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ABSTRACT

Bees are among the most important pollinators for crops and wild plants. Surveys show global food production is
affected due to the decline in the bee population and activity. Most of these studies concerned with the honeybees
and their monitoring have been developed for commercial purposes, however, recent research highlights the vital
role solitary bee species play in native ecosystems, serving as highly effective pollinators for specific plants. In
contrast, honeybees may pose an ecological threat by competing for food resources, potentially disrupting local
pollinator dynamics. Hence, there have been efforts to understand the ecology of pollination using acoustic signal
detection through passive monitoring with classification to analyse ecosystem dynamics. In general, these studies
are based on the identification of the frequency-related features in the signal using machine learning and artificial
neural networks, e.g., harmonics, spectral power, and distribution of spectrum. As the flying sound generated by
the bees is due to the aeroacoustics of flapping wings, it is difficult to identify species with similar size and wing
beat frequencies. However, there has been little understanding of using time series analysis for feature extraction
and identification in their acoustic signals. In this study, we show that time series analysis, which is also able to
discover nonlinear features, can overcome the above issue. Using the European honeybee (Apis mellifera) as a
readily available model species, prior to aiming at analysing solitary bees, we analyse the acoustic signals of the
species recorded in the wild with nonlinear time series analysis, especially recurrence quantification analysis
(RQA) to show the difference between flying behaviour for the species. RQA shows that recurrence time and
recurrence time entropy for hovering are higher than leaving a flower signal at a statistically significant level.
Furthermore, using the dynamic feature preserving geometric filter-GHKSS-we could resolve the phase-space
trajectory from noisy information, which shows time varying phase-space trajectory for the signal.

1 INTRODUCTION

Insects, especially bees, are an integral part of ecology and food production (Sluijs and Vaage, 2016). Most of
the human crop pollination is due to the honeybees (Rother et al., 2022), while, in general, flies and other
pollinators such as solitary bees are responsible for plant-specific pollination (Schenk et al., 2018). On the other
hand, invasive bee species compete directly and indirectly in the local ecosystem, causing decline in the native
bee population (Geslin et al., 2017; Da Silva et al., 2021). Therefore, there is a growing interest in ecosystem
monitoring of different bee species through their acoustic signals (Alberti et al., 2023; Truong et al., 2023; Kohlberg
et al., 2024).

Bees produce sound because of their flapping wing during flight. Traditionally, the wingbeat-generated sound of
insects has been studied using frequency domain-based approaches, based on the fast Fourier transformation,
like spectrograms, mel-spectrogram, and mel-frequency cepstral coefficients (Truong et al., 2023). These
methods have been successful in identifying insects with distinct acoustics (Kohlberg et al., 2024). With the help
of Machine Learning and Neural Network-based algorithms these methods have been further developed to identify
individual bee species with good accuracy (Ferreira et al., 2023; Truong et al., 2023). However, the challenge
remains in recording good-quality audio in their natural habitat for training of the algorithms (Ferreira et al., 2023).
Nonetheless, the effect of nonlinearity in signals is little understood, and with it, the distinct features of wingbeat-
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generated sounds. Hence, there are very few applications of nonlinear time series analysis (NTSA) applied to
pollinator sounds. To monitor the pollination and the effects on ecosystems, it would be of interest to understand
the flying behaviour of bees and the associated airborne sound generation. Further, using ethograms (Kazlauskas
et al., 2016), we can estimate the pollination efficiency through acoustic monitoring of bee visits to and departures
from the flower. Recently, NTSA was used in the form of recurrence plot spectrograms and convolutional neural
networks (Hertramph and Oberst, 2024) to classify the flying behaviours of bees (Mohapatra et al., 2024).

Recurrence plot (RP) has been extensively used for time series analysis and nonlinear dynamics (Marwan et al.,
2007). RP is a visual representation of the recurrence of states and dynamics. Recurrence quantification analysis
(RQA) is used to find the patterns and structures within RP. Both RP and RQA are powerful tools to check the
periodicity, determinism, or chaos among many other properties in a time series (Webber and Marwan, 2015). RP
has been applied as a popular tool to analyse biomedical signals, e.g., EEG and ECG, to predict irregularity in
physiology (Ouyang et al., 2008; Mathunjwa et al., 2021). Aboofazeli et al. (2008) have shown the difference in
swallowing and breathing sounds with the help of RP and RQA. Oberst et al. investigated the chaos and
nonlinearity in friction-induced vibrations, space applications, dynamics in geological systems, and biomechanics
using NTSA and RP (Oberst and Lai 2011; Oberst and Tuttle, 2018; Oberst et al. 2018a, b). However, there is no
study on nonlinearity and the use of RP and RQA for the analysis of wingbeat-generated sounds, as nonlinearity
is undoubtedly important when it comes to the aerodynamics of flexible flapping wings, which involves solving
Navier-Stokes equations and fluid-structure-acoustic interactions (Wang et al., 2020). Also, species-specific
sounds and cues are likely to be distinguished using more complex measures than those developed for the
frequency domain.

