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ABSTRACT 

Many industries rely on the continual and unimpeded operation of turbines, pumps, pulleys, fans, motors, gear-
boxes, and other associated fixed and mobile plant equipment. As such, reliable and remote condition monitoring 
and fault localisation can improve safety, prevent unnecessary downtime and reduce maintenance costs. Current 
methods of condition monitoring such as acoustic emissions (AE) testing can prove difficult to automate and 
require careful analysis by a trained analyst. This research investigates the use of adaptive beamforming for 
source localisation and signal extraction in conjunction with a convolutional neural network classification system 
based on spectrogram plots. Furthermore, it tests the effects of reducing the number of microphones in the mi-
crophone array on the deep network classification accuracy. This technology has been investigated with the use 
of 12-volt computer fans as an analogue for rotating machinery, with the primary challenge of reliably separating 
and classifying the unique spectral signal of each fan. The outcome of this research from over 450 test samples 
demonstrates damage detection accuracy consistently above 97% based on available data when adequate beam-
forming resolution and array gain are achieved. This technology shows promise for use in an automated monitor-
ing system for industrial applications, with available scope for further refinements.  

1 INTRODUCTION 
The capacity to continually and remotely monitor the performance and health of the machinery can reduce down-
time, save maintenance costs, improve safety and improve productivity by finding a fault before it causes signifi-
cant interruptions to production or poses any health and safety risks to personnel. For instance, maintenance 
costs in the mining industry can represent as much as 35% of total operating costs (Dhillon 2008). Subsequently, 
for the oil and gas sector, real-time condition monitoring is essential for immediate response to prevent loss of 
production, environmental damage and human life. All mechanical systems generate distinct noise and the sound 
signal can indicate the health of the system (Ravetta, Muract and Burdisso 2007). Current technologies for auto-
mated condition monitoring and damage localisation of industry noise sources such as acoustic emissions (AE) 
testing with accelerometers are often cumbersome prone to errors (Grabowski, et al. 2014). Furthermore, when 
AE testing is un-automated it requires detailed analysis by an expert technician.  
 
In order to implement beamforming for source localisation and signal extraction, an array of microphones must 
be utilised. A microphone array comprises a set of microphones arranged such that spatial information can be 
captured (Benesty, Chen and Huang 2008). The spatial information captured by the microphone array makes the 
problematic task of isolating different sound sources a reality in combination with beamforming algorithms. 
 
A deep convolutional neural network (CNN) is a class of neural networks for processing array-based data, such 
as an image. The primary benefit to a CNN is that it does not require handcrafted feature extraction (Yamashita, 
et al. 2018), it is autodidactic and learns data features from a training data set. Furthermore, complex represen-
tations can be formed for images from simple building blocks that feed-forward through the neural network, making 
CNN’s scale comparatively better than conventional fully connected neural networks while being less prone to 
overfitting. For this research, we have utilised a CNN to capture time and frequency domain information from 
spectrograms. The aim of this paper is to show the potential for a deep CNN to be utilised in combination with 
beamforming for signal extraction to perform real-time condition monitoring. 
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2 INDUSTRY NOISE SOURCE ANALOGUE 
Due to a lack of access to real industry equipment to test, 12-volt computer fans were utilised as a cheap and 
easily repeatable analogue for rotating equipment. Three test fans were used to train the deep network. One is 
healthy, one slightly damaged (to pose a challenge for the deep CNN) and one heavily damaged.  These fans are 
shown in Figure 1 and are denoted by a number. This number will be used to refer to the fan throughout this paper 
and is also the classification label used by the deep CNN. 

3 BEAMFORMING 
For this stage of the research, we assume two-dimensional beamforming to be appropriate with a uniform linear 
array of microphones (ULA). In our investigation, we divide the beamforming task for condition monitoring into two 
phases. In Phase 1 we scan the whole area of a selected site to find exact locations of sound sources of interest. 
This phase is termed the source localisation in this paper. In Phase 2 we extract the signal for a given sound 
source by beamforming only to the source location which is obtained in Phase 1. This phase is termed signal 
extraction. Once Phase 1 and 2 are completed we compute the spectrogram for that signal for classification. 

