

Ecoacoustic insights into bird responses to fire

Karen M.C. Rowe (1,2), Kevin C. Rowe (1,2), Bradley Clarke-Wood (1), Liam Meredith (1), Megan McLeod (1), Erin Thomas (1), Marina D.A. Scarpelli (1), Michelle Gibson (3), Luke Kelly (3), Trent Penman (3), Matthew Swan (3), Emma Window (3), and Saumya Wanniarachchi (3)

(1) Sciences Dept, Museums Victoria Research Institute, Melbourne, Australia
(2) School of BioSciences, The University of Melbourne, Parkville, Australia
(3) School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Melbourne, Australia

ABSTRACT

While bushfire forms an integral part of the Australian landscape, the duration, size and timing of recent fires, including the 2019-2020 'megafires', is unprecedented. In this context, understanding the resilience of birds to fire is urgent and requires a landscape-scale approach. In 2021, we initiated the collection of ecoacoustic data in conjunction with standard survey protocols for birds (point-count transects) at more than 1400 sites within eight Ecological Fire Groups (EFGs) in Victoria. Within EFGs, sampling sites were stratified across post-fire growth stages and last fire intervals. Previous work indicated that 'listening surveys' of a small sample of the collected audio data identified more species in more sites when compared similar duration point-counts, but some species were only detected by one method or another. In 2025, we implemented the use of BirdNET (v2.4) to identify birds within all recordings at a site, detecting 71% more species in less time than our listening survey approach, improving reporting rates to enable modelling of 47% more species, and with fewer species detected by only one method. The combination of ecoacoustic data collection with multi-species classifier analysis allows a scalable and efficient approach to occupancy modelling of bird responses to fire within Victoria.

ACOUSTICS 2025 Page 1 of 1