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ABSTRACT 

Automated birdsong detection models are becoming essential tools for surveying cryptic and threatened species, 
yet species with highly variable vocalisations and complex repertoires can present significant classification chal-
lenges. This study presents an overview of a machine learning approach applied to the critically endangered 
Australian species Eastern Bristlebird (Dasyornis brachypterus). The Eastern Bristlebird's northern population has 
fewer than 50 individuals remaining in the wild following decades of habitat loss and altered fire regimes. These 
ground-dwelling birds inhabit dense grassy forest understorey, making visual detection extremely challenging, but 
they have a diverse and complex repertoire with highly variable song. Our methodology centres on a shallow 
neural network architecture designed to identify vocal classes and generalise to differing song types with minimal 
training data requirements, coupled with unsupervised feature analysis for repertoire investigation. Despite their 
architectural simplicity, our shallow networks produce effective results with minimal training data. Clustering anal-
ysis using global birdsong embeddings was also performed enabling repertoire characterisation, investigation of 
call type variations, and site-specific vocal patterns. These methods offer promising avenues for automated mon-
itoring of species with complex vocal repertoires, with the potential for improved conservation management and 
population assessment.  

1 INTRODUCTION 

The northern population of Eastern Bristlebird (NEBB) is one of Australia’s most at risk avian populations with 
less than 50 known birds remaining in the wild (Charley et al., 2021). This population has experienced a substan-
tial decline in the last 30 years, in both range and population size (Holmes, 1989). Reduced fire frequency over 
the last three decades has contributed to a significant loss of habitat (Stone et al., 2022).  The key habitat require-
ments for the species (excluding heath habitats) are large patches (>40Ha) of contiguous grassy understorey, as 
well as tall tussocks and a high mean grass height (Stone et al., 2018). Territories typically exist close to rainforest, 
which it is presumed that the birds use as a refuge (Holmes, 1989).  The species is known for its complex and 
diverse vocal repertoire and is ground-dwelling. They tend to inhabit dense foliage, which means that they have 
developed a reputation for being difficult to detect using traditional survey methodologies. The highly vocal nature 
of this species makes them an ideal candidate for acoustic monitoring, but the complex nature of their repertoire 
poses significant challenges for automated detection.Their songs are thought to vary even at the individual level 
(Baker, 1998).  

In recent years deep learning based acoustic classifiers have been successfully used to detect vocalizations for 
many of the world's bird species (Borowiec et al., 2022; Ghani et al., 2023; Huus et al., 2025; Kahl et al., 2021) 
Such classifiers enable the automated analysis of large acoustic datasets. As the use of acoustic monitoring 
expands accordingly, unsupervised methodologies provide useful utility for bioacoustics tasks at large scales, 
particularly when applied to deep learning embeddings or acoustic features (Alexander et al., 2025; Bravo 
Sanchez et al., 2024; McGinn et al., 2023). In this study we combine both supervised and unsupervised ap-
proaches to investigate the repertoire of the northern population of the Eastern Bristlebird with the view to discern 
the level of song variability within and across the population. This is of particular importance as captive-bred birds 
are being released into the wild population, and acoustic monitoring may provide an opportunity to observe calling 
behaviour changes over time and also potentially aid in the identification of populations or individuals.  
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2 METHODOLOGY 

2.1 Data Collection 

 
12 Audiomoths (Hill et al., 2018) were deployed across 3 locations in northern NSW where wild Eastern Bristlebird 
were known to occur. 3 Audiomoths were deployed at Garima Conservation Reserve, adjacent to cages contain-
ing captive-bred and translocated Eastern Bristlebirds from Currumbin Wildlife Sanctuary (see Table 1). All Audi-
omoths were set to record for two hours shortly after dawn, at 48kHz sample rate and medium-high gain.  