3.1 Beamforming Algorithm 
Source localisation is performed by investigating the intensity map of the area concerned, which is obtained 
through beamforming. For our application, frequency domain adaptive beamforming (ABF) algorithms are a better 
choice because of their superior performance. In this study, the well-known algorithm of MVDR (Minimum Vari-
ance Distortionless Response) with diagonal loading is used (Van Trees 2002). Figure 2 shows the typical source 
localisation intensity plot. The array used consists of eight microphones with an inter-element spacing of 0.2m. 
Given the primary focus of this research is the pairing of Beamforming and a CNN for condition monitoring, eight 
microphones were used so that there was an adequate resolution to locate the sound sources so that the deep 
network classification system wasn’t hindered by the beamforming phases in any way. 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

(a) (b) (c) 

Figure 1: Test Fans: (a) Healthy (Fan#1)   (b) Slightly Damaged (Fan#2)  (c) Heavily Damaged (Fan#3) 

(a) (b) 

Figure 2: Typical Beamforming Plots: (a) MVDR Broadband (b) Source Localisation  
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The beamforming requirements for signal extraction are much simpler than for source localisation. Primarily, there 
is no need to beamform the entire area. The estimated signal location coordinates can be beamformed directly.  
 

3.2 Spectrogram Formation 
In the testing, the fans are sampled for segments of 60s length to achieve an excess of resolution in the time and 
frequency domains for spectrogram formation, such that the data collection would not limit the performance of the 
CNN. The resolution in frequency is 12 Hz and in time is approximately 0.67 seconds. Testing has been performed 
under constant RPM and variable RPM conditions to demonstrate the performance of the model under start-up 
and shut down conditions and continual operation. 

 

3.2.1 Spectrogram characteristics constant RPM 
Figures 3-5 show the typical spectrogram for each fan under constant RPM conditions. We note that high power 
frequencies are mostly stable with small fluctuations to the frequency and to the power. Furthermore, under these 
conditions, there is minimal difference between the spectrograms of the healthy and slightly damaged fan. Due to 
this fact, it is expected that the primary source of confusion for the deep network will stem from correctly classifying 
these two fans despite their similar features.  

 

3.2.2 Spectrogram characteristics variable RPM 
In order to replicate the ramping nature of machines up until 
their operating speed and then their eventual shutdown, we 
have performed tests which ramp up the fans to their maximum 
voltage over the first 30s of the test and then ramp down for the 
remaining 30s. Figures 6-8 show the typical spectrogram for 
each fan under variable RPM conditions. From an observation 
of the data, characteristic features that indicate the fan is dam-
aged are clearly accentuated by the fluctuating RPM. Theoret-
ically, this should make it simpler for the CNN to correctly clas-
sify the fans. 

Figure 3: Spectrogram Fan#1 Constant RPM Figure 4: Spectrogram Fan#2 Constant RPM 

Figure 5: Spectrogram Fan#3 Constant RPM 
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4 DEEP CONVOLUTIONAL NEURAL NETWORK 
Due to the simplicity of the spectrogram plots, a simple 15 
layer CNN has been developed for this research paper based 
loosely off the AlexNet architecture (Krizhevsky, Sutskever 
and Hinton 2012) with some distinct simplifications and imple-
mentation of newer neural network techniques. In particular, 
batch normalisation has been used to normalise the inputs to 
specific layers to increase tolerance to higher learning rates 
and to provide some regularisation. Furthermore, ELU activa-
tion layers have been used instead of ReLU layers to avoid 
the dying ReLU phenomenon. Lastly, a big kernel size was 
used in the first convolution layer with a large stride due to the 
need to down-sample the spectrogram blocks, which contain 
many pixels in a similar configuration. The deep network 
structure is shown in Figure 9. This architecture was utilised 
due to its high performance while retaining a simpler structure with low model complexity when compared to 
alternative CNN’s. Our inputs to the network are 427x479 pixel images with three output classes (one for each 
fan).  

