before classification. The feature groups tested in this study were: 
 

 Baseline 

 MFCC 

 LPCC 

 CC All 

 Baseline + MFCC 

 Baseline + LPCC 

 Baseline + CC All 
 

3.3.1 Feature coefficient selection 
Using the method described in Section 2 resulted in a large number of features; the number of filters times the 
number of frames for MFCC, and the number of the polynomial order times the number of frames for LPCC. 
Many of these features are redundant and can degrade performance. To improve identification rate and de-
crease processing time a single “optimal” feature was selected for each frame. Testing each class combination 
once and selecting the Maximum, Minimum, Average or Mean of the coefficients as a single feature for each 
frame gave the results in Figure 2.  
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Figure 2: Optimal coefficient selection 

For all subsequent tests the Maximum coefficient was used in each frame for MFCC and the Mean coefficient of 
each frame was used for LPCC. 

 

3.3.2 Feature normalisation selection 
Normalisation is an essential process during classification because it reduces the impact of outlying features 
that can degrade or invalidate the classification process. After testing feature groups 1 to 3 once for each class 
combination it was concluded that “mean-variance” normalisation would be used for the study, the results are 
shown in Figure 3, with the mean variance method achieving the highest accuracy for all feature groups.  
 
Mean Variance normalisation is calculated as: 

 

𝑓(𝑘) = {

𝑘 − 𝑘𝑚𝑒𝑎𝑛 , 𝑘𝑆𝐷 = 0
−

𝑘 − 𝑘𝑚𝑒𝑎𝑛
𝑘𝑆𝐷

, 𝑘𝑆𝐷 ≠ 0
 

(5) 

 

 
Where 𝑘𝑆𝐷 is the standard devitaion of the features, 𝑘𝑚𝑒𝑎𝑛 is the average of the features and 𝑓(𝑘) is the normal-
ised feature vector. 
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Figure 3: Optimal feature normalisation method 

3.4 Binary Classification Research Tool 
Figure 4 displays the classification process in BCRT using MFCC features on two data sets for Test 1, Structure 
vs Clutter. Features from each class are shown on the right with the highlighted cyan and green stars denoting 
the specific features extracted from the time-amplitude snippet on the left. There are 118 and 169 snippets 
respectively for each of the signals in this test resulting in 118 features per frame for Class 1 and 169 features 
per frame for Class 2. Without the selection of optimal features conducted in Section 3.3.1, 4,394 features per 
frame would be generated for the example below. A significant majority of these would be redundant and includ-
ing them extends processing time and degrades the performance of the classification algorithms.  

 

Figure 4: MFCC feature extraction and classification within BCRT 
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 RESULTS 4

The goal of this study was to assess the robustness of the cepstral coefficient features and their ability to in-
crease performance when combined with existing sets. When averaging classification performance across all 
test groups as shown in Figure 5 it is evident that adding cepstral features MFCC, LPCC, or CC All, to the Base-
line set has a positive impact on accuracy. When used in isolation, MFCC and CC All were able to slightly out-
perform the Baseline set whereas LPCC achieved a significantly lower average accuracy.  
 
When combined with Baseline, MFCC and LPCC achieved the highest overall accuracy across all classifiers. 
CC All had the strongest performance in isolation but the lowest combined performance of all the Baseline com-
bination sets. This is likely a result of overfitting and indicates that the use of both cepstral feature sets in addi-
tion to the Baseline has exceeded the optimal number of features for training using this type of data.  
 

 

Figure 5: Classification accuracy averaged across all test groups 

Figure 6 helps visualise the increase in accuracy achieved when combining each of the cepstral coefficient sets 
with the Baseline. MFCC features had largest impact on the performance of the Nearest Neighbour classifier, 
increasing accuracy by 2-2.75 percentage points. Both MFCC and LPCC increased performance of the KRR 
and SVM classifiers by around 5-5.5 percentage points whereas CC All provided the smallest increase to classi-
fication performance. 
 
LPCC performed on par with MFCC when combined with the Baselines set, indicating that the benefits of the 
Mel Frequency filter bank are limited for these sets of data. There is a clear advantage to the use of power 
spectrum analysis for the feature extraction of underwater signals and it is likely that more optimal methods of 
filtering or pre-emphasis exist. The only distinct advantage of MFCC over LPCC is the stronger classification 
performance when used in isolation. 
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Figure 6: Cepstral coefficient feature performance when added to Baseline Set 

An increase in accuracy was achieved in every test for each classifier regardless of which individual set had the 
stronger performance in isolation. This trait is vital and demonstrates the cepstral coefficients compatibility with 
the statistical moment features of the Baseline Set. This pattern can be examined more closely in the expanded 
results found in the Appendix. 
 
Processing time 
The external framing and subsequent Fourier processing of the signal used in the extraction of MFCC and 
LPCC features significantly increase the extraction time, resulting in a 50 fold increase in processing time over 
the Baseline. The additional processing through the Mel filter bank further prolongs MFCC extraction resulting in 
a 60 fold increase in processing time compared to the Baseline. The computational cost of the cepstral coeffi-
cient features is significant and the increase in accuracy they provide may not be justifiable in certain scenarios. 
These times could be reduced by further optimising the signal framing used in this analysis. 

Table 3: Computational time 

Feature Extraction Method Average Time (s) 

MFCC 25.95 

LPCC 21.89 

Baseline 0.44 

 CONCLUSIONS AND FUTURE WORK 5

Cepstral Coefficients of underwater signals were found to be effective features in the context of active sonar 
classification. MFCC and LPCC both increased classification performance between 3-5% when used in combi-
nation with an established Baseline feature set for a range of signals. However, this increase in accuracy comes 
at a significant cost in computational time. Future work in this area could include: 
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 Testing of other filter banks, specifically those orientated around distinct resonant frequencies. 

 The development of an adaptive method for coefficient selection within each frame, tailored to the prop-
erties and changes occurring within each specific signal. 

 Further experimentation with more data sets, specifically those with very low signal to noise ratios to 
represent weak or distant echoes. 
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Appendix: Individual Test Results  
Figure 7 presents the individual results of Tests 1 through 4. 

 

 

Figure 7: Classification accuracy for tests 1, 2, 3 and 4 
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