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ABSTRACT 

Data-driven identification and reconstruction of vibroacoustic signals receive extensive interest in studying insects’ 
locomotion mechanisms for bioacoustics and robotics applications. However, the nonlinearity and complexity of 
locomotion dynamics challenge the recovery of the governing equations when handling noisy measurements. 
Reservoir computing is regarded as a class of recurrent neural networks inspired by the structure of the human 
brain, consisting of a set of neurons and randomly selected synapses that efficiently operate on different learning 
tasks. It has emerged as an efficient and interpretable tool for identifying and representing nonlinear dynamics in 
a grey-box fashion without requiring sparsity constraints over a pre-selected library of basis functions. Along this 
direction, this study presents results on a novel reservoir computing framework for implicitly discovering the gov-
erning equations from input-output data driven from simulations of insect locomotion dynamics. It also provides 
insights on the calibration of reservoir hyperparameters and visualises the search domain for prediction tasks. It 
further compares the validation accuracy of computer reservoirs when dealing with additive deterministic noise. 
From the results demonstrated on numerical examples, it is concluded that reservoir computers can provide com-
petitive performance, offering good efficiency and accuracy subject to appropriate hyperparameter calibration and 
pruning redundant neurons and synapses.  

1 INTRODUCTION 
Simulation of multi-legged arthropod locomotion is crucial for understanding and implementing bio-inspired gait 
mechanisms for energy-efficient robotics applications (Full et al., 1990; Seidl et al., 2008; Reinhardt et al., 2009). 
Such motions include walking, trotting, and running/hopping movements, with and without extended flight stages, 
shaped through millions of years of evolution and creating unique and distinct locomotion dynamics among differ-
ent species, showing enormous variability in the number of legs, leg length, leg shape, leg position, and body 
mass distribution across legs (Blickhan et al., 1993). Despite natural diversity, the literature suggests using simple 
mass-spring-based dynamic systems, such as inverted pendulum-based systems and bouncing gaits, to simulate 
complex dynamics (Full et al., 1991; Gan et al., 2018). While inverted pendulum models are suited to simulate 
walking mechanics, the Spring-Loaded Inverted Pendulum (SLIP) is well recognised for describing running mech-
anisms (Geyer et al., 2006; Pelit et al., 2020). Although these models were initially proposed to mimic human 
walking and running motions, recent works show significant similarities between the walking mechanism of hu-
mans and arthropods, and such simplified models appear to remain valid and relevant (Blickhan et al., 1993; 
Geyer et al., 2006). A bipedal SLIP dynamic model has recently been utilised to simulate all common bipedal gaits 
when the initial conditions are carefully adjusted (Gan et al., 2018). Then, the solution of the Poincaré map equa-
tion provides different periodic orbits, characterising physically reasonable motions from different branches of the 
bifurcation diagram (Gan et al., 2018). Despite these advances, the complexity and nonlinearity of locomotion 
dynamics create hurdles for efficiently regenerating physical motions, especially when hardware implementation 
is desirable. 
Replicating arthropods’ locomotion has also unveiled promising research directions in bioacoustics. Predator 
ground-reaction forces are used as excitation sources to generate on arbitrary substrates vibroacoustic re-
sponses, by applying the noise-control engineering principle (Oberst et al. 2019). These responses can then be 
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synthesised in bioacoustics applications to appear as predator cues to repel prey or prey cues to attract predators 
toward a desired direction (Oberst et al., 2017; Oberst et al., 2025) and used in bioassays, rather than just using 
playback experiments. The predator-prey relationship between ants and termites is an interesting application in 
this context, primarily inspired by prior research showing that termites communicate mainly through vibration 
(Sansom et al., 2025), eavesdrop to avoid predatory ants (Oberst et al., 2017), and assess the food quantity and 
quality (Evans et al., 2005; Inta et al., 2007; Oberst et al., 2017). Termites also use mud to manipulate moisture 
content in wood (Oberst et al., 2016; Oberst et al., 2019). Reproducing such nonlinear vibroacoustic information 
requires a computational framework that supports the software and hardware implementation  efficiently. 
Reservoir computing is a promising approach to modelling and reconstructing complex dynamics (Jaeger and 
Hass, 2004; Ghani et al., 2010; Throne et al., 2022). The core idea is to project the data into a high-dimensional 
space specified by a reservoir matrix and identify hidden features of the data for addressing specific learning 
tasks. This computation will take place with minimal neuronal configuration, where only the readout nodes will be 
trained, and the reservoir structure is fixed, considering a randomly initialised configuration. However, in most 
cases, a randomly initialised reservoir reduces efficiency and accuracy, and recent works have shown that reser-
voir computers with an optimised internal structure are crucial, especially in computationally intensive implemen-
tations (Ren and Ma, 2022; Yadav et al., 2025; Sedehi et al., 2025). Pruning reservoir neurons and synapses has 
recently been shown to build a sparse reservoir that enhances the prediction accuracy and reduces computational 
costs (Sedehi et al., 2025). 
This paper is built upon our prior work of Sedehi et al. (2025), focused on truncated reservoir computing and 
equipped with neuronal and synaptic pruning. It explores applications to reconstruct arthropods’ locomotion from 
partially known noisy dynamical states. For this purpose, a bipedal SLIP model is employed to generate synthetic 
data and validate the prediction accuracy of the truncated reservoir computer. The reservoir computer is trained 
and validated on the generated data, incorporating hyperparameter calibration and neuronal/synaptic pruning 
strategies. Vertical ground reaction forces are estimated from the centre of mass coordinates data, and insights 
are provided for the selection of hyperparameters and pruning when dealing with noisy data. 

