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ABSTRACT

Accurate and reliable estimation of sound pressure levels (SPL) for specific noise sources is critical for effective
environmental monitoring, community noise management and even regulatory compliance. This study presents
a novel deep learning—based framework that demonstrates the potential for high-confidence, low-error quantifi-
cation of targeted source contributions in real-world settings. Leveraging a network of acoustic monitoring devices,
skilled listeners reviewed data (recorded audio and 1/3 octave spectra) to classify and make determination of
short-term (LAeq (energy average)) noise contributions for nine (9) noise source classes. Our method comprises
three key components: (1) Expert-Annotated Event Analysis — acoustic specialists evaluate short-term LAeq con-
tributions to each noise class; (2) Self-Supervised Pretraining, employing masked spectrogram reconstruction on
unlabelled field recordings to learn robust feature representations; and (3) Supervised Regression, fine-tuning a
hierarchical convolution-transformers (MaxViT) model on paired spectrogram—SPL data to predict source-specific
A-weighted SPLs for a specific dataset. On an independent test set, our approach determined noise levels with a
mean absolute error (MAE) of 0.8+2.1 dBA (MAE = std). These results highlight the potential of deep learning
methods for precise, source-specific SPL estimation. Integration into automated noise-assessment dashboards
and mobile monitoring platforms can provide real-time decision support to environmental acousticians and regu-
latory agencies.

1 INTRODUCTION

A range of emerging technologies exist for assisted listening and automated classification of environmental
sounds (Bansal & Garg, 2022). These technologies provide valuable support to human reviewers and environ-
mental noise managers by automatically identifying events of interest in recorded or real-time measurement data,
enabling re-direction of effort from event detection to event investigation.

These technologies yield a clear benefit, as they draw attention only to events of potential concern. However, it is
typically the sound level of a source — not just its audibility — that is of concern to environmental noise managers.
Accurately quantifying the contribution of a specific noise source within a mixed ambient environment can be a
complex analytical task. While methods do exist to perform this analysis, they are typically manual, time-consum-
ing, and require a high level of expertise. This productivity constraint is a limiting factor in the wider adoption of
real-time and unattended noise monitoring, and use of these technologies as investigative or regulatory tools in
complex noise environments.

The goal of this study is to introduce and explore the potential utility of deep learning as a solution to noise source
identification and quantification challenges. We present an example workflow in which machine learning is used
to both identify component sources, and estimate their sound pressure levels (SPL) in complex noise environ-
ments. Efforts are made to construct this workflow in a way that aligns with common regulatory standards
(Environment Protection Agency, 2022)

1.1 Existing Machine Learning Methods

There has been recent, rapid development in machine learning (ML) and other artificial intelligence (Al) tools,
which have achieved outstanding performances in a multitude of domains. Computer vision has been acknowl-
edged to be equal or better than human level (Geirhos, et al., 2021). GraphCast (Lam, et al., 2023), a Graph
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Neural Network proposed in 2023, achieved state-of-the-art performance in weather forecasting. Neural network
based systems are already being deployed in real-time water quality monitoring systems (Zainurin, et al., 2022).
There has been great success in the domain of environmental sound classification (ESC) (Bansal & Garg, 2022),
which has shown high accuracies in the classification of common environmental sounds.

While autonomous environmental sound classifiers are increasingly performative (Alex, Ahmed, Mustafa, Awais,
& Jackson, 2024), these classifiers do not typically quantify sound levels, or permit direct comparison with regu-
latory requirements (such as noise limit levels). A true ‘noise’ monitoring system would require the capacity to
robustly measure and report SPLs of specific sources, enabling direct evaluation with regulated limits that aim to
control noise pollution. Prior work (Sparke, 2018) has demonstrated the effectiveness of using machine learning
for ESC to identify the salient noise source in rural receiving environments. However, this is limited to informing
compliance only when the noises of interest are the salient noise sources, which is often not the case.

