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ABSTRACT 

The declining population of the Australian native ghost bat (Macroderma gigas) has resulted in extensive moni-
toring programs, including passive acoustic monitoring. Detection of the ghost bat’s social and echolocation calls 
can be used to inform management and conservation actions. Analysis of acoustic datasets to identify ghost bat 
calls is currently performed by a small number of experts who review audio recordings. However, this analysis is 
time consuming due to the ghost bat’s diverse and complex calls and the massive data sets that are gathered. 
Machine learning (ML) models can efficiently process these data sets to provide significant time and cost benefits 
over current analysis methods without sacrificing accuracy. This paper explores the process of optimising an ML 
model using a large dataset of audio recordings from 10 ghost bat roosts spread across the Pilbara region of 
Western Australia. Average improvements of 16% in precision and 13% in recall were achieved across all sites 
by expanding the spatial and temporal range of the training datasets and tuning the detection thresholds for each 
site. The ML model had an average of 95% precision and 80% recall across all sites.   

1 INTRODUCTION 
It is well documented that humans are responsible for a massive decline in biodiversity across our planet, and 
that actions must be taken to prevent further loss of species and habitats (Hogue et al., 2022). Understanding the 
behaviour and interaction of a given species with its environment is key to identifying effective actions (Tobias et 
al., 2019). For bats, this typically includes the locations of roosting and foraging sites, population dynamics, re-
productive ecology, and estimating the species tolerance of anthropogenic emissions such as light, noise, vibra-
tion and dust. However, for cryptic species such as the ghost bats in the Pilbara region of Western Australia, 
studies on these aspects are limited and more research is needed to understand their behaviour (Bradley et al., 
2024). 

Ghost bats have historically been studied by entering roosts to visually observe or capture bats (Douglas 1967). 
There are several challenges with this approach. Firstly, many ghost bats roost in old mine shafts and caves in 
remote locations, so the cost of access and the safety risks limit the frequency and duration of site work. Secondly, 
the roosting behaviour of ghost bats is not well understood (Hanrahan et al., 2022) so it is not certain that they 
will be present at a particular site. Thirdly, ghost bats are easily disturbed, and entering roosts has been found to 
cause mothers to drop pups or trigger colony-scale roost abandonment (Toop 1985; Armstrong 2011). 

The challenges with site visits mean that remote surveillance techniques such as passive acoustic monitoring 
(PAM) are attractive options for the study of ghost bat behaviour (Ruykys et al., 2023). Fortunately, ghost bats 
produce a variety of social and echolocation calls (Hanrahan 2020), all of which can be readily detected using off-
the-shelf ultrasonic acoustic recorders. Deploying acoustic recorders at cave entrances has become an estab-
lished and accepted method to monitor for ghost bats, as they are known to vocalise at the entrance and inside 
roosts (Hanrahan 2020). These monitors can be set to record audio at pre-defined trigger thresholds to capture 
bat calls, enabling recording for weeks to several months or years depending on the amount of activity. Modern 
PAM systems now include online capabilities which enable data to be uploaded in real time, further reducing 
monitoring costs while also improving data consistency (Lang et al., 2024, Li et al., 2022). 

However, PAM systems have their drawbacks. The main challenge is the analysis due to the complexity and size 
of the datasets (Ducrettet et al., 2025). Identification of bat calls requires understanding the acoustic call charac-
teristics of the species of interest as well as those of other bat species, insects, birds and other ambient sounds 
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present in the audio recordings (Brabant et al., 2018). However, the number of recognised ghost bat call identifi-
cation experts is limited, and the scale of the datasets is vast (many terabytes of recordings), so it is impractical 
for experts to manually analyse the data. 

Automated identification approaches such as machine learning (ML) address the analysis constraints and have 
become increasingly more common in recent years. Early methods using ML algorithms for human speech recog-
nition demonstrated that ML could outperform traditional methods in detecting and classifying bat echolocation 
calls (Skowronski et al., 2005). Recent advancements in ML have further reduced the time and effort required for 
analysis of large datasets (Chalmers et al., 2021). The use of deep learning techniques such as convolutional 
neural networks (CNNs) have also improved the accuracy of species detection from acoustic data and have been 
demonstrated to outperform traditional methods (Sharma et al., 2022). Models such as ResNet and YOLOv5 have 
been employed to detect and classify a range different vocalising species with high precision and recall rates for 
(Husain et al., 2023). There is an ever-increasing range of ML methods that can be used to identify bat calls in 
PAM datasets with varying degrees of effort. It is tempting to use off-the-shelf programs, but this must be done 
with caution as there are several studies which demonstrate discrepancies between different methods/programs 
(Lemen et al., 2015). ML model results must be thoroughly validated to provide confidence in the results before 
replacing industry standard manual analysis methods (Rydel et al., 2017). 