 

 

Figure 6: Spectrogram Fan#1 Variable RPM Figure 7: Spectrogram Fan#2 Variable RPM 

Figure 8: Spectrogram Fan#3 Variable 
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4.1 Overfitting Considerations 
A primary concern when constructing a neural network is ensuring that the network has the ability to generalise. 
If the network overfits to the training data, the results of the training may appear promising, but under changing 
testing scenarios, the accuracy will drop substantially. The primary method to prevent overfitting used in AlexNet 
was to include dropout layers that are assigned a probability to temporarily exclude a connection in the neural 
network. This method forces the CNN to update the weights of alternate nodes resulting in a more robust network.  
Though research has shown that in many circumstances, batch normalisation can eliminate the need for dropout 
layers by allowing larger learning rates, leading to better convergence and superior network generalisation (Ioffe 
and Szegedy 2015). Though the regularisation effect provided by batch normalisation is a secondary effect of its 
primary purpose and is generally not as strong as dropout regularisation. The primary purpose of batch normali-
sation is to normalise the inputs to each hidden layer to have a constant mean and variance to reduce their 
sensitivity to changing inputs and to allow each layer to train more independently of the neighbouring layers. The 
regularisation occurs by the noise introduced when each mini-batch is scaled by the mean and variance computed 
on that specific mini-batch. The added noise ensures that downstream elements of the network are not overly 
reliant on any previous elements in the network. Since the application of this network is very focused and it is not 
needed to map complex data sets, it was deemed that the regularisation of batch normalisation alone was suffi-
cient and a small mini-batch size of 32 was selected to maximise the regularisation. Further to this, our data is 
partitioned when training the neural network with 70% allocated to training and 30% to validation. The validation 
data pool provides a good unbiased reference for the model's performance while training the hyperparameters in 
the network and given we do not see a divergence of the training accuracy and the validation accuracy we can 
be confident the generalisation is sufficient for the purposes of this application.  

4.2 Training and Validation 
Many different arrangements of the fans were used when collecting data to form a set of 460 unique spectrograms. 
Furthermore, an array of eight microphones with good beamforming resolution was used to ensure the spectro-
grams are not distorted by alternate signals. The spectrograms were then split into 70% for training data and 30% 
for validation data. The model was trained with inputs shown in Table 1. 
 

Table 1: Deep Network Training Parameters 

Parameter Value 

Batch Size 32 
Epochs 5 

Initial Learning rate 5e-4 
Validation Frequency 5 

 
 
 
Training this model has yielded high accuracy. Typically, the validation accuracy achieved is consistently greater 
than 97% for both constant and variable RPM conditions. Furthermore, when conducting further tests, most false 
classifications observed were attributable to a failure to separate the sound signals of two separate fans. These 
cases were primarily due to close proximity of fans, side lobes during beamforming or poor beamforming resolu-
tion. An example of the training progress and loss minimisation is shown in Figure 10.  
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4.3 Network Feature Visualisation 
We can see the activation response of the deep network to an input image. Figure 11 demonstrates a spectrogram 
generated from the damaged fan under fluctuating RPM conditions and the respective response from the first 
convolutional layer of the deep network. Key features and patterns that match the input image are activated and 
light up. 
 

Figure 10: Training Plots (Accuracy and Loss) 

Figure 11: Network Layer Activation: (a) Spectrogram of Fan (b) Network Layer Activation  

(a)                                                                                (b) 
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4.4 Effects of Reducing Array Size 
As the number of microphones required decreases, the practicality of the technology for use in industry improves. 
In this research project, the effects of reducing the array size without retraining the network and with retraining 
the network were both tested. By not retraining the network, the effects to the deep network accuracy as the beam 
resolution worsens and the array gain decreases are tested, simulating a situation where faulty microphone sig-
nals are discarded within the array. Secondly, by testing the model accuracy by retraining the network to com-
pensate for the poorer resolution and array gain, the ability to adapt to a restricted setup or sub-optimal conditions 
can be investigated. Under this analysis, we retain a similar spacing of the fans, but change their order and place 
them in slightly different locations relative to the array to ensure the data collected is not too similar. Though care 
was taken to keep them in front of the array, rather than off at an extreme angle. 
 