State-of-the-art ESC models, have revolutionized the accuracy of such models with transformer-based ap-
proaches (Halkon, et al., 2024). Furthermore, the Audio Spectrogram Transformers have been further optimized
with hierarchical and multi axis adaptations (Alex, Ahmed, Mustafa, Awais, & Jackson, 2024), providing greater
precision at lower latency.

Audio classification tasks have shown great accuracies (Bansal & Garg, 2022), similar to the performances ob-
served in image classification tasks that have surpassed human capability (Geirhos, et al., 2021). Sound Event
Localisation and Detection (SELD), has been proposed to derive temporal localisation. However, these methods
are still insufficient for deriving noise characteristics from audio signals. Variational Autoencoders (VAEs) have
been effective in suppressing background noise in human speech (Nogales, Caracuel-Cayuela, & Garcia-Tejedor,
2024), and thereby isolating a particular sound source in a noisy environment. However, such reconstructions
tend to be lossy, and prone to the caveats of generative Al methods, such as hallucinations.

This work aims to extend the successes of machine learning methods into the domain of noise monitoring sys-
tems, where there exists an apparent gap in the literature.

1.2 Aim of this study

The aim of this study is to present experimentation on a deep learning-based framework for the estimation of
source-specific sound pressure levels (SPLs) in complex environmental noise environments. The goal is to con-
tribute to accurate, real-time and autonomous data analysis that can assist environmental professionals with ef-
fective management of noise impacts.

2 METHODOLOGY

2.1 Input data

Environmental sound measurements were collected from acoustic monitoring devices deployed across rural New
South Wales. Audio was recorded in mono at a 44.1 kHz sampling rate and encoded as MP3 at 32 kbps. Record-
ings were segmented into fixed 10-second intervals, following conventions in environmental sound classification
literature, which also aligns the temporal granularity with the expert-attributed LAeq targets.

Each 10-second clip underwent the following preprocessing pipeline: mean normalization, conversion to a Mel-
spectrogram with 128 Mel bins, a 25 ms window size, and a 10 ms hop size, and min—max normalization of the
resulting magnitudes. These representations served as the input to the model.

Concurrently, 10-second average (LAeq) sound levels (including one-third octave spectra) were measured in
accordance with prevailing industry standards (Approved methods for measurement and analysis of environmen-
tal noise (Environment Protection Agency, 2022)). This was achieved using Sound Level Meters (SLMs) satisfying
the Class 1 requirements of AS/NZS IEC 61672.1. This ensured that each 10-second sample was represented
by both precision measurement data (a single 10-second LAeq (and one-third octave spectra)) and a Mel-spec-
trogram derived from the 10-second audio recording. All data modalities (Mel-spectrograms, one-third octave
spectra, and expert annotations) were time-aligned via their timestamps.
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Ground truth sound pressure levels (SPLs) in A-weighted LAeq format were determined by acousticians using the
recorded audio together with the available one-third octave spectra, following guidance in the NSW EPA “Ap-
proved methods for measurement and analysis of environmental noise”. Each ground truthed sample was a vector
containing expertly estimated SPLs for each source in the dataset. This was done to ensure that the summation
of all identified sources was equal to the total measured sound pressure level (10-second LAeq) of the sample.
An example of this annotated data is provided in Table 1.

Table 1: Example input data to model: vector of estimated SPLs by source. 0dBA annotations indicate that
source was not audible in sample (subset of all sources is presented to ensure clarity in the table)

Estimated Source SPL (as LAeq,10second, dBA)

Datetime Train  Aircraft Insects Mine Noise Birds Sheep Total
4/3/2025 2:32:20  40.8 0 53.9 0 0 0 541
4/3/2025 2:32:30  43.1 0 53.9 0 0 0 54.3
4/3/2025 2:32:40 47.9 0 54.3 0 0 0 55.2

No formal uncertainty quantification was applied; however, notable sources of unquantified uncertainty included
(a) situations where target sounds were very quiet relative to background, making them difficult to distinguish, and
(b) adverse environmental conditions (e.g., strong wind) that degraded microphone fidelity. These considerations
will be the objective of future work.

