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ABSTRACT

This paper presents a study on vessel classification based on their underwater acoustic signatures. A hydrophone
array was deployed on the seabed at Chowder Bay, Sydney and recorded underwater acoustic signals from
various vessels. Of these vessels, four different ferries were targeted, and hundreds of their noise segments were
selected and labelled for data classification. The time-domain signals were first converted into spectrograms,
which were then classified using an image-based machine learning method: convolutional neural network (CNN).
In the classification process, 77% of the data samples were used for training, while the remaining 23% were
reserved for validation. The results show that pre-processing of spectrograms plays a critical role in the classifi-
cation accuracy. The paper also examines the influence of pre-processing parameters on classification accuracy
and computational efficiency. With appropriate pre-processing and model parameters, the proposed method
achieved successful classification of ferry acoustic signals with an accuracy of up to 99%.

1 Introduction

Machine learning (ML) has been extensively applied for data classification across various acoustic domains. Some
previous research has demonstrated its potential for underwater acoustic applications. Du et al. and Padfield
reported in their work that classification of snapping shrimp and dolphins in shallow water using recorded under-
water sound was feasible. We explore a similar approach for the recognition of vessels, which would prove prac-
tical and significant within the vicinity of a port. Vessel noises are primarily determined by their propulsion system.
Theoretically, by extracting the unique signatures from the underwater sound of different types of vessels, it should
be feasible to identify them using appropriate ML models. However, this application was rarely reported due to
the scarcity of labelled acoustic data for vessels.

This paper aims to explore the use of ML for vessel classification. An image-based ML model, Convolutional
Neural Network (CNN), was employed to identify four ferry types based on their underwater acoustic signals,
using recordings taken from a single hydrophone. As a preliminary investigation, this research does not claim to
be a comprehensive state-of-the-art study. Instead, its primary objective is to verify the feasibility of ML for vessel
classification and investigate the impact of some key factors on this practical application.

2 Approach
2.1 Underwater Acoustic Data

Defence Science and Technology Group (DSTG) and a local industry partner, Midspar Systems, collaboratively
executed a project aimed at monitoring marine traffic in Sydney. A hydrophone array was installed on the seabed
at Chowder Bay, accompanied by a camera mounted on a nearby jetty. The camera was programmed to auto-
matically track the loudest vessel based on the real-time feedback from the seabed array in order to provide the
“ground truth” to the acoustic recording. The monitoring system was in operation for over 300 days, thereby ac-
cumulating an extensive audio and video database of local vessels. For the purpose of this study, a short period
of audio data recorded by a single hydrophone within the array and corresponding video were solicited for the ML
application.
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Three ferry types, which were observed with high frequency and regularity in the dataset, were selected as the
observations for classification. Comparing with other civilian vessels that were detected, these ferries were larger
and noisier, were easy to track and therefore offered superior acoustic signals with high signal-to-noise ratio
(SNR). By monitoring the video and audio simultaneously, the acoustic data segments dominated by a single ferry
were successfully isolated and labelled from the dataset.

Figure 1 shows the ferries and their acoustic signals after pre-processing. For clarity, the three types of ferries
were named by their colours as “blue ferry”, “red ferry” and “green ferry”. The green ferry has propulsion systems
at both ends, resulting in direction-dependent acoustic signatures. Therefore, the acoustic data of the green ferry
is classified into two groups as: “eastbound” and “westbound”. From Figure 1, it is clear that most of received
acoustic energy of the ferries is concentrated in the low-frequency range below 300 Hz, and their harmonic distri-
butions show obvious differences.
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Figure 1: Four classes of ferries (left), their typical spectra (middle) and spectrograms (right)
2.2 Machine Learning Model

To describe the acoustics features of the ferries in both time-domain and frequency domain, the recorded under-

water signals were converted into spectrograms, which could be classify by image-based ML models. CNN

method, which is a widely used and effective deep learning network for image analysis, was utilised for classifying

the ferries’ data here. Figure 2 displays the structure of the 10-layer CNN model coded by readily available ML

tools in MATLAB. It consists of:

one input layer for image data input;

two 2D convolution layers for extracting features from input images;

two Rectified Linear Unit (ReLU) layers for simplifying the feature matrices;

one max pool layer for reducing the size of feature matrices after the first convolution layer which can
improve the robustness of the network;
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one dropout layer for avoiding overfitting issue;
one fully connected layer for combining the feature matrices based on the classification groups;
one soft max layer for improving the accuracy of output; and

one class output layer for computing necessary output coefficients.

The raw acoustic data of ferries were divided into hundreds of one-second-long samples. Then the time-domain
samples were converted into spectrograms as the input images of the CNN model. Table 1 gives the number of
samples in each class. In the classification process, 77% of the samples were used for training, while the remain-
ing 23% were reserved for validation.