Furthermore, acoustic signals are an essential medium of communication for animals (Alexander, 1967; Ladich
and Winkler, 2017). Both vertebrates and arthropods use acoustics to signal information regarding health, sex,
social behaviour, or to avoid predators in inter- and intraspecific communication (Kirchner, 1997; Ladich and
Winkler, 2017; Schdnrogge et al., 2017; Wu et al., 2021; Muir et al., 2025). Acoustic communication in social
insects, including honeybees, has been researched for over a century (Kirchner, 1997; Nerse and Oberst, 2022).
These insects use acoustic communication for recruitment, health of the colony, and alarm signals, and also,
warning signals in intra- and interspecific communication, respectively (Kirchner, 1997). Most of the studies on
insect acoustic communication focus on the signal’s frequency content (Kirchner, 1997; Pollack et al., 2016).
Nonetheless, the importance of nonlinear acoustic signals in animal vocalisation and communication has been
studied across different animal species (Benko and Perc, 2007; Hughes et al., 2009; Muir et al., 2025). Frogs use
nonlinear ultrasonic communication to exhibit sexual traits (Suthers et al., 2006; Wu et al., 2021). As shown in
Hughes et al. (2009), nonlinearity in cicada mating calls helps in sound propagation. Although there is evidence
of wingbeat-generated sound for communication in flying insects (Kirchner, 1997; Pinto et al., 2022), the
nonlinearity in the signal has not been investigated. Hence, we use the honeybee (Apis mellifera) as a model
species in this study to compare the acoustic signals of two flying behaviours: hovering and leaving a flower. We
use a traditional analysis usually applied in a linear system response framework and compare that to the results
of NTSA.

2 METHODS

The framework for this study was divided into three steps: (1) data recording, (2) data cleaning and labelling, and
(3) nonlinear time series analysis, Figure 1. Ideally, one would proceed directly from step (2) to step (3); however,
in practice, data cleaning and labelling may sometimes require basic signal processing, such as generating a
spectrogram, to enhance the quality of time series analysis subsequently.

2.1 Data recording

The data were recorded in the summer of 2023, Valencia, Spain, Figure 2(a). This time of year was the peak of
pollination activity for many local ecosystems (Rodrigo et al. 2021). Fieldwork was done between 11 AM and 4
PM of the day, where the temperature and humidity were recorded to be 28-35 °C and 33-54 % relative humidity,
respectively. The setup included a cardioid microphone (Sennheiser MKE40-EW; sensitivity: 42 mV/Pa, + 2.5 dB
at 1 kHz; frequency range: 40 Hz to 20 kHz) connected to a Tascam DR-60DMKkII audio recorder, Figure 2(b).
The microphone was mounted on a pole for easy manoeuvrability. The pole was handheld or fixed on the ground,
depending on the bee activity around the flowering plants. A fixed microphone was not suitable for recording the
acoustic signal when the pollinators moved from plant to plant. Therefore, handheld recording had the flexibility
to follow the pollinator and record with a high signal-to-noise (SNR) ratio without much compromise on quality,
even in the noisy outdoor conditions. The audio was recorded at 48 kHz sampling frequency and in WAV file
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Figure 1: Three-step framework for this study. (1) Data recording: schematic of the setup for audio-visual
recording. (2) Data cleaning and labelling: data preprocessing and labelling using Praat audio software. LV:
leaving. HV: hovering. BN: background noise. (3) Nonlinear time series analysis. RQA: recurrence quantification
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Figure 2: (a) Google Maps image of the location near Valencia, Spam used for field study. (b) Audio-
visual recording setup in the field.

format with a gain of 11 dB on the microphone input signal. Simultaneously, video was recorded with a DSLR
camera (Canon EOS R6 MKII) with autofocus mode to capture the flying behaviour.