2 INSECT LOCOMOTION MODEL 
A bipedal SLIP model has been established as a comprehensive model to describe complex insect locomotion 
behaviour (Geyer et al., 2006; Blickhan et al., 1993; Gan et al., 2018). Figure 1 shows a general schematic of the 
Bipedal SLIP model. The mass (𝑀) represents the insect body at the coordinates (𝑥, 𝑦) with polar mass moment 

of inertia 𝐽, and the mass (𝑚) attached to the base of the springs represents the leg’s mass. The uncompressed 
length of the springs with constant stiffness 𝑘𝑠 is denoted by 𝑙0, whereas the compressed length is denoted by 𝑙1 
and 𝑙2. The rotational angle of these springs with the vertical axis is denoted by 𝛼1 and 𝛼2. A torsional spring with 

stiffness 𝑘𝜃 = 𝑚𝑙0
2𝜔𝑠

2 creates a torque between the legs, represented when the angles 𝛼1 and 𝛼2 deviates from

the vertical stance of 𝛼1 = 𝛼2 = 0, with swing angular frequency of 𝜔𝑠. For insects, the leg mass (𝑚) is compara-
tively much smaller than the body mass (𝑀), and the leg is very stiff too, thus the leg mass and damping are 

ignored (𝑚, 𝑑 → 0).  

Figure 1: A schematic diagram displaying a bipedal SLIP model employed to generate periodic orbits corre-
sponding to walking and running mechanisms. (a) Double stance position: both legs are in contact with the sur-
face. (b) Flight time: both legs are detached from the surface, being at their uncompressed states. (c) The right 

leg is in contact with the surface, but the left leg is detached. 

Given the above assumptions and after ignoring terms related to leg mass, the nonlinear dynamical equations 
governing the body movements is described by: 

𝑥̈ = −
𝑘𝑠

𝑀
(𝑙0 − 𝑙1) sin 𝛼1 −

𝑘𝑠

𝑀
(𝑙0 − 𝑙2) sin 𝛼2 (1)
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𝑦̈ = −
𝑘𝑠

𝑀
(𝑙0 − 𝑙1) cos 𝛼1 −

𝑘𝑠

𝑀
(𝑙0 − 𝑙2) cos 𝛼2 − 𝑔 (2) 

𝛼1̈ = −
1

𝑙0
(𝑥̈ cos 𝛼1 + 𝑦̈ sin 𝛼1) − 𝜔𝑠

2𝛼1 (3) 

𝛼2̈ = −
1

𝑙0
(𝑥̈ cos 𝛼2 + 𝑦̈ sin 𝛼2) − 𝜔𝑠

2𝛼1 (4) 