2 METHODS 

2.1 Defining the objective 
The purpose of PAM for fauna detection is to provide insight into animal behaviour (Oestreich et al., 2024). The 
applications can be broad (e.g. estimating overall biodiversity) or focused on meeting specific rules, regulations 
and permit requirements. The ML model for this paper was developed to meet regulatory requirements for long-
term monitoring ghost bat behaviour near mine sites in Western Australia, including detecting presence, locating 
maternity roosts, estimating population numbers and identifying disturbance. The aim of the monitoring is to better 
understand the behaviour of ghost bats and their response to nearby mining, which will inform the planning and 
management of mining operations. 

Ghost bat presence can be determined by reporting positive detections. Potential maternity roosts can be identi-
fied by counting the number of calls around sunrise and sunset (Hanrahan et al., 2019). Population sizes can be 
estimated by factoring in a call rate of the species (e.g. 20 – 40 calls per night may indicate 5 – 10 ghost bats for 
a given site (Bullen 2020)). A thorough interrogation of the call detection dataset, in conjunction with other da-
tasets, could reveal how ghost bats respond to environmental stressors such as noise and habitat disturbance 
(Armstrong, 2010). In addition, this ML model is able to differentiate between different ghost bat calls and therefore 
could be an indicator of behavioural events such as breeding or parturition (Hanrahan 2020), but this is not cur-
rently required for this application. The objectives can be achieved by accurately detecting ghost bat calls and 
reporting the time of detection. 

The focus of this ML model was to maximise precision because high numbers of false positives may lead to 
incorrect conclusions for ghost bat activity. For example, it would be problematic if ghost bats were incorrectly 
detected where none were present or continuing to report ghost bat presence when a cave or adit had been 
abandoned. A high precision was targeted for all sites to minimise false positives as far as practicable. A lower 
recall was considered to be acceptable as the ghost bats are highly vocal and typically trigger several audio 
recordings, giving the ML model multiple chances for detection. 

2.2 ML model overview 
This ML model has a standard image processing architecture which uses spectrograms as the acoustic represen-
tation of bat calls. A set of classes has been defined to separate ghost bat calls from other bat calls, insects and 
ambient sounds. The model calculates the probability that a given audio file contains each of the classes, with the 
sum of probabilities totalling 1 (or 100%). If the probability of a target class is over a defined threshold, then that 
audio file is classified as a positive detection. For example, if the threshold was 0.7 and an audio file had a 0.75 
probability of having a ghost bat call, it would be classed as a ghost bat detection.  

The image classification ML model stages are shown on Figure 1. This paper focuses stages 5 and 6. Steps 1 – 
4 are not covered as no novel data collection, preprocessing, signal enhancement, feature representation or 
model architecture have been used. There are numerous publications using machine learning for fauna detection 
which explain these components in detail. 
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Figure 1: Ghost bat detection ML model stages 

2.3 Calculating ML model performance 
ML model performance can be quantified in many ways depending on the application (Raja et al., 2024). For the 
detection of ghost bats, the simple metrics of precision and recall (sensitivity) and their corresponding confidence 
intervals were considered to be sufficient. The precision and recall formulae are presented in Equation 1 and 2 
respectively. The precision metric indicates the likelihood that a detection is a true ghost bat call, while the recall 
indicates the percentage of ghost bat calls detected versus being missed by the ML model. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(2) 

The precision and recall of the ML model are calculated by performing inference (running the model) on a valida-
tion set. The validation set must capture the variation in field data for the precision and recall metrics to be indic-
ative of the ML model’s performance on real-world data. Calculating confidence intervals is one way of estimating 
the range in precision and recall based on the size of the validation set. The Wilson Confidence Interval in Equa-
tion 3 has been used as it handles edge cases (e.g. no false positives), performs well for small validation sets, is 
simple to implement and useful for binary classification metrics such as precision and recall (Wilson 1927, O’Neill 
2021).   
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2.4 Expert review 
Manual analysis of the spectrograms for training and validation was carried out by the authors using Wildlife 
Acoustics’ Kaleidoscope software. This approach is standard practice for image classification models for detecting 
fauna. A recognised ghost bat expert reviewed a selection of audio recordings from the training and validation 
sets to confirm that the calls were correctly labelled.  