2.2 Data cleaning and labelling

Praat (Boersma, 2001), an open-source audio software, was applied to the recorded audio files to check for any
unwanted acoustic events like environmental noise, anthropogenic noise, birds calling, and other insect sound.
The section of audio with only the pollinator sound was kept for analysis, highlighted as green windows in (2),
Figure 1. This may also occasionally include audible background noise (like wind noise). To further clean the
signal, the audio sections were selected when the pollinator signal was 5 dB or more above the background noise
and remaining were rejected (marked as red X). The background noise in an audio file was selected, where there
were no acoustic events and it was close to the pollinator sound event, shown as red windows in (2). As the
background noise in the outdoors was dynamic too, we selected two windows (one before and after the pollinator
window) and took the average power of the two windows. However, there were two out of nine signals (~ 22 %)
with only one background noise window to quantify the SNR. Assuming additive background noise, we calculated
SNR as

Pt

SNR—— ——1 (2)
Pp Pp

where P, P, and P; are the signal power, background noise power, and total power (P, = P, + P,), respectively.
We define a hovering signal when the insect is interested in the flowers (and/or the microphone) and it does not
fly in a straight line, but it hovers around the flowers or microphone. This type of flight should last at least 0.2
seconds to be labelled as hovering. The flight that happens from the moment in which the insect leaves a flower
to 0.5 seconds after is labelled as the leaving signal. There were a total of nine signals: four for hovering and five
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for leaving. However, NTSA of only one signal for each behaviour has been presented in the results because of
similar observations in the remaining signals. Before NTSA, the signal was analysed for the power spectral density
(PSD) and autocorrelation function (ACF) using periodogram (with a Hamming window) and autocorr function in
MATLAB, respectively. Each time series was divided into signals of 0.2 s duration by shifting the window linearly.
The number of windows is given by
=[5 @

where L is the length of the time series, N = 9,600 is the length of the 0.2 s signal, and Ny = 1,200 is the window
shift length.

2.3 Nonlinear time series analysis

First, we used GHKSS algorithm, a locally projective geometric filter, available through the TISEAN package
(Hegger et al., 1999), which iteratively reduces the noise by projecting the time series to a low-dimensional space
and removing the coordinates that do not match the neighbourhood criteria. Hence, the GHKSS filter aims to
preserve the dynamics of the signal by not simply removing frequency content but only works if low and high-
dimensional content is uncoupled and can be separated. Next, the filtered signal was subjected to delay
embedding to find the time delay at the optimised embedding dimension, where the auto mutual information was
minimum and the % of false nearest neighbours was zero (Wallot and Mgnster, 2018). With the calculated time
delay and embedding dimension, the time series vector was embedded to an m-dimensional phase-space. The
delay embedded signal was used to calculate the recurrence matrix at a 10% fixed amount of neighbours and
subsequently, to plot the RP (Marwan and Kramer, 2022). The transitions within the timeseries were qualitatively
and manually determined by checking the transition of the recurrence plot along the diagonal, line of identity (LOI),
as shown in Figure 1. The small windows within the RP refer to quasi-steady state as the corresponding phase-
space trajectories are different from each other. Furthermore, the signal was subjected to RQA (Marwan and
Kramer, 2022) on random windows of 0.2 s duration to investigate the significance of the recurrence plot for
differentiating the hovering and leaving flying behaviours from their acoustic signals. The density of the random
windowing while performing RQA was 20 per one second duration of the time series. In total, there are 54 and 40
samples for hovering and leaving, respectively.

3 RESULTS

3.1 Hovering

From PSD, the signal appears to be highly tonal, up to 8 visible peaks for the average plot in black, Figure 3(b).
The average ACF of the individual time series is plotted in the darker shade compared to 0.2 s window signals,
Figure 3(c). ACF has visible peaks and decays at a slow rate, which indicates that the signal is periodic. There
are smaller peaks in between large peaks, also indicating the presence of higher harmonics, which is also evident
from the PSD. However, the ACF is asymmetric about zero. Also, the broader peaks indicate that the periodicity
varies in time. Figure 4(a) presents the recurrence plot for the hovering time series 1. Each red block represents
the quasi-steady state within the time series. To understand the dynamics further, the phase-space trajectory of
each window has been plotted in Figure 4(b), with the window number labelled on the top. The transition between
the states is clear from these trajectories, and the manifolds evolve with time. It is also clear that the signal time
series has high nonlinearity (w2 and w4), and the trajectory has multiple orbits, as clearly seen from w7 in Figure
4(b).