4.4.1 Effects of reducing array size without retraining the network 
As discussed prior, data collection and training of the neural network was performed with a ULA of microphones 
consisting of 8 elements, for adequate beamforming resolution. As we reduce the array size, the array gain de-
creases, and the beamforming resolution degrades. This has a detrimental effect when trying to extract subtle 
features that indicate the condition of the fan. As the resolution worsens, spectral features from neighbouring 
sources will begin to appear in the extracted spectrogram for a specific fan. This presents great confusion for the 
CNN and can lead to incorrect classification due to problems with signal extraction rather than network accuracy. 
Furthermore, the decreased array gain makes the data more susceptible to noise and can reduce the visibility of 
subtle features in the spectrogram.  
 
It was discovered that classification accuracy does not degrade significantly for the damaged fan when decreasing 
the number of microphones as it is the dominant signal and minor spectral features from the neighbouring fans 
do not greatly alter its spectrogram output. Secondly, for the healthy fan, accuracy began to suffer when the 
number of microphones was less than four, due to the aforementioned resolution issues. Lastly, for the slightly 
damaged fan, the accuracy suffered when less than seven microphones were used. This is most probably due to 
the reduced array gain failing to reveal its subtle damage. It then dropped once again when the number of micro-
phones was less than four, due to poorer resolution. These observations are shown graphically in Figure 12.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

4.4.2 Retraining the network for smaller array sizes 
This research has also tested if it is possible to mitigate the effects of poorer beamforming resolution and a re-
duction to array gain by retraining the network for a specific number of microphones. It can be seen in Figure 13 
that retraining the network can compensate for these factors, though the accuracy is notable lower than a properly 
set up array with adequate resolution and array gain. With retraining the network for the smaller array size, accu-
racy only appreciably degrades when under four microphones are used. Retraining the network ensures that 
despite the likelihood of any given spectrogram having faint spectral features of its neighbouring fans, the network 
can be made accustomed to this fact and more robust to it. When dealing with quite a low number of microphones 

Figure 12: CNN Accuracy with Decreasing Microphones 
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and poor resolution, retraining the network simply adapts it to a very specific testing setup for an exact number of 
microphones and is not very transferable between testing scenarios. This approach is generally not best practice 
and furthermore, source localisation can become more troublesome when the beamforming resolution is inade-
quate. Ideally, it is best to use an array with enough resolution based on a given test setup for proper localisation 
and to completely separate the sound source signals when extracting data for training and classification. This 
would provide the greatest utility and reliability over a vast number of potential applications or testing scenarios. 
For instance, the minimum optimal array size based on the testing in this research would be an array size of seven 
microphones, and to train the neural network based on data collected from this array.  This conclusion can be 
drawn by examining Figure 12, where the accuracy of the network trained on excellent resolution beamforming 
data and high array gain only begins to degrade after dropping below seven microphones for the typical fan 
spacing. Thus, we can be confident that under our testing scenario, an array size of seven or greater microphones 
provides enough resolution and array gain. Furthermore, we can see in Figure 13, high accuracy can be achieved 
with a seven-element array once it is retrained to this data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5 Comparison of CNN Accuracy to Simple Statistic-Based Classifier 
A simple statistics-based classifier was also developed within this research to compare the relative benefits of the 
CNN and the differences in performance. Initially, many algorithms and features were selected and tested. Then 
systematically, the number of useful features was reduced without compromising on accuracy. Cross-validation 
folds were also used to provide a good measure of accuracy.  Even before detailed testing and comparison began, 
two significant benefits to the CNN approach was identified over a simpler statistics-based classification model. If 
it is required to monitor machines that have a variable RPM nature such as a gas turbine that will ramp up to 
speed, the CNN is not hindered in any way. In fact, the classification problem becomes simpler as discussed in 
Section 3.2.2. Though under these conditions, the simple statistics approach becomes limited due to the fact that 
the important characteristics vary as the RPM changes. For example, under constant RPM conditions it is possible 
to examine the power at the blade passing frequency of the fan, but under variable RPM conditions the blade 
pass frequency is always changing. Therefore, one cannot rely on this parameter for classification under variable 
RPM conditions. This is also observed across other parameters as well. Secondly, since different statistics are 
needed for the variable RPM case, a second model will be needed, whereas the CNN model can handle both 
constant and variable conditions in a standalone fashion. In the following sections, we will separate constant and 
variable RPM conditions and consider the potential accuracy under these two different scenarios. For concise-
ness, only the performance under adequate resolution and array gain with eight microphones will be shown.  