The ground-truth data was generated as a by-product of noise monitoring project work; the mix of sources identi-
fied in the dataset are thus unique to the monitoring environment, and are skewed towards the noise sources
under investigation. The dataset included 4062 samples of 10-second mp3 audio and per class SPL ground truth
vectors. Of this data, 9 classes were included: Insects, Trains, Gusting Wind, Mine / Quarry Noise, Birds, Road
Noise, Barking Dogs, Sheep, Aircraft and Cattle. Data included in the class “Cattle” were ultimately omitted from
experimentation due to very small sample size. This represents the totality of available ground-truth data at the
time of manuscript preparation (4062 samples x 9-classes).
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Source: (Burwood, 2025)

Figure 1: SPL distributions (Laeq, 10seconas) @nd sample counts per class for user annotations for the training
dataset
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The distribution of SPLs and sample counts varied greatly between classes (see Figure 1). This skew also existed
in the co-occurrence of sound sources (see Figure 2). This skew may have impacted results but was mitigated
via weighted sampling. Growth in the ground-truth data set (in terms of the number of samples, variety of sources
and occurrence of sources) is expected, and further experimentation will be reported as part of future work.
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Figure 2: Cooccurrence of sources

2.2 Expert LAeq attribution protocol

Source-specific LAeq contributions were obtained through a manual attribution protocol conducted by three
acoustic specialists. Each 10-second clip was assigned to exactly one acoustician—there was no overlapping
annotation or inter-rater adjudication. Annotators had access to recorded audio, were informed of the environ-
mental conditions at the time of the clip, and were aware of the plausible noise sources present in the deployment
area. They were also provided with auxiliary visual context including mel-spectrograms and one-third octave spec-
tra.

For each clip, the acoustician produced a per-class attribution in the form of a 10-second A-weighted LAeq value
(in dBA) for each of the 9 predefined noise classes contained in the dataset. No mechanism was available for
expressing uncertainty or confidence in individual attributions, and conflicting annotations did not arise due to the
non-overlapping assignment strategy. The resulting LAeq values were min—max normalized and used directly as
regression targets; no further filtering or reconciliation was applied. The lack of inter-rater variability analysis is
acknowledged as a limitation and left for future work.

2.3 Model Architecture

The backbone model is based on MaxViT-L, adapted to operate on audio mel-spectrogram inputs, following the
success of Max-AST in the ESC domain. Input spectrograms (as defined in Section 2.1) are treated analogously
to image patches. The hierarchical architecture uses the following configuration: patch/window sizes of [(8,8),
(8,8), (8,8), (8,4)] across stages; embedding dimensions of (96, 192, 384, 768); depths of (3, 3, 7, 3); and 32
attention heads with a head size of 512. These design choices preserve the nested convolution-transformer struc-
ture of MaxViT while scaling it appropriately for the spectral resolution of the audio inputs.

For self-supervised pretraining, a decoder head was attached to perform masked spectrogram reconstruction.
The decoder consists of five ConvTranspose2d blocks, each with kernel size 4, stride 2, and padding 1, progres-
sively upsampling to reconstruct the masked portions of the input Mel-spectrogram. For supervised regression, a
separate head produces per-class SPL estimates—specifically, source-specific A-weighted LAeq predictions for
each of the 9 noise classes.
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2.4 Self-supervised pre-training

The model was pre-trained on over 600,000 unlabelled 10-second audio samples using a masked spectrogram
reconstruction objective. Input Mel-spectrograms were randomly masked by sampling permutations with a mask-
ing ratio of 0.75; the model was tasked with reconstructing the original spectrogram over the masked regions.
This step sought to promote model familiarity with Mel-spectrogram data prior to commencement of training on
specific targets. The reconstruction loss was mean squared error (MSE) computed on the Mel-spectrogram mag-
nitudes after min—max normalization. No additional data augmentations were applied during pretraining.