Table 1: Number of acoustic samples used for data classification

Blue ferry Red ferry Green ferry Green ferry Total
(eastbound) (westbound)
462 297 319 1562
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Figure 2: The 10-layer CNN model used for data classification

As a preliminary study, the ferry data selected for this project intentionally has high SNR and low interference
from environment and other vessels. Therefore, the classification accuracy with appropriate settings is anticipated
to be artificially high. Figure 3 shows the results of an optimised 10-layer CNN model, and the key parameters are

listed in Table 2. It is clear that the accuracy is up to 99%.
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Figure 3: The confusion matrix (left) and training curves (right) of an optimised CNN model
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Table 2: The parameters of the CNN model

Parameter
Number of images
Image format

Image size

Filter size
Number of filters
Pool size
Stride
Filter size
Number of filters
Dropout rate
Class
Initial learning rate

Max learning
epochs

Validation fre-
guency

Value
1562
matrix

256x32x1

7x5
32
2%x2
[22]
7x5
32

0.5

0.001

1/3

Comments

1200 for training, 362 for validation

Unsigned 16-bit integer

Frequency range 1~512 Hz, frequency
resolution 2Hz, time resolution 1/32 s

No padding. Stride is 1

No padding

No padding. Stride is 1

Fixed rate
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The classification accuracy of CNN models is primarily influenced by two factors: the quality of input images and
the configuration of the model. It was observed that the quality of the input spectrograms is the predominant factor
in the ferry classification task, while the model settings mainly impact the computational efficiency. When the input
spectrograms meet the required quality, the CNN model demonstrates a high level of robustness, yielding satis-
factory accuracy across a broad range of parameters. The model optimisation, on the other hand, has limited
impact on enhancing classification accuracy when the quality of input images is poor. The essential requirement
for the input images is that they must contain enough valid information of observations for data classification.

The study revealed that the quality of the ferries’ spectrograms is mainly contingent on three parameters: ampli-
tude display mode, frequency range and frequency resolution. Firstly, it is necessary to display the amplitude of
spectrograms using logarithmic scale (dB mode). Figure 4 compares the spectrograms of the same sample with
logarithmic and linear scales, elucidating that the logarithmic plot offers more details of the sample in the frequency
domain, particularly for the weaker harmonics. The classification accuracy of the CNN model using spectrograms
with linear scale was less than 30%, suggesting that the entire pattern consisting of harmonics was more signifi-
cant for data classification than the several strong frequency components.

Furthermore, the input spectrograms need to be broadband, encompassing most of the valid signal in the fre-
quency domain. Additionally, the frequency resolution should be sufficiently fine to display the details of harmon-
ics. A sensitivity analysis over various values of frequency range and resolution was performed. Figure 5 illustrates
the impact of the frequency range and resolution on the classification accuracy and efficiency. In terms of accu-
racy, even though most of the acoustic energy of the ferries is concentrated in the low-frequency range below 300
Hz (see Figure 1), the upper frequency limit of the input spectrograms needs to be expanded to cover more weak
harmonics. The abundance of harmonics also necessitates a relatively finer frequency resolution. The left diagram
of Figure 5 demonstrates that, to achieve ideal classification accuracy (>99%), the thresholds of upper frequency
limit and frequency resolution were 500 Hz and 2 Hz, respectively. Further enhancements to these two parameters
do not optimise the accuracy much but increase the computational time (see right diagram of Figure 5).
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Figure 4: The spectrograms of the same sample with two different display modes (left) and the training result
with the linear mode input (right)
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Figure 5: The impact of frequency range and resolution of the input spectrograms on the accuracy (left) and effi-
ciency (right) of the CNN model

4  Conclusion and Future Work

This paper presented an initial exploration of ML applications for the classification of vessels based on underwater
acoustic signals. An image-based 10-layer CNN model was utilised to successfully classify four distinct ferry types.
The findings of this study provided valuable practical evidence supporting the viability of this method and high-
lighted several key factors contributing to its success. Notably, the pre-processing of input images was found to
be critical for accurate classification. The input images used for this ferry classification task were the spectrograms
converted from the recorded underwater signals. To ensure sufficient information for classification, the input spec-
trograms should meet the following criteria:

¢ Display the amplitude of sound with logarithmic scale to enhance the relatively weak harmonics.

e Cover an appropriate frequency range that includes most of harmonics.

o Utilise an appropriate frequency resolution based on harmonic density to provide clear details of harmonics.

Although this study reported an impressive classification accuracy rate of up to 99%, it was a preliminary investi-
gation and did not account for potential interferences, such as those caused by multiple vessels and environmental
noise. In real-world applications, the signal overlapping of multiple vessels can lead to signal pollution. The una-
voidable environmental noise can significantly impact the classification accuracy by masking weak harmonics of
valid signals. Therefore, further research is required to fully validate the use of ML for vessel classification. A
comprehensive evaluation must consider various environmental factors and other potential interference. To ad-
dress this challenge, signal processing techniques, such as beamforming, may be involved for pre-processing of
the recorded data to focus on single vessel and enhance its SNR.
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