

Acoustic dissatisfaction in open-plan offices in Australia: Findings from a three-year study

Manuj Yadav (1,2), Densil Cabrera (1), Jungsoo Kim (1), Valtteri Hongisto (3), Janina Fels (2), and Richard de Dear (1)

(1) School of Architecture, Design and Planning, The University of Sydney, Australia
(2) Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
(3) Built Environment, Turku University of Applied Sciences, Turku, Finland

ABSTRACT

This paper summarises findings from a study of acoustics conducted over three years (2016–2018) in a diverse sample of open-plan offices across Australia. Activity noise was measured during working hours in 43 offices (Yadav et al. 2021), while room acoustic measurements were conducted in 28 of these spaces (Yadav et al. 2019). An occupant survey (n = 349) was also administered (Yadav et al. 2025). Median activity noise level (L_{A,eq}) was 53.6 dB, with a spectral slope of approximately -4 dB/octave. Noise levels were relatively consistent across variables such as work activity and surface area, but differed between offices with and without carpeting (Yadav et al. 2021). Room acoustic metrics, calculated according to ISO 3382-3 (ISO 3382-3, 2022), indicated that many offices lacked sufficient sound absorption and/or physical barriers. A combined analysis of survey responses, and metrics based on activity noise and room acoustic metrics was conducted. The results (Yadav et al. 2025) showed that privacy (visual and acoustic) was a stronger predictor of overall acoustic dissatisfaction than noise disturbance. Among activity noise metrics, LA90 and N90 were useful predictors of dissatisfaction; however, ISO 3382-3 metrics were stronger predictors overall. In particular, room acoustic metrics based on speech level decay (Lp.A,s,4m and r_C) outperformed distraction distance (r_D) based on the speech transmission index. Reverberation time, used in some standards as design criterion (AS/NZS 2107, 2016; ISO 22955, 2021), was a poor predictor of occupants' perceptions overall. Notably, occupants in medium-sized offices reported greater acoustic dissatisfaction than those in larger spaces (≥50 occupants). Acoustic dissatisfaction also varied significantly with ceiling height, number of workstations, and years of experience, but not with the type of office layout (fixed vs. activity-based). These results underscore the complexity of characterising acoustic environments in open-plan offices and suggest directions for refining current evaluation methods (Yadav et al. 2025).

ACKNOWLEDGEMENTS

This study was funded through the Australian Research Council's Discovery Projects scheme (DP160103978). M.Y. was supported by a Deutsche Forschungsgemeinschaft (DFG) Research Grant (Project No. 503914237).

REFERENCES

- AS/NZS 2107:2016 Acoustics Recommended Design Sound Levels and Reverberation Times for Building Interiors. Standards Australia.
- ISO 3382-3:2022. Measurement of Room Acoustic Parameters. Part 3: Open Plan Offices. 2022. International Organization for Standardization, Geneva, Switzerland.
- ISO 22955 Acoustics Acoustic Quality of Open Office Spaces. 2021. International Organization for Standardization, Geneva, Switzerland.
- Yadav, Manuj, Densil Cabrera, Jungsoo Kim, Janina Fels, and Richard de Dear. 2021. "Sound in Occupied Open-Plan Offices: Objective Metrics with a Review of Historical Perspectives." *Applied Acoustics* 177 (June): 107943. https://doi.org/10.1016/j.apacoust.2021.107943.
- Yadav, Manuj, Densil Cabrera, James Love, et al. 2019. "Reliability and Repeatability of ISO 3382-3 Metrics Based on Repeated Acoustic Measurements in Open-Plan Offices." *Applied Acoustics* 150 (July): 138–46. https://doi.org/10.1016/j.apacoust.2019.02.010.
- Yadav, Manuj, Jungsoo Kim, Valtteri Hongisto, Densil Cabrera, and Richard de Dear. 2025. "Noise Disturbance and Lack of Privacy: Modeling Acoustic Dissatisfaction in Open-Plan Offices." *The Journal of the Acoustical Society of America* 157 (5): 3378–89. https://doi.org/10.1121/10.0036594.

ACOUSTICS 2025 Page 1 of 1