Optimization was performed with the Adam optimizer using a cosine annealing learning rate schedule. Pretraining
was run for 100,000 steps, and the final checkpoint from the last epoch was selected for downstream fine-tuning.

2.5 Supervised regression fine-tuning
Fine-tuning was carried out on labelled data pairs consisting of the normalized Mel-spectrogram inputs and their
corresponding expert-attributed source-specific A-weighted LAeq targets. The regression objective was the Huber
loss with delta set to 1, chosen to balance robustness to outliers while maintaining sensitivity to small errors. To
address the class imbalance among the 9 noise classes, we employed a weighted sampling strategy based on
the empirical distribution of noise classes.

Fine-tuning used the Adam optimizer with a cosine decay schedule; private optimization hyperparameters are
withheld for confidentiality. The dataset was split randomly into training, validation, and test sets with proportions
of 70%, 15%, and 15%, respectively. No backbone layers were frozen during fine-tuning. Regularization included
weight decay and layer decay, but no gradient clipping was applied. The model produced point estimates of per-
class LAeq; no explicit uncertainty modelling (e.g., Monte Carlo dropout or ensembling) was incorporated during
fine-tuning or inference.

2.6 Evaluation design

Model performance was evaluated on the held-out test set. The primary regression metric was Mean Absolute
Error (MAE) of the predicted A-weighted LAeq versus the expert-provided ground truth, reported per noise class.
Secondary evaluation employed an F1 score derived by framing detection as a binary problem: for each class,
both the prediction and the ground truth were thresholded at 10 dBA (values =10 dBA considered “present”), and
precision/recall/F1 were computed accordingly. This threshold was chosen arbitrarily but is below the minimum
values observed in the dataset, effectively reflecting audibility.

Confidence bounds were constructed empirically from the distribution of absolute errors per class by computing
multiple percentiles (90, 95, 99, 99.9, and 99.99). Thus, for example, the “95% confidence” bound corresponds to
the 95th percentile of absolute error, i.e., the error value below which 95% of test-sample absolute errors fall. No
formal ablation studies were performed; the reported results reflect the performance of the pre-trained MaxViT-L
model fine-tuned as described. Additional analyses include class-wise error breakdowns to assess variability
across noise types.

3 RESULTS

3.1 Error Statistics

Table 2 summarizes the primary performance metrics of the fine-tuned MaxViT-L model. The regression target
was per-class A-weighted LAeqg on 10-second clips. A secondary binarized detection task (presence if LAeq = 10
dBA) yields the reported accuracy and F1 scores. The high accuracy score is skewed by the binarization of the
classification task; targets generally have 1-3 sources, resulting in up to 11 classes being correctly identified as
not being present in the noise source. As such, we have provided an F1 score, which provides a fairer represen-
tation of model precision. The Mean Absolute Error (MAE) is similarly skewed in this way. We also provide metrics
for the Salient source, which is least impacted by the presence of other sounds. The difference between the
Salient Accuracy and F1 score indicates that the model has greater difficulty identifying quieter sounds in the
presence of louder sounds.
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Table 2: Overall model performance on hold-out test set. "Salient” only considers the error and accuracy of
the loudest sound present in the audio stream

Metric Value
Accuracy 99.19%
F1 0.86
MAE (dBA) 0.8
MAE Std (dBA) 2.1
Salient Accuracy 95.35
Salient MAE (dBA) 1.4
Salient Std (dBA 2.1

The Salient source MAE may be largely accounted for by the 95% accuracy. With the mean target value of
43 dBA and assuming a false classification output of 0 dBA, misclassifications of the Salient source should ac-
count for an MAE of at least 2.0 dBA. This suggests that the sounds being misclassified may have been correctly
classified if a more optimal classification threshold was chosen, and perhaps the accuracies and F1 scores are
higher than what have been reported. However, this would present a possible decrease in precision. Precision
(as error tolerance) vs accuracy curves would be interesting, but we leave this for future work.