 

4.5.1 Constant RPM statistic-based classifier 
A Subspace KNN algorithm was found to be the most accurate for this model. The statistical parameters used to 
classify the data from each fan for constant RPM conditions are shown in Table 2. 
 

Figure 13: CNN Accuracy with Decreasing Microphones and Retraining the Network 
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Table 2: Classifier Parameters – Constant RPM 

 
 
 
 
 
 
 
 
 
Based on the same signal data that was used to generate the spectrograms for the CNN model, the best accuracy 
that could be obtained was 92%. This accuracy is much lower than that achieved by the simple CNN. For the 
statistics model, practically all the false classifications were seen to be between the healthy and slightly damaged 
fans due to their very subtle differences. This is shown in Figure 14 where the healthy fan is class 1, the slightly 
damaged fan is class 2 and the damaged fan is class 3. It is difficult to separate these two fans based on statistics 
derived from their signals and as a result, the model predicts a healthy fan as being damaged at a significant rate. 
The CNN model does not exhibit this same concerning behaviour which would lead to many false alarms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5.2 Variable RPM statistic-based classifier 

 
A Cubic SVM algorithm was found to be the most accurate for the parameters used for the variable RPM case. 
The parameters for the variable RPM conditions are shown in Table 3.  
 

Table 3: Classifier Parameters – Variable RPM 

 
 
 
 
 
 
 
 
 

Statistics 

Number of Prominent Peaks in the Power Spectrum 
Blade Pass Frequency Power 

Mean Frequency 
Median Frequency 

3db Bandwidth of Blade Pass Frequency Peak 
99% Occupied Bandwidth for Power Spectrum 

Statistics 

Skewness of Power Spectrum 
Standard deviation of audio data 

Mean Frequency 
Median Frequency 

Mean absolute deviation of audio data 
99% Occupied Bandwidth for Power Spectrum 

Figure 14: Subspace KNN Model Accuracy for Constant RPM 



  

Proceedings of ACOUSTICS 2019 
10-13 November 2019 

Cape Schanck, Victoria, Australia 
 
 

Page 10 of 10 ACOUSTICS 2019 

The best accuracy that could be obtained was 83% and it required the addition of a few time-domain statistics, 
which were not beneficial for the constant RPM case. This model also struggles to differentiate between the 
healthy and slightly damaged fan and significantly underperforms when compared to both the model used for 
constant RPM and the CNN. It can be concluded that this condition monitoring approach is not suitable for variable 
RPM machines. The model performance is shown in Figure 15 where the healthy fan is class 1, the slightly 
damaged fan is class 2, and the damaged fan is class 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 CONCLUSIONS 
This research demonstrates that it is feasible to use a combination of a microphone array and a deep CNN to 
locate sound sources and perform condition monitoring with damage detection accuracy over 97%, even when 
considering subtle damage. Though it is apparent that adequate beamforming resolution and sufficient array gain 
are required to achieve these levels of accuracy in a repeatable way. Furthermore, a basic CNN model has been 
shown to significantly outperform other simple classification techniques, while being easily adaptable to both con-
stant and variable speed machines. This technology shows promise for use in an automated monitoring system 
for industrial applications, with available scope for further refinements and improvements to the CNN model and 
microphone array to achieve a more robust system.  
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Figure 15: Cubic SVM Model Accuracy for Variable RPM 