Although four degrees-of-freedom are involved here, i.e. 𝑥, 𝑦, 𝛼1, 𝛼2, only three of them are independent since the 
leg mass is ignored. The touch-down event happens when the mass height equals the vertical projection of leg 
length, and the lift-off event occurs when the leg reaches its uncompressed length. Therefore, when solving these 
equations for a periodic solution, zero-crossing of these two events must be checked to make the required ad-
justments based on the contact conditions, as shown in Figure 1. 
Aiming to produce simulated data for ant locomotion, the following values are considered from the literature 

(Oberst et al., 2025): 𝑀 = 9.1 × 10−6 kg, 𝐽 → 0, 𝑔 = 9.81 m/s2, 𝑙0 = 8 mm, 𝑘𝑠 = 0.221 N/m, and 𝜔𝑠 = 78.3 rad/s.
Based on these assumptions and specifying the initial stride according to Gan et al. (2018), the dynamical equa-
tions can be solved, and periodic orbits can be determined. This process is equivalent to finding the solutions to 
the Poincaré map (Ψ: ℝ7 → ℝ7) of Ψ(𝜒∗) − 𝜒∗ = 0, where 𝜒∗ = [𝑦, 𝛼1, 𝛼2, 𝑥̇, 𝑦̇, 𝛼̇1, 𝛼̇2] is the initial/final state vector
in a periodic orbit that starts at 𝑥 = 0. Depending on the initial conditions, the solution of the Poincaré map equation 
might land in different branches of the bifurcation diagram. Figure 2 shows the vertical ground reaction forces of 
the left and right legs for periodic walking and running motions. Those instants at which the reaction force is zero 
correspond to the detachment from the ground when the legs reach their rest length. In both walking and running 
motions, the motion of the right and left legs is asymmetrical, meaning that each leg is in the opposite state to the 
other. 

Figure 2: Ground reaction force of the left and right legs during a single stride of walking and running. (a) Walk-
ing motion is understood as an “M” shape, showing an initial stance on the right leg, followed by a double 

stance, and finally a single stance on the left leg. (b) Running motion is represented as a single stance on the 
left leg, followed by a flight interval, and finally a single stance on the right leg. 

3 TRUNCATED RESERVOIR COMPUTING FRAMEWORK 
In the context of reservoir computing, the Echo State Network (ESN) has widely been employed for simulating 
nonlinear dynamics through projecting an input vector into a high-dimensional space characterised by a “reservoir” 
and producing an output vector by reading from an adaptive set of readout nodes trained for specific tasks. Figure 
3 shows a simple schematic of the ESN, indicating a set of neurons interconnected via random synapses, oper-
ating recursively like recurrent neural networks. The dynamical states of the ESN are described by 

𝐫(𝑡𝑖) = (1 − 𝛼)𝐫(𝑡𝑖−1) + 𝛼 f(𝐖res𝐫(𝑡𝑖−1) + 𝛽𝐖in𝐮(𝑡𝑖−1) + 𝐛) (5)

where 𝐫(𝑡𝑖) is the state vector, 𝑡𝑖 = 𝑖Δ𝑡, ∀𝑖 = {1,2, … , 𝑛} is the discrete time index, representing time samples from 
Δ𝑡 intervals, 𝐖res is the reservoir matrix, considered to be an Erdös–Rényi (ER) graph matrix with 𝑝 internal 

connectivity, 𝐖in is the input-to-state projection matrix, 𝛼 is the leakage rate, 𝛽 is the input scaling factor, 𝐛 is a 

bias vector, and 𝑓(. ) is an activation function, considered tangent hyperbolic function, i.e., tanh(. ). By collecting 
𝑛 observed samples into 𝐘𝑛 and the latent states into 𝐑𝑛, a ridge regression can be carried out to infer a readout 

matrix (𝐖readout) from minimising the following loss function: 
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𝐿 = ‖𝐘̂𝑛 −𝐖readout𝐑𝑛‖2
2
+ 𝜆‖𝐖readout‖2

2 (6) 

where 𝒀̂𝑛 is a vector of actual observations, and 𝐿 is the loss function regularised via the readout matrix norm 

multiplied by the ridge coefficient 𝜆, giving the following explicit solution for the readout matrix: 