 

Table 1: Data Sources used in this Study 

Deployments Hours Location 

A 605 Northern NSW 

B 451 Northern NSW 

C 338 Northern NSW 

Captive 486 Garima Conservation Reserve 

2.2 Model architecture 

A custom convolutional neural network (CNN) classifier was developed to detect vocalisations in passive audio 
recordings. Like many birdsong models, our classifier processes sequential spectrogram patches and reports call 
occurrences within temporal windows. However, our model is deliberately smaller and faster, using only 10 CNN 
layers compared to larger general-purpose recognisers. This compact design enables rapid processing and easy 
customisation for calls with unusual features, though it can be more challenging to train than transfer-learning 
approaches based on the use of large pre-trained models like BirdNET or Perch. The classifier generates spec-
trograms (0-8 KHz frequency range) using a 512-sample FFT window with 50% overlap and a 2.5-second classi-
fication window. The neural network architecture resembles ResNet-10, comprising 4 standard CNN layers, 3 
residual connection CNN layers, and 3 fully connected classification layers. Initially, we attempted to separate 
EBB calls into approximately 10 classes based on manually verified detections, but subsequently simplified the 
approach to a binary classifier with all calls combined into a single class. The model was implemented using the 
PyTorch Python library.Data preparation and Training of the Neural Network.Instances of EBB calls were manu-
ally labelled using Raven software.  

The initial training dataset was build by labelling approximately 10 hours of audio from two recorders. A subset of 
approximately 200 of these initial EBB call examples were used as the first training dataset. This data included 
six different call types loosely identified as being aurally distinct. An iterative training process was followed (see 
(Eichinski et al., 2022). Training consisted of a two staged approach, 1) several epochs with a small batch size 
(size 4) and learning rate of 0.001, and 2) a fine-tuning phase for several epochs with large batch size (size 32) 
and a small learning rate 0.00002. During training data augmentation was implemented, consisting of sparse 
uniform noise, image cropping and image contrast adjustment. The classifier made predictions on all recordings 
detailed in table 1.  

2.3 Visualization, Clustering and Variation of EBB Calls 

All detections were bandpassed at 3kHz and 8kHz (the frequency range of the species) to minimise the impacts 
of background sounds, particularly Bell Miners (Manorina melanophrys). Global birdsong model embeddings 
(BirdNET and Perch 2.0) were then generated for all detections, alongside embeddings from the trained model. 
UMAP dimensionality reduction and HDBSCAN clustering were applied to the embeddings (n neighbours = 15, 
min dist. 0.01, min cluster size = 150, min samples = 10). An iteration with PCA applied beforehand was also 
tested (n components = 30).    

3 PRELIMINARY RESULTS 

The model performs strongly with an ROC-AUC of 0.88 and a weighted average F1 score of 0.91 at the optimal 
threshold. This approach was able to generalise well to field data and located song types noticeably different to 
those contained in the initial training dataset. This testing was not conducted on a subset of the training data, but 
rather on a complex held-out dataset of 5000 audio segments containing a wide range of unseen vocalisations, 
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other species, recorder artifacts and weather noise. This was designed to test the ability of the model to generalise 
and be more representative of field conditions. Approximately 45000 potential Eastern Bristlebird vocalisations 
were detected across the 15 recorders. The model has since been used to locate the species in areas where it 
had not been detected in several years. The clustering results suggest that the different populations of Eastern 
Bristlebird appear to have distinct differences between their vocalisations, with a particular distinction between 
the captive vocalisations and the wild type (see figure 1). The captive birds demonstrate a vocal ‘trill’ frequently 
within their song which is not present in the northern population wild birds (see figure 2). As captive birds are 
released into the wild it provides an interesting study opportunity to observe how song patterns change into the 
future. Population A and B also appear to have distinct song structures. A large utility of the clustering process is 
that it allows for investigation into which song variations are used most frequently by a population or individual. 
These results are preliminary and will be investigated in more detail in future study.  

 

  
Figure 1: UMAP and HDBSCAN clustering of detection embeddings. Each plot point represents a 2.5 second vocalisation. Clusters are coloured by HDBSCAN cluster (left) or by location 

(right). 

 

 

Captive Wild 

 
 

  

 

Figure 2: Example spectrograms of distinctive song types. The red circle represents a trill only observed in the captive population.  
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