3.2 Class-Specific Confidence Intervals

We computed empirical error bounds per class by taking multiple percentiles (90, 95, 99, 99.9) of the absolute
error distribution, with true negatives excluded which heavily skewed the results towards a MAE of 0 dB. This
yields intuitive “confidence” statements; for example, the 95th percentile error is the value below which 95% of
predictions fall.

The sources of Sheep, Mine Noise, Train, and Insects exhibit relatively tight high-confidence error bounds, with
95" percentile absolute errors of 9.03, 7.00, 4.90, 3.32 dBA respectively, indicating stable reconstruction of their
levels even in the presence of mixed sources. Other classes (Aircraft, Barking Dogs, Birds, Gusting Wind, Road
Noise) show varying degrees of difficulty—potentially driven by their spectral overlap, environmental prevalence,
or sample scarcity. Pivotally, the results indicate a relationship between sample size and percentile errors, and
average LAeq’s and percentile errors, highlighting the need for larger datasets with greater diversity of sound
pressure level distributions.
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Figure 3: Class-wise Absolute Errors vs percentile curves.
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3.3 Example Implication

An example provided in Figure 4 indicates a measurement data scenario with concurrence of 2 sound sources
(insect sounds and the passage of a train). The figure exemplifies the concurrent use of two data modalities
(precision measurement data (short-term LAeq) and spectrogram derived from recorded audio).

Author: (Burwood, 2025)
Figure 4: Example scenario with overlapping noise sources with a time-series plot of total LAeq alongside a
band-limited (20-2000Hz) reference and model predictions. Spectrogram provided for reference.

In this scenario, the sources occupy different parts of the frequency domain, so can be reasonably differentiated
using more traditional (i.e. bandpass) filtering. Expert ground-truthing indicates that insect noise contributions are
well approximated by Total measured noise levels, while transient contributions from a passing train may be
evaluated by a low-pass (<630Hz) filter. In terms of model inference, the Mel-spectrogram is the input, and the
output returned by the model are source-wise predictions of SPLs as 10-second LAeq. In this illustrative case, the
model quantifies both the salient source (Insects) and the non-salient but concurrent source (Train) with reason-
able fidelity.

The predicted per-class LAeq trajectories closely track the expert labels, and the decomposition of total noise
demonstrates that the model can separate overlapping contributions that may otherwise require intensive manual
analysis. This indicates the potential for using the model output to drive real-time source-aware monitoring dash-
boards, where both dominant and background contributions are important for regulatory or diagnostic decisions.
We note that this is a trivial case, where both sources are reasonably separable in the time and frequency do-
mains. However, the potential for use in scenarios with both time and frequency overlap is promising.

4 DISCUSSION

4.1 Model Performance and Reliability

The results demonstrate that a large hierarchical convolution-transformer backbone (MaxViT-L), when pretrained
with a high masking ratio and fine-tuned on expert-attributed data, can deliver accurate and source-specific LAeq
estimates in complex environmental sound mixtures. The combination of detection and regression objectives
yields a model that not only reliably identifies the presence of noise sources but also quantifies their contribution
with low error: the salient-source MAE of 1.4 dBA indicates that the dominant noise components are estimated
with precision that is meaningful for environmental monitoring contexts.

4.2 Confidence Bounds and Data Dependence

Confidence bounds derived from empirical percentiles offer interpretable error envelopes for each class. Because
these bounds are taken directly from the distribution of absolute errors (across the 90, 95, 99, 99.9, and 99.99
percentiles), stakeholders can make risk-aware decisions—for example, understanding that for certain classes
like Insects or Train, 95% of predictions fall within a narrow error margin, whereas other classes exhibit wider tails.
The observed variation in these bounds across classes correlates with inherent data characteristics: sources with
more abundant training examples and lower average levels tended to have tighter error distributions, suggesting
that both data quantity and signal salience materially influence reliability.