𝐖̂readout = (𝐑𝑛
𝑇𝐑𝑛 + 𝜆𝐈)

−1𝐑𝑛
𝑇 𝒀̂𝑛 (7) 

In the original formulation of the ESN, the reservoir and the input-to-state matrices are often pre-selected ran-
domly, considering weighted Erdős–Rényi matrices. Nonetheless, recent works show great potential in optimising 
the reservoir computational structure by removing redundant neurons and synapses, as well as optimising hy-
perparameters (Sedehi et al., 2025). The present study follows the same approach to optimise the hyperparam-
eters by further minimising the loss function for optimal values. The hyperparameters considered here include the 
leakage rate (𝛼), the input scaling factor (𝛽), the number of reservoir nodes (𝑁), the leakage rate defined as the 

largest eigenvalue of the reservoir matrix (𝜁 = max(eig(𝐖res)), and the internal connectivity rate of the reservoir 

matrix (𝑝). Additionally, it employs a pruning approach to discard redundant neurons and synapses from the res-
ervoir matrix, aiming to boost the validation accuracy and reduce the computational cost. 

Figure 3: An overview of the truncated reservoir computing framework with initial random connectivity, devel-
oped for simulating the dynamical behaviour of the bipedal SLIP model. The reservoir input is the coordinates of 
the mass 𝑀 at the time step 𝑡𝑘, and the reservoir output is the same coordinates at the next time step along with 
the ground reaction forces of the left and right legs. Pruned nodes and edges are shown with dashed lines and 

circles. 

Given the above computational framework, noisy body coordinates corresponding to the time step 𝑡𝑘 = 𝑘Δ𝑡 are 

used as the input data, i.e., 𝐮𝑘 = [𝑥̃𝑘   𝑦̃𝑘 ]
𝑇 to predict the motion at the next time step 𝑡𝑘+1 = (𝑘 + 1)Δ𝑡, producing

𝐲𝑘+1 = [𝑥𝑘+1  𝑦𝑘+1  𝐹𝐿,𝑘+1   𝐹𝑅,𝑘+1]
𝑇
 as the system output, where 𝐹𝐿,𝑘+1 and 𝐹𝑅,𝑘+1 are the left and right legs’ vertical

reaction forces. A by-product of this prediction is the vertical ground reaction forces of the left and right legs. 
However, training the reservoir and its hyperparameters requires establishing a suitable data set containing po-
tential periodic motions. For this purpose, we first train the reservoir, optimise its hyperparameters, and remove 
redundant nodes and edges, using simple walking and running motions, as shown in Figure 2. Then, we examine 
whether it works for held-out data sets. Based on the above explanations, Figure 4 provides a flowchart repre-
senting the computational protocol developed for training and testing reservoir computers using noisy locomotion 
dynamics. 

4 RESULTS AND DISCUSSION 

4.1 Description of Assumptions and Data 
Based on the bipedal SLIP model presented earlier, a set of synthetic data is generated representing a combina-
tion of walking and running motions. This data set is around 0.73 s long, sampled at 31.7 kHz. The first half 
segment of this data set is used for the training, and the second half segment is held out as a validation set. Two 
cases are considered: noise-free data and Gaussian white noise-contaminated data. Figure 4 shows the time 
series of the coordinates and the vertical ground reaction forces, where those curves labelled as ground truth 
represent the noise-free generated data. 
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The reservoir computer is initialised with 800 randomly connected neurons. Then, based on the training data, the 
readout matrix is identified using Eq. (7). For this initial reservoir computer, the mean-squared error (MSE) is 
evaluated for the validation set and shown in Figure 5. Hyperparameters are next optimised to produce a tuned 
reservoir. The method appeared in Sedehi et al. (2025) is employed here, which requires prescribing the initial 
boundaries for a holistic search, as given below: 

{

𝛼 ∈ [0.01, 1.00]

𝜁 ∈ [0.01, 1.00]

𝛽 ∈ [0.01, 2.00]

𝑝 ∈ [0.1, 0.9]

(8) 

Figure 4: Computational protocol developed for training and testing of truncated reservoir computers. The 
method comprises three major components, including hyperparameter optimisation, pruning redundant nodes 

and edges, as well as validation pipelines. 