3 FINDINGS 

3.1 Understanding the data 
The acoustic monitors are typically deployed at mine shaft (known as adits) or cave entrances. The acoustic 
environment at these locations is highly complex, varies from site to site, and changes seasonally as well as 
gradually over longer time scales. The following sections describe the characteristics of the sounds that are pre-
sent in audio recordings from cave entrances in the Pilbara. 

3.1.1 Acoustic characteristics of bat calls 
Bats have one of the widest vocalisation frequency ranges of any animal, rivalled only by toothed whales 
(Fitch 2006). Håkansson et al. (2022) explains that bats have specialised vocal structures that make this vocali-
sation frequency range possible. Echolocation calls are typically high-frequency, rapid calls produced by vocal 
membranes, which are adapted for catching fast-moving prey. Social communication calls, on the other hand, 
often involve lower frequencies produced by ventricular folds. This is similar to the technique used in human 
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vocalizations like the growls in death metal music. This adaptation allows bats to extend their vocal range and 
produce distinct social calls. The lower frequency characteristics of social calls enable them to travel longer dis-
tances and penetrate through obstacles, making them more effective for communication in various environments 
(Bohn et al., 2006). Jakobsen et al (2013) investigated the intensity and directionality of bat echolocation signals, 
finding that bats are capable of altering the loudness of their calls using frequency, duration, intensity and directiv-
ity. Open space hunting bats were recorded to have echolocation signals above 135 decibel (dB) sound pressure 
level, around 30 dB above initial estimates. Loud bat calls can pose an issue for acoustic monitors as the signal 
can distort, which creates unwanted artefacts that complicate ML model training.  

Ghost bats have a complex vocal repertoire consisting of echolocation and social calls which cover a frequency 
range of 1 – 60 kHz (McKenzie and Bullen 2009; 2011). Various call descriptions such as ‘Chirp’, ‘Chitter’, ‘Twitter’ 
and ‘Squeak’ have been used by researchers over the years (Douglas 1967, Guppy et al. 1985, McKenzie and 
Bullen 2009). Hanrahan (2020) expanded these descriptions by using an unbiased characterisation method to 
group the vocalisations into five ultrasonic-type calls and nine social-type calls. Hanrahan noted that the most 
common calls were the ‘chirp trill’ produced while foraging, the ‘squabble’ during agonistic interactions, and ‘ultra-
sonic social’ calls. 

3.1.2 Target ghost bat classes 
Ghost bat calls have been divided into three classes for this study: 

• ‘Ultrasonic ghost bat calls’: defined by pulses which are steeply frequency modulated and typically consist
of three or four harmonics. The fundamental harmonic is 12 kHz and up to four harmonics reaching up to
80 kHz. These calls are used for both social and echolocation purposes. They are relatively quiet and can
therefore only be detected within a close range.

• ‘Audible range ghost bat calls’: ranging from 2 – 45 kHz with a frequency modulated section that has
energy from 5 to 15 kHz. This relatively low frequency modulation or ‘warble’ is a defining characteristic
of the social call and is unique to the ghost bat. It is audible to the human ear and often described as
being like the sound of rubbing two coins together. These calls are relatively loud and can be measured
over a wide distance compared to the ultrasonic ghost bat call.

• ‘Distorted ghost bat calls’: these are primarily social calls that are produced by ghost bats close to the
microphone, resulting in distortion of the acoustic signal. These calls retain the fundamental characteris-
tics of the audible range social calls but include significant acoustic artefacts at higher frequencies. Dis-
torted ghost bat calls have a distinct acoustic character which can be identified by the ML model and
separated from distorted calls produced by other bat species.