3.2 Leaving

Contrary to hovering, PSD of leaving is less tonal as the higher harmonics (4" onwards) are not as prominent as
the former, Figure 5(b). Also, the average PSD peaks are less sharp compared to hovering. However, the ACF is
more symmetric about zero and has fewer smaller peaks, Figure 5(c). Figure 6 presents the RP with quasi-steady
states (marked by red blocks) and the corresponding phase-space trajectories. The time series evolves to become
periodic, as can be seen from the phase-space trajectory in Figure 6(b). Moreover, the manifolds in the trajectory
converge in leaving, in contrast to hovering, where it changes more in transitions. Nonetheless, by finding
transitions in the recurrence plot and estimating the correct delay embedding, the phase-space trajectory of the
univariate time series can be resolved, which shows complex features.

3.3 Comparison between hovering and leaving using recurrence quantification analysis

Figure 7(a)-(c) show the notched box plots of RQA variables with statistically significant differences between the
hovering and leaving signal. Comparison was done with the Wilcoxon rank sum nonparametric test using MATLAB
at a significance level of 0.05, Figure 7(d). Out of 13 RQA variables, we found three: recurrence time of the second
type (T,), recurrence time entropy (RTE), and maximal white vertical line length (RT,,,,), that show statistical
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Figure 3: Hovering signals in (a) with corresponding power spectral density (PSD) in (b) and autocorrelation
function (ACF) in (c). (b) Average PSD (in black) shows the tonality the signal with clear peaks up to 2 kHz.
(c) The light shade represents the signal of 0.2 s selected by shifting the window at 0.025s of the time
series and the darker shade is the average for the above. The tonal nature of the signal is also evident from
the slow decaying periodic nature of ACF.
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Figure 4: (a) Recurrence plot (RP) of the hovering time series 1. The red blocks represent the quasi-steady
states within the time series. (b) The phase-space trajectory of each quasi-steady state shows a complex
and evolving manifold within the time series, even though the average PSD and ACF in Figure 3 present a
tonal nature of the signal.

significance. T, and RTE are related, as both measure the recurrence of states. As hovering has complex phase-
space manifolds, the recurrence of states takes a longer time, as shown in Figure 7(a). Hence, T, and RTE for
hovering is greater than leaving. However, maximal white vertical line length (RT,,,,), corresponds to the
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function (ACF) in (c). (b) Average PSD (in black) for all leaving signals is less tonal, compared to hovering,
with clear peaks up to 4t harmonics. (c) ACF is more symmetric about zero and has fewer smaller peaks.
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Figure 6: (a) Recurrence plot (RP) of the leaving time series 1 with the quasi-steady states, which are

marked by red blocks. (b) The phase-space trajectories of the quasi-steady states exhibit a converging
manifold.

maximum recurrence time in a recurrence plot, which is high in the case of leaving. The above results show that
RQA of the acoustic signals can be used to distinguish different flying behaviours of bees.
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4 DISCUSSION

Wingbeat-generated sound of insects has been widely studied in ecology (Clark, 2021) and for flapping wing
mechanisms (Ji et al., 2022; 2024). However, the acoustic features associated with different flying behaviours
have been largely ignored due to the complexity of the theoretical model and the lack of detailed experimental
observations. In this study, we have presented the wingbeat-generated sound for two flying behaviours: hovering
and leaving a flower. The PSD and ACF of these sounds show that the signals are mainly tonal or harmonic with
prominent peaks, which has been confirmed both experimentally and numerically by Seuer et al. (2005) and Bae
and Moon (2008), respectively, for flying insects. Our result confirms the nonlinearity of the time series through
the RPs, which shows the complex dynamics of the signal with transitions between quasi-steady states. Moreover,
we have shown that RQA can distinguish between hovering and leaving flying behaviours. The phase-space
trajectories of these signals also show different and complex manifolds with multiple orbits, which is a sign of
periodic and chaotic signals (Gao and Cai, 2000; Marwan et al., 2007; Webber and Marwan, 2015). This is not
possible with frequency domain and linear time series analysis methods. The above analysis needs to be verified
with more datasets and different species of pollinators. Also, the behaviours considered in this study are limited
to only two types. The overall process of an insect approaching a flower (with the intention of landing) and leaving
a flower is much more complex, and different behaviours like landing or passing by can be added as per the
ethogram and the nature of the study. This may change the RQA variables further.

