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ABSTRACT 

To efficiently analyse large acoustic datasets collected for birds, frogs, bats and terrestrial mammals, we devel-
oped a 1-dimensional Convolutional Neural Network (CNN) system of models which provides advantages over 
more commonly employed 2-D networks. Like a 2-D ‘image-recognition’ network, the 1-D network may accept 
spectrographic representation of the audio, but additionally it can utilise any other time-dependent indices of au-
dio information. A further advantage is that 1-D CNNs are not required to ‘complete-the-square’ image that is 
commonly required to shoehorn the audio dataset to 2-D CNNs. Thus 1-D CNNs can accept a wider variety of 
information and better match the structure of the data. This becomes apparent when considering the diversity of 
ecoacoustics applications supported by our 1-D CNN system. Microbat research requires audio at 192-500 kHz 
sampling rates. Frog, bird and koala datasets can use lower sampling rates and our library for these groups 
comprises recordings of 48 kHz, 44.1 kHz, 24 kHz or even 22.05 kHz. Models must be tuned not only to their 
target species, but also to their target dataset and thus are generally bespoke. A 1-D CNN system, combined 
with custom data sampling strategies and a database to keep track of the design, production and application of 
the models, allows the efficient production of bespoke models with high accuracy classification. These models 
have been used to process acoustic data on a single workstation at rates up to 300 seconds/second. This effec-
tively means that one year’s worth of 24/7 recordings can be processed in a little over a day on a moderately 
powerful workstation. We present two models exemplifying the system’s utility and accuracy. The first is a bat 
call recogniser model for 16 species in southwest Victoria, Australia. This model accepts recordings at 192 kHz 
and above to process 0.75 second sound samples. It supplies these samples as 1,124 frames x 163 parameters 
matrices to a 1-D CNN created within TensorFlow. It has an average accuracy of 90.5% for species identifica-
tion. The second model is for 15 frog species in Victoria, for application to recordings at 48 kHz. This model is 
based on 70 frames of 163 parameters per 1.5-second sound sample and averages 96.8% accuracy in species 
identifications. All models created within our system are supported by our field data processing software ARISA 
and validation using our publicly available software ARIEL. 

1 Introduction 
The availability of reliable battery-operated audio recorders has provided substantial opportunities to ecologists 
for efficient monitoring of fauna via their sounds. Over the past eight years, we have been employing passive 
acoustic monitoring (PAM) for a variety of fauna survey applications across Victoria, Australia. The cumulative 
PAM effort has amassed a substantial acoustic dataset, with approximately 100 TB of bat and 100 TB on non-
bat data (targeting frogs, birds, koalas and other vocalising vertebrates). The non-bat recordings are equivalent 
to 20 years of continuous recording. Datasets of this magnitude need automated methods to analyse them that 
are adaptive, efficient and accurate. We here describe our design and workflow, and the system developed to 
enable this rich acoustic dataset to be investigated. 

1.1 Related Works 
Using convolutional neural networks (CNNs) for the purpose of sound classification and species identification 
has resulted in many successes. Early works such as Piczak (2016), used three relatively shallow CNNs to clas-
sify 999 bird species with a moderate average precision of 41.7%. More recently Ruff et al. (2019), used spec-
trograms of several North American owl species to train CNNs to identify calls within recordings at 63-91% ac-
curacy depending upon the species. Similarly, Karl et al. (2021) achieved a mean average classification preci-
sion of 79.1% for North American bird species with BirdNET. Nanni et al. (2019) used ensembles of CNNs to 
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identify calls of birds, bats and whales with varying success. Mel-spectrograms were used to train a CNN to 
identify 24 species of birds and frogs with a mean-average-precision of 89.3% (LeBien et al., 2020). The variety 
of species sounds and calls that can and have been investigated with CNNs is perhaps matched by the variety 
of the designs of classifiers using CNNs (Kritchen 2023).  