4.3 Source Decomposition in Overlapping Scenarios

An illustrative example with overlapping Train and Insect noise (Figure 4) underscores the model’s practical ca-
pacity to decompose concurrent sources without explicit signal separation preprocessing. In this scenario, pre-
dicted LAeq trajectories for each source closely track expert ground truthing, demonstrating that the learned rep-
resentations encapsulate both presence and level in a way that enables fine-grained, source-aware monitoring.
Such capability could significantly improve the productivity of continuous and unattended monitoring, allowing
analysis dashboards to autonomously surface both dominant and secondary contributors in real time.
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4.4 Limitations

Despite these promising outcomes, several methodological limitations temper the generality of the conclusions.
The expert annotation process assigned each clip to a single acoustician, preventing any assessment or mitigation
of inter-rater variability; consequently, label noise and subjective bias remain unquantified. Environmental condi-
tions such as low signal-to-noise situations or microphone degradation under wind introduce additional, unmod-
eled uncertainty in the ground truth that is not explicitly accounted for during training or evaluation. Furthermore,
while empirical percentile-based confidence bounds provide practical reliability insights, the model does not in-
corporate formal uncertainty modelling mechanisms—such as Bayesian inference, ensembling, or predictive dis-
tributions—which would enable probabilistic calibration beyond observed error statistics.

The study also did not include ablation experiments, leaving the isolated contribution of self-supervised pretraining
versus training from scratch unmeasured, nor were alternative architectures compared to understand architectural
sensitivity. The weighted sampling strategy partly addresses class imbalance, but residual skew may still bias
performance, particularly in the tails for underrepresented classes. Calibration between predicted and real-world
level distributions was not performed, which could impact thresholded decision-making in regulatory contexts.

The limited size of the dataset (in terms of both source diversity and sample count) is also recognised as a con-
straint of this study. The model is likely to perform poorly on unseen sources (e.g., a chainsaw), but this would be
a common limitation for any deep-learning based model exposed to unfamiliar inputs. The size of the training data
set is comparable to contemporary studies in the Australian context (Halkon, et al., 2024), and expanding and
balancing the ground-truthed training data will be a focus of future work.

4.5 Operational Implications

Despite these limitations, results indicate that the approach represents a viable path toward automation of context
aware noise source quantification, and associated increases in productivity from continuous and unattended en-
vironmental noise monitoring. Low-error, source-specific LAeq estimates coupled with interpretable confidence
bounds allow acoustic practitioners and regulators to prioritize attention, trigger alerts with quantified reliability,
and present overlapping source contributions in interactive dashboards. The reliance on standard audio prepro-
cessing (Mel-spectrograms) and the transferability of the model architecture make adaptation to similar rural or
semi-rural deployments feasible with modest engineering effort.

4.6 Future Work

Looking ahead, addressing the identified limitations is a clear direction for future work. Incorporating overlapping
annotations with inter-rater agreement analysis would help quantify and reduce label noise. Systematic ablation
studies would clarify the benefits of pretraining and benchmark the architecture against lighter or alternative mod-
els. Enhancements to uncertainty quantification—through techniques like Monte Carlo dropout, deep ensembiles,
or heteroscedastic regression—would complement empirical bounds with richer probabilistic insights. Calibration
methods could align model outputs more closely with operational thresholds, and domain adaptation or online
updating would improve robustness in acoustically shifting environments. Together, these extensions would
strengthen both the reliability and applicability of source-specific SPL estimation in real-world environmental noise
management.

5 CONCLUSIONS

In this study, we demonstrated that deep learning-based methods can effectively estimate source-specific sound
pressure levels (SPLs) in complex, real-world acoustic environments. The fine-tuned MaxViT model showed
strong performance with low mean absolute error (MAE) and high accuracy in predicting SPLs for a range of noise
classes. The model's ability to handle overlapping noise sources, providing precise contributions for both dominant
and background sounds, suggests it is well-suited for use in operational environmental monitoring systems. Con-
fidence intervals derived from empirical error distributions offer interpretable insights, helping stakeholders make
informed, risk-aware decisions.