Note that the ridge coefficient (𝜆) is selected separately during each re-estimation of the readout matrix. By doing 
so, the explicit solution of Eq. (7) remains valid, avoiding extra computational complexity. 
Pruning of the reservoir neurons and synapses is carried out using the framework explained earlier. The tuned 
reservoir is thus further refined by removing several ineffective neurons. However, performing the pruning requires 
a pre-selection strategy to identify those neurons and synapses that minimally contribute to the prediction accu-
racy to be able to rank them accordingly. Intuitively speaking, synapses with larger weights in the reservoir matrix 
should be more important to the reservoir performance, and neurons with more important synapses are seemingly 
more necessary. Another criterion to select redundant neurons is the absolute mean and variance of the nodal 
states, which can represent whether the corresponding neurons are active over the training time. In effect, larger 
absolute mean and variance of neuronal states can show greater activity and importance to the performance. 
Finally, the number of incoming and outgoing synapses to a neuron can indicate greater involvement and im-
portance to the reservoir performance compared to those neurons with few to no connectivity to the reservoir’s 
input and output. 
After identifying potential neurons and synapses for removal, the validation accuracy is computed without the 
nominated neurons, and if beneficial, they are removed. This process continues until either a pre-selected target 
for performance improvement is achieved or the maximum number of pruned neurons is reached. In this study, 
for simplicity, the latter criterion is used considering one hundred iterations.  

4.2 Case I: Noise-free Data 
For noise-free data, when the loss function in Eq. (6) is optimised for the hyperparameters, the optimal values are 

obtained as  𝛼̂ = 0.01, 𝜁 = 1.00, 𝛽̂ = 2.00, and 𝑝̂ = 0.9. As shown in Figure 6, the MSE is significantly smaller for
the tuned reservoir when compared to the initial reservoir, and this result further highlights the essence of proper 
calibration of the reservoir computer and its hyperparameters. Figure 6 also compares the validation accuracy of 
the pruned reservoir with the tuned and pruned ones. Although around eighty nodes are removed using the pruned 
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reservoir, its performance is somewhat equivalent to the tuned reservoir and still much better than the initial res-
ervoir. Figure 5 compares the time series of the predictions made by the pruned reservoir compared to the ground 
truth data, emphasising the validity and accuracy of the presented method. 

Figure 5: Predictions of the coordinates and the vertical reaction forces using the pruned reservoir computer 
when no measurement noise is present: (a) The horizontal component of the motion (b) The vertical component 
of the motion (c) Vertical reaction force of the left leg (d) Vertical reaction force of the right leg. In all plots, the 

dashed blue colour curves show the predictions, and the red colour curves show the ground truth.  

Figure 6: Comparison of prediction errors for the initial reservoir started with connectivity, the tuned reservoir 
obtained via hyperparameter optimisation, and the pruned reservoir generated via removing eighty nodes and 

related edges. 

Ground Truth Ground Truth a) b) 

c) d) 



Proceedings of ACOUSTICS 2025 
12-14 November 2025,
Joondalup, Australia

ACOUSTICS 2025 Page 7 of 10 

 

Figure 7 shows the contour plots of the normalised MSE for the joint space of the leakage rate and the spectral 
radius. The optimum point is recognised as very close to the boundary specified for the hyperparameters, i.e., 

𝛼̂ = 0.01 and 𝜁 = 1.00. This result was expected due to the noise-free nature of the data, which leads to obtaining
a small value for the leakage rate, suggesting that the correlation between consecutive steps of the reservoir 
states remains the most relevant for one-step-ahead predictions. Conversely, the reservoir dynamics have subtle 
contributions to the output due to the small leakage rate. 

Figure 7: Identification of the leakage rate and the spectral radius when considering no measurement noise. The 

optimal point is 𝛼̂ = 0.01 and 𝜁 = 1.00.

4.3 Case II: Noisy Data 
This section shows results on case II, where additive GWN is super-imposed on the training data with a standard 
deviation equal to 25% root-mean-square of the noise-free signals (SNR = 12.04 dB). Similar to the preceding 
case, an initial reservoir computer is generated, and then, hyperparameter optimisation and pruning are carried 
out. Figure 8 compares the accuracy of initial, tuned, and pruned reservoirs, showing significant improvement in 
the MSE for the reservoir whose hyperparameters are tuned, and its redundant nodes are discarded. 