Many deep-learning species identification models employ 2-dimensional convolutional neural network (2-D 
CNN) design, generally associated with image recognition, to analyse spectrograms. This process mimics hu-
man recognition of characteristic spectrograms by researchers. Pre-trained image classifiers are readily availa-
ble which can be tuned to accept images of spectrograms augmented by custom output layers to identify spe-
cies of interest (Caravalho 2021, Elchinski et al., 2022, Himawan et al., 2018, LeBien et al., 2020, Nanni 2020). 
This provides highly optimised and well-trained networks which can be quickly implemented with very good re-
sults (LeBien et al., 2020). However, the use of a pre-trained model for the bulk of the classification calculation 
requires that the data presented to the model is in the exact format of its original design. In the case of the refer-
ences above this has meant rescaling the image of the spectrogram to a square 224x224, 227x227 or 299x299 
pixel images (Nanni et al., 2020).  

Custom 2-D audio classifiers are not as restricted to providing a square image. Ruff et al. (2019) utilise a 
500x129 input matrix, Pizack (2016) use a 170x430 matrix, Kahl et al. (2021) use 384x64, and Xie et al. (2022) 
implemented multiple sizes. In addition to requiring custom software, these CNNs needed to be entirely trained 
with the labelled species data rather than having just the output layers trained. This increases both the compu-
ting and data resources required for working models. 

All 2-D CNNs are built up by stacking layers of kernels strided horizontally and vertically across the image, often 
3x3 pixels at a time (Kritchen 2023). Optimised for photographs, this process aids the detection of characteristic 
components of the image such as a shape or image density change but loosens the relationship of where it is in 
the image both horizontally and vertically. However for spectrograms, the X axis denotes time and the Y axis 
frequency. Striding the frequency axis may result in similar-shaped patterns of spectrograms being confused as 
the frequency scale is untethered. This may result in false positives from sounds with similar spectrographic 
shapes. Spectral filtering may counter this but can limit the variety of species calls that can be detected (Xie et 
al., 2022).  

Less common are the use of 1-dimensional convolutional neural networks (1-D CNNs) for audio analysis. A 1-D 
CNN differs to a 2-D network as it constrains the stride window to the X axis or time domain. 1-D design strate-
gies may use raw audio streams for classifying sounds (Abdoli 2019, Abdullah et al., 2022) or classifying music 
into genres (Allay & Koerich 2021). The use of spectrographic information in a 1-D CNN is another approach 
(Sharan et al., 2021). The frequency bands are added as channels identically to red-green-blue (RGB) in a 2-D 
network. The channels are fully connected in the first layer. Combinations maintain their influence similar to red 
and green combining to make yellow in the visual spectrum, and these combinations may be made into fea-
tures. In effect, the features are now combinations of lines (1-D) rather than shapes (2-D). Sharon et al. (2021) 
explores the input of spectrogram derivatives such as the smoothed spectrograms, Mel-spectrograms and coch-
leagrams and the combination of these signal representations into ‘fusion’ networks. It is these ‘fusion’ networks 
that produced the best results, and this is the type of network present in our system. 

2 METHODS 
For the design of our audio processing and species identification system, we considered the following aspects. 

• The Arthur Rylah Institute (ARI) maintains a library of field sound recordings that can be interrogated to
supply training data for the audio recognisers. These data will be re-analysed with future models to de-
tect species previously missed or not studied. Besides target species’ calls, models are trained with
non-target sounds, hereafter referred to as ‘Noise’, that are likely to be encountered in field recordings.
Additionally non-bat models were supplied noise samples of novel sounds which may aid model devel-
opment (e.g. music).

• We considered the bats separately from other terrestrial fauna, and focus just on the smaller, insectivo-
rous, echolocating species (hereafter called ‘bats’), not flying-foxes and fruit bats. The calls of most spe-
cies of echolocating bats are high frequency and so need to be recorded at much higher sampling rates
than the other fauna. Therefore, separate but similar model designs are used for the bats compared to
other fauna groups. For bats, a 