3.1.3 Faint ghost bat calls 
Faint ghost bat calls are either ultrasonic or audible range calls produced by ghost bats that are not close enough 
to the microphone to produce a clear recording. The ML model cannot reliably classify faint calls as positive 
detections because the images of the calls are lacking the characteristics of the target classes. A human expert 
has the same challenge and must use additional methods such as listening to the audio and using contextual 
information to make a judgment with some residual uncertainty. By definition, a faint call has inherent uncertainty, 
so the probability should fall within a range either side of the threshold. Faint calls will be present in the field data 
but should be evaluated on a case-by-case basis and not included in the precision and recall calculations. 

3.1.4 Other bats 
The presence of multiple bat species with overlapping call frequencies requires the models to be highly sensitive 
and specific to accurately identify ghost bats. Care should be taken to correctly identify ghost bat echolocation 
and social calls during field surveys as, while they are unique, there is potential to confuse them with some similar 
Taphozous call types as well as some cave-insect sounds (Bullen 2022).  

3.1.5 Ambient noise 
The Pilbara region has a range of ambient sounds such as wind, rain, and varying levels of background noise. 
This diverse range of sound can have similar characteristics to ghost bat calls and result in false positives (e.g. 
identifying an insect as a ghost bat), or it can overlap ghost bat calls and result in false negatives (incorrectly 
identifying a ghost bat as a non-ghost bat). 

3.1.6 Acoustic artefacts 
Like all microphones, the Wildlife Acoustics UM-1 has a limited dynamic range and sounds above the upper limit 
will cause the signal to distort. Microphones installed at cave entrances are particularly susceptible to signal dis-
tortion when bats such as the ghost bat and Taphozous produce loud calls as they enter and exit the cave. 
Distorted bat calls pose a challenge to the ML model as the acoustic signature of the distortion is similar for all 
bat species.   
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3.2 Model classes and training data 
The training set for an ML model is fundamental to its accuracy. The general principles for developing an effective 
training set are to ensure that the data captures the variety in each class, is correctly labelled, does not include 
irrelevant noise, and contains sufficient data in each class (Koshute et al. 2021). A clean training dataset will 
ensure the ML model learns the patterns for each class and can identify these features in unseen data. The ML 
model must be robust to noise in the real world, so it is important that noise is also represented in the training 
data. 

The primary focus for a ghost bat detection ML model is maximising the target class probabilities where ghost bat 
calls are present. This means that the target classes should have clearly defined characteristics and the training 
data should consist only of clear calls without the presence of sounds from other classes. Creating separate 
classes for calls with different acoustic characteristics (e.g. the audible range, ultrasonic range and distorted ghost 
bat calls) can reduce confusion with other similar sounds by providing clear classification boundaries. However, 
creating too many classes should be avoided as it can result in low performance on unseen data.  

The data for the classes for other bats, insects and ambient sounds is highly variable, so the training sets should 
include a range of clear and unclear training data (i.e. including noise, faint calls, sounds from multiple non-target 
classes). This will improve the ML model’s ability to generalize and will therefore assign higher probabilities to 
these classes when encountering ambiguity in real-world data. The resulting confusion between non-target clas-
ses is not of consequence to the model performance, provided that there is minimal impact on the target classes. 
The exception is other bat calls which have similar characteristics to the target classes. Creating separate classes 
with clean training data for these calls introduces a classification boundary which reduces confusion with the target 
classes.   

3.3 Validation sets 
Effective validation datasets are fundamental to the development of a high-performance ML model for detecting 
fauna in acoustic datasets (Sharma et al., 2022). The validation sets are used to determine the precision and 
recall of the ML model through the development stage to identify areas for improvements. For applications such 
as ghost bat detection, it is important to determine the ML performance on a site-by-site basis using location 
specific validation datasets over different seasons. This will identify underfitting and overfitting of the ML model, 
which can typically be addressed through retraining.  

One year’s worth of data for each of the ten sites was provided for this project. The dataset totalled over 2 million 
audio recordings, with most sites containing approximately one ghost bat per thousand files. The complexity of 
this dataset required iterative development of the validation set to ensure it contained a range of challenging files 
for evaluation of the ML model performance. Initially, inference was performed using a proof-of-concept model on 
a selection of data from each site and positive ghost bat classifications were manually analysed. The proof-of-
concept model results were predominantly false positives due to other bats, insects and ambient sounds with 
similar acoustic characteristics to ghost bat calls and were not present in the training data. The false positives 
were added to the training and validation sets, and inference was performed using the updated model. This pro-
cess was repeated until the model precision was satisfactory. The ML model recall was validated by manually 
analysing all audio files which had probabilities slightly below the ghost bat call classification threshold. The false 
negatives were incorporated into the training and validation sets and the process was repeated until the model 
recall was satisfactory.  

