

## Non-negative intensity of a passively controlled underwater cantilever panel subject to turbulent boundary layer excitation

Huong Cao (1), Jamie Kha (1), Mahmoud Karimi (1), Paul Williams (1) and Paul Dylejko (2)

Centre for Audio, Acoustics and Vibration, University of Technology Sydney, Sydney, Australia
Defence, 506 Lorimer St, Fishermans Bend VIC 3207, Australia

## **ABSTRACT**

Hydrofoils are subject to random pressure fluctuations due to the presence of a turbulent boundary layer (TBL) that forms due to incident turbulent flow. This results in unwanted structural vibration and noise that propagates to the surrounding environment. In this study, a passive control strategy is implemented to mitigate the vibroacoustic response of a fluid-loaded cantilever panel using shunted piezoelectric elements, in which a shunt circuit consists of a resistor and an inductor connected in series. A cantilever panel completely immersed in an infinite acoustic free field of water can be considered a simplified model of a hydrofoil. An analytical model of the underwater panel equipped with shunted piezoelectric patches is developed with the Rayleigh-Ritz method, and the random forcing functions due to turbulent boundary layer excitations are modelled with the wall pressure spectrum described by a semi-empirical TBL model. This analytical model of an underwater cantilever panel is verified against a finite element model that ingests uncorrelated wall plane waves targeted to the same wall pressure spectrum model. Finally, non-negative intensity, which identifies the regions on a vibrating surface that produce acoustic radiation to the far field, is evaluated at the surface of the panel to demonstrate the effectiveness of the control strategy.

ACOUSTICS 2025 Page 1 of 1