Figure 8: Comparison of prediction errors for the initial reservoir started with random connectivity, the tuned res-
ervoir obtained via hyperparameter optimisation, and the pruned reservoir generated via removing 80 nodes 

and related edges. 
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Figure 9 compares the predictions of the coordinates and vertical ground reaction forces for the left and right legs 
obtained using the pruned reservoir. The presented reservoir discards a significant amount of noise from the data 
and provides accurate predictions with reduced computational costs. 

Figure 9: Predictions of the coordinates and the vertical reaction forces using the pruned reservoir computer 
when 25% root-mean-square additive GWN is present: (a) The horizontal component of the motion (b) The ver-
tical component of the motion (c) Vertical reaction force of the left leg (d) Vertical reaction force of the right leg. 

In all plots, the dashed blue colour curves show the predictions, and the red colour curves show the ground 
truth.  

The contours of the normalised MSE are shown in Figure 10 for the joint space of the leakage rate and spectral 
radius when the noisy data is used for the training and optimisation. The optimal leakage rate and the spectral 

radius are obtained as 𝛼̂ = 0.14 and 𝜁 = 0.89. The high value of the leakage rate indicates substantial contribu-
tions of the reservoir dynamics in predicting the locomotion states and the ground reaction forces. Due to the 
presence of noise, the incremental correlation between the reservoir states has a limited contribution to reproduc-
ing the nonlinear dynamics of the bipedal SLIP model. 

5 COMPARISON WITH ALTERNATIVE NEURAL ARCHITECTURES 
ESN-based reservoir computers are often classified as a special form of recurrent neural networks, covering a 
wide range of configurations. However, a significant difference between the ESN and other recurrent neural net-
works lies in the computational approaches used for calibrating network parameters. As presented, the training 
of the reservoir computers is founded upon ridge regression, offering a closed-form gradient-free expression for 
updating the readout nodes. This approach is computationally efficient and does not involve calculating network 
gradients. However, when the hyperparameter optimisation and pruning are applied, the computational cost will 
inherently increase in exchange for performance improvement. In contrast, other network architectures are 
founded upon the gradient-based optimisation techniques, which may lead to exploding or diminishing gradients, 
especially when dealing with time series with many data points (Zucchet & Orvieto, 2024). As a result, the training 
of recurrent networks on nonlinear dynamics problems often encounters computational difficulties due to the gra-
dient calculation. Notably, a numerical comparison with such networks is an interesting subject, but it is left to be 

a) b) 

c) d) 
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studied in the future in view of the length of the paper, as it involves leveraging a wide range of technical details 
that differ from those of reservoir computers. 

Figure 10: Identification of the leakage rate and spectral radius when considering 25% root-mean-square meas-

urement noise. The optimal point is 𝛼̂ = 0.14 and 𝜁 = 0.89.

6 CONCLUSIONS 
A reservoir computer framework is presented for reproducing the nonlinear dynamics of the bipedal SLIP model, 
representing insect locomotion. Optimisation of the hyperparameters is addressed through the minimisation of the 
loss function of a training data set, and pruning of the reservoir nodes and edges is addressed via introducing a 
few metrics for nominating the less effective or unnecessary structures. As a result, one-step-ahead predictions 
of the coordinates and the vertical ground reaction forces are obtained from noisy records of the coordinates of 
the mass centre. Results show remarkable accuracy in the predictions of the reservoir. Comparing with the con-
ventional reservoir computer approaches where random connectivity and hyperparameter selection are exercised 
for predictions, the presented tuned and pruned reservoir computers demonstrate improvement in the MSE indi-
ces up to several orders of magnitude. While synthetic data is employed herein for examining the viability of the 
concept and implementation of the reservoir computers, our future works will potentially demonstrate the method 
with real measurements from ants’ and termites’ walks. Such developments are also important in terms of studying 
the locomotion mechanisms in small arthropods, unveiling further applications for termite control via hardware 
implementation of predator cues or prey feeding signals. 
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