However, limitations such as the absence of inter-rater variability analysis in expert annotations, unaccounted
environmental uncertainties, and the lack of formal uncertainty modelling prevent the framework from being fully
operational in all settings. Despite these constraints, the approach holds significant promise for improving produc-
tivity of environmental noise analysis. Future work should focus on enhancing uncertainty quantification, conduct-
ing ablation studies, and improving the calibration of model outputs with real-world thresholds to further strengthen
its applicability for regulatory use.
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By addressing these limitations and further refining the framework, this study paves the way for scalable, auto-
mated noise assessment systems that can be integrated into regulatory and environmental management plat-
forms to improve the accuracy, efficiency, and reliability of noise monitoring and compliance.

ACKNOWLEDGEMENTS
This work was completed at Advitech Pty Ltd. and funded by the company. The support provided by Advitech in
terms of resources and funding was crucial in enabling the completion of this research.

The research builds upon the foundation laid in the Honours Thesis conducted at the University of Newcastle,
which was supervised by Nasimul Noman. The guidance and expertise provided by Nasimul Noman were instru-
mental in shaping the direction of this work.

The contributions of the acoustic specialists involved in the expert annotation process are also gratefully acknowl-
edged, as well as the valuable feedback and suggestions received from colleagues and peers throughout the
course of the research.

REFERENCES

AS/NZS IEC 61672.1:2019 Electroacoustics: sound level meters — Part 1: Specifications

Alex, T., Ahmed, S., Mustafa, A., Awais, M., & Jackson, P. J. (2024). Max-AST: Combining Convolution, Local and Global Self-
Attentions for Audio Event Classification. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (pp. 1061-1065). Seoul: IEEE.

Bansal, A., & Garg, N. K. (2022). Environmental Sound Classification: A descriptive review of the literature. Intelligent
Systems with Applications, 16, 200115.

Environment Protection Agency. (2022, 3 2). Approved methods for the measurement and analysis of environmental noise
in  NSW. Retrieved from NSW EPA: https://www.epa.nsw.gov.au/Your-environment/Noise/regulating-
noise/approved-methods-for-measurement-and-analysis-of-environmental-noise

Geirhos, R., Narayanappa, K., Mitzkus, B., Thieringer, T., Bethge, M., Wichmann, F. A., & Brendel, W. (2021). Partial success
in closing the gap between human and machine vision. Advances in Neural Information Processing Systems.

Halkon, B., Darroch, M., Cooper-Woolley, B., Zhao, S., Miller, A., Hanson, D., . . . Mifsud, S. (2024). Advancing Al-based
Acoustic Classifiers for (Rail) Construction Noise — A Pilot Project. Acoustics in the Sun. Gold Coast: Australian
Acoustical Society.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., . .. Battaglia, P. (2023). Learning skillful
medium-range global weather forecasting. Science, 382(667), 1416-1421.

Nogales, A., Caracuel-Cayuela, J., & Garcia-Tejedor, A. J. (2024). Analyzing the Influence of Diverse Background Noises on
Voice Transmission: A Deep Learning Approach to Noise Suppression. AppliedSciences, 14(2).

NSW Government. (2025). eTendering - Transport ofr NSW (Transport Infrasctructure Projects. Retrieved from buy NSW:
https://buy.nsw.gov.au/notices/1FE26BB5-AB4E-AADE-AC768EF6DD491F33

NSW Government. (2025, March 2). NSW legislation. Retrieved from Protection of the Environment Operations Act 1997
No 156: https://legislation.nsw.gov.au/view/html/inforce/current/act-1997-156

Sparke, C. (2018). Environmental Noise Classification through Machine Learning. Hear to Listen (p. 85). Adeliade: Australian
Acoustical Society.

Zainurin, S. N., Wan Ismail, W. Z,, Mahamud, S. N., Ismail, I., Jamaludin, J., Ariffin, K. N., & Kamil, W. M. (2022).
Advancements in Monitoring Water Quality Based on Various Sensing Methods: A Systematic Review.
International Journal of Environmental Research and Public Health, 19, 14080.

ACOUSTICS 2025 Page 9 of 9