A summary of the final validation set is shown in Table 1. This validation set was created from a dataset consisting 
of a randomly selected day each month at each site (a total of 120 days of data), capturing the spatial and temporal 
variations in the real-world dataset. The level of activity fauna activity differed at each site, resulting in significant 
differences in the valuation set classes and overall number of files.  

3.4 Threshold tuning 
Threshold tuning is a step at the end of the ML model optimisation process which can improve site-specific per-
formance. Threshold tuning involves adjusting the target class threshold to achieve a desired precision or recall. 
The benefit of this technique is that the ML model performance can be optimised for specific sites without hav-
ing to carry out retraining. For example, a ML model deployed at site with low numbers of ghost bats and very 
high numbers of Taphozous is more likely to report false positives than sites without Taphozous. Increasing the 
threshold of the ghost bat ultrasonic call class (which is similar to the Taphozous ultrasonic call) will reduce the 
number of false positives and improve precision.  
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Care should be taken when threshold tuning using validation datasets with small numbers of the target class 
(e.g. Site 8). The ML model probabilities vary based on small changes in the acoustic data. Adjusting the thresh-
old to change a single ghost bat call from a false negative into a true positive to improve recall unlikely to have 
the same effect on other ghost bat calls and may have unintended consequences on precision. 

Table 1: Summary of files contained in validation dataset 

Site Ghost bat calls Taphozous 
calls 

Other bat calls Insects and  
ambient sounds 

Total audio files 

Site 1 51 11 259 43 364 
Site 2 72 1 185 2 260 
Site 3 21 1 19 39 80 
Site 4 112 3 93 577 785 
Site 5 52 0 14 23 89 
Site 6 41 373 266 112 792 
Site 7 354 6 62 72 494 
Site 8 9 1 125 145 280 
Site 9 40 0 108 33 181 
Site 10 449 0 62 487 998 
Totals 1,201 396 1,193 1,533 4,323 

4 MODEL PERFORMANCE EVALUATION 
The recall and precision results have been calculated for three iterations of the ghost bat detection ML model to 
illustrate the effect of improving the training and validation sets. The first iteration of the ML model was trained on 
data from a two-month period from Sites 1 - 4. The second iteration of the ML model included training data from 
all ten sites covering a full year. The third iteration included data training data from two other sites, one of which 
had very high numbers of other bat species. 

Table 2 presents the predicted precision and recall with the associated 95% confidence intervals for each iteration 
of the ML model. The same detection threshold has been used for all ghost bat call classes at all sites (i.e. no 
threshold tuning). These results are a good measure of the change in the model performance with each iteration. 
The inclusion of training data that is representative of the complexity and variation in real-world data has a signif-
icant improvement to the ML model precision but little improvement to the recall. The average improvement in 
precision from the first to the third iteration was 18%, while the average improvement in recall was just 2%. The 
changes in performance were minimal at some sites (e.g. Site 2 and Site 3) which is due to the training data for 
the first iteration being representative of those sites. 

Table 3 presents the same ML model results with the inclusion of threshold tuning with a target precision of 95%. 
The ghost bat call class thresholds at each site have been adjusted to maximise the recall while keeping the 
precision at 95%. For the final iteration of the ML model, the threshold tuning had an average 2% reduction in 
precision and a 13% improvement in recall across all sites. The final performance was an average 95% precision 
and 80% recall across all sites.  
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Table 2: Predicted precision and recall of three stages of model development (no threshold tuning) 

Site First iteration 
(limited training data) 

Second iteration 
(training data from all sites) 

Third iteration 
(training data from all sites and 

additional data from other 
sites) 