Although we have presented only one time series for each flying behaviour, the observation for the other remaining
time series is similar to the ones presented, i.e., the hovering behaviour has complex phase-space manifolds and
leaving has a more ordered trajectory. The hovering time series have been noted to be longer in general (> 0.5 s
in three out of four cases) compared to the leaving time series (~0.3-0.4 s in duration). A longer signal means
more variations during flying and thus, more quasi-steady states in the same time series. But the lack of order in
the phase-space manifold could be the behaviour-specific feature. Nonetheless, the above analysis is sensitive
to the quality of delay embedding. While using the GHKSS filter to reduce the noise, we selected the embedding
dimension up to four and in a three-dimensional projection space because most of the nonlinear dynamic models
and attractors are three-dimensional. Selecting an embedding dimension that is much less than the actual could
lead to irrelevancy in a phase-space, like a noisy signal, and may not be sufficient to resolve the phase-space
trajectory (Casdagli et al. 1991). Hence, the future analysis will include the sensitivity of the GHKSS projection
dimension to the analysis.

The aeroacoustics of insect wingbeat-generated sound is dominated by the vortex shedding because of the
flapping wing (Ji et al., 2024). The numerical model to understand the above phenomena involves first solving the
Navier-Stokes equation for the aerodynamics, followed by solving the acoustic pressure using Ffowcs Williams-
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Hawkings (FW-H) model. Studies using the FW-H model suggest that the acoustic field is highly complex and
directional (Ji et al. 2022; Ji et al., 2024) even after many simplifications to the model, for example, ignoring the
thickness term and Lighthill tensor term, which is related to the turbulence. During experimental and field
measurements, it is impossible to control the above effects. Hence, there is a gap between the model and the
experimental observations. With our analysis, we have shown that the nonlinearity in the signal is an important
attribute to distinguish different flying behaviours from the acoustic signal. Moreover, it is also difficult to judge the
near field or far field concerning the source, which poses further challenges in the analysis, if the near field effects
due to complex fluid dynamics are not registered in the recording. Therefore, we believe this study will lead to
improvements in the aeroacoustics model. Furthermore, studies show that the hovering flight of insects is
unstable, as easily disturbed by external factors like wind (Liang and Sun, 2013). Hence, the continuous
adjustment to balance the aerodynamic forces could be the reason for transitioning between states and such
complex phase-space manifolds. Leaving is a relatively simpler flying behaviour, as it requires forward flight away
from the flower (Wang, 2005). Another reason could be the sudden changes in directions during flight. This
requires further analysis of the footage along with the transitioning states.

As shown, hovering signal has highly complex phase-space trajectory, which indicates possible chaotic regime
(Gao and Cai, 2000; Webber and Marwan, 2015). A chaotic signal is broadband with subharmonics (Massenet et
al., 2025), which can be argued as information-rich compared to only a harmonic or periodic signal. However, the
challenge always remains in understanding the importance of these features for the intended receiver in inter-
and intraspecific communication, as hearing is understood to be a nonlinear process too (Nadrowski et al., 2011).
From an evolutionary point of view, it is not surprising that flying insects use the wingbeat-generated sound for
acoustic communication. However, the importance of the nonlinearity for different species still needs to be
investigated. Further evidence suggests that social bees have evolved to be better in chemical communication
compared to the solitary bees due to the evolutionary requirement to exist in a colony (Wittwer et al., 2017). Does
it mean the wingbeat-generated sound of these bees has also evolved? This requires an in-depth analysis of
behaviour and species-specific nonlinearity in the signal through nonlinear time series analysis.

5 CONCLUSION

In this paper, nonlinearity in wingbeat-generated sound for different flying behaviours of honeybees (Apis
mellifera) was analysed using RP and RQA. We demonstrated the transitions of quasi-steady states in the
acoustic signals using RP. The phase-space trajectory of these quasi-steady states shows complex manifolds
that evolve with time. Therefore, analysis of the signal as a stationary time series or with linear methods may lead
to oversimplification and wrong interpretation. Furthermore, we can distinguish between different flying behaviours
with the help of RP and RQA. Both the phase-space trajectory and RQA suggest that the hovering time series
has complex dynamics out of the two. However, further analysis is required to fully understand the nonlinearity
and the hidden dynamics. Moreover, the above analysis is possible due to the nonlinear time series analysis and
cannot be done with frequency-based analysis, which is generally practiced in the bioacoustics field.
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