Precision Recall Precision Recall Precision Recall 

Site 1 
76% 

CI: 62%-86% 
82% 

CI: 68%-90% 
91% 

CI: 75%-97% 
55% 

CI: 37%-70% 
97% 

CI: 83%-99% 
55% 

CI: 37%-70% 

Site 2 
82% 

CI: 71%-89% 
76% 

CI: 61%-85% 
88% 

CI: 78%-94% 
72% 

CI: 59%-81% 
95% 

CI: 86%-97% 
69% 

CI: 56%-79% 

Site 3 
88% 

CI: 67%-95% 
88% 

CI: 67%-95% 
93% 

CI: 67%-98% 
54% 

CI: 29%-77% 
93% 

CI: 67%-98% 
54% 

CI: 29%-77% 

Site 4 
54% 

CI: 44%-62% 
78% 

CI: 70%-84% 
97% 

CI: 91%-99% 
63% 

CI: 53%-71% 

100% 
CI: 96%-

100% 

64% 
CI: 54%-72% 

Site 5 
93% 

CI: 80%-97% 
59% 

CI: 43%-73% 

100% 
CI: 92%-

100% 

73% 
CI: 58%-83% 

100% 
CI: 92%-

100% 

68% 
CI: 53%-79% 

Site 6 
50% 

CI: 34%-65% 
83% 

CI: 67%-92% 
76% 

CI: 61%-87% 
93% 

CI: 80%-97% 
85% 

CI: 68%-93% 
79% 

CI: 62%-89% 

Site 7 
96% 

CI: 92%-97% 
54% 

CI: 47%-60% 
94% 

CI: 90%-95% 
79% 

CI: 74%-83% 
96% 

CI: 93%-97% 
75% 

CI: 70%-79% 

Site 8 
34% 

CI: 13%-64% 
77% 

CI: 46%-92% 
81% 

CI: 54%-94% 

100% 
CI: 77%-

100% 

86% 
CI: 57%-96% 

92% 
CI: 65%-98% 

Site 9 
53% 

CI: 36%-69% 
70% 

CI: 53%-83% 

100% 
CI: 87%-

100% 

60% 
CI: 41%-75% 

100% 
CI: 86%-

100% 

53% 
CI: 37%-70% 

Site 10 
92% 

CI: 88%-93% 
70% 

CI: 65%-73% 
99% 

CI: 97%-99% 
68% 

CI: 63%-71% 
99% 

CI: 97%-99% 
67% 

CI: 62%-71% 

Average 
across 
all sites 

79% 
CI: 76%-81% 

67% 
CI: 64%-69% 

95% 
CI: 93%-96% 

71% 
CI: 68%-73% 

97% 
CI: 95%-97% 

69% 
CI: 66%-71% 
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Table 3: Predicted precision and recall of three stages of model development (with threshold tuning) 

Site First iteration 
(limited training data) 

Second iteration 
(training data from all sites) 

Third iteration 
(training data from all sites and 

additional data from other 
sites) 

Precision Recall Precision Recall Precision Recall 

Site 1 
95% 

CI: 83%-98% 
73% 

CI: 57%-84% 
95% 

CI: 82%-98% 
67% 

CI: 51%-80% 
95% 

CI: 84%-98% 
76% 

CI: 61%-86% 

Site 2 
95% 

CI: 86%-98% 
69% 

CI: 56%-79% 
95% 

CI: 87%-98% 
74% 

CI: 62%-83% 
95% 

CI: 86%-97% 
81% 

CI: 70%-88% 

Site 3 
95% 

CI: 76%-99% 
83% 

CI: 62%-93% 
94% 

CI: 70%-98% 
63% 

CI: 37%-81% 
94% 

CI: 72%-98% 
67% 

CI: 42%-84% 

Site 4 
95% 

CI: 88%-97% 
60% 

CI: 50%-69% 
95% 

CI: 90%-97% 
96% 

CI: 91%-97% 
95% 

CI: 90%-97% 
96% 

CI: 91%-97% 

Site 5 
93% 

CI: 80%-97% 
59% 

CI: 43%-73% 
95% 

CI: 85%-98% 
91% 

CI: 80%-95% 
96% 

CI: 87%-98% 
97% 

CI: 89%-99% 

Site 6 
95% 

CI: 81%-98% 
83% 

CI: 67%-92% 
96% 

CI: 77%-99% 
55% 

CI: 35%-72% 
96% 

CI: 81%-99% 
64% 

CI: 45%-79% 

Site 7 
95% 

CI: 92%-97% 
68% 

CI: 62%-72% 
96% 

CI: 93%-97% 
77% 

CI: 72%-81% 
95% 

CI: 92%-96% 
80% 

CI: 76%-84% 

Site 8 
100% 

CI: 64%-
100% 

54% 
CI: 22%-82% 

100% 
CI: 70%-

100% 

69% 
CI: 37%-89% 

100% 
CI: 70%-

100% 

69% 
CI: 37%-89% 

Site 9 
94% 

CI: 72%-98% 
34% 

CI: 16%-58% 
94% 

CI: 80%-98% 
68% 

CI: 50%-81% 
94% 

CI: 79%-98% 
66% 

CI: 48%-80% 

Site 10 
95% 

CI: 92%-96% 
68% 

CI: 63%-72% 
95% 

CI: 92%-96% 
76% 

CI: 72%-79% 
95% 

CI: 92%-96% 
78% 

CI: 74%-81% 
Average 
across 
all sites 

95% 
CI: 93%-96% 

67% 
CI: 63%-69% 

95% 
CI: 94%-96% 

78% 
CI: 75%-79% 

95% 
CI: 93%-96% 

80% 
CI: 78%-82% 

5 LEARNINGS 

5.1 ML model trade-offs 
The precision and recall metrics can be influenced by the training data, number of model classes and the thresh-
old. The interaction of these components can become complex when high precision and recall is required. Table 
4 provides a general summary of the trade-offs between each aspect as observed during the development of this 
ML model. 

5.2 Efficient development of ML models for complex applications 
Developing an ML model can take significant time depending on the complexity of the data and the performance 
requirements. There is additional time to factor in with the deployment of ML models in the field, ongoing valida-
tion and management of data. Efficient development is therefore an important consideration. 

The early stages of the development of the ghost bat detection ML model were relatively inefficient due to a lim-
ited understanding of the data. Considerable effort was spent developing training and validation sets that were 
not representative of the variation and complexity of real-world data. A more efficient approach was then used, 
which involved using a separate simplified model to perform inference on a random selection of data that was 
spatially and temporally diverse. This approach enabled the data to be filtered for samples with similar 
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characteristics to ghost bat calls that could be manually analysed for validation and retraining. This approach is 
effective for complex applications such as detecting ghost bat calls.  

Table 4: Factors observed to affect precision and recall for a ghost bat detection ML model 

Model 
component 

Advantages Disadvantages 

Smaller training 
sets for target 

species 

Lower complexity of dataset can improve 
probabilities provided there are strong 

similarities 

Data does not capture the full range of calls 
of acoustically complex calls, 
lowering precision and recall 

Larger training 
sets for target 

species 

Improves recall by capturing the variation in 
acoustically complex calls 

Large target species training data or unclear 
training data result in underfitting, reducing 

the precision of the model. 

Small training 
sets for  

extraneous 
sounds 

Reducing the amount of extraneous sound 
training data can reduce underfitting of the 
model and improve recall, particularly if the 

extraneous sounds are from other sites. 

Too little extraneous training data lowers the 
precision because unseen data is likely to 

generate false positives 

Larger training 
sets for  

extraneous 
sounds 

Improves precision by increasing the 
probabilities of correctly identifying 

extraneous sounds 

Too much extraneous training data can 
result in overfitting, lowering recall 

Few model 
classes 

Model is able to generalise well and avoids 
overfitting. There is less confusion between 
classes, potentially resulting in higher recall 

 

Too few classes for acoustically complex 
target species can introduce too much 

variation within the class. Simplifying all calls 
into a single class also limits the information 

collected 

Many model 
classes 

Improve precision by having clearly defined 
classes which increase the probabilities. 

This is particularly important where there are 
other bats that have similar calls to the 

target species. Another advantage is that 
more information is collected 

Too many classes can lead to overfitting, 
resulting in lower recall 

Low threshold Improves recall Lowers precision 

High threshold Improves precision Lowers recall 

6 CONCLUSIONS 
Using PAM to detect ghost bat calls is an effective method for providing insight into the behaviour of this species 
to inform management and conservation. Automatic identification methods such as machine learning are neces-
sary to efficiently analyze the large datasets, but care must be taken to ensure the models are accurate as the 
datasets can be highly complex. Effective validation using data that is representative of the complexity and vari-
ation in real world data is fundamental to providing confidence in the model’s performance. Average improvements 
of 16% in precision and 13% in recall were achieved across all sites by expanding the spatial and temporal range 
of the training datasets and tuning the detection thresholds for each site. The ML model had an average of 95% 
precision and 80% recall across all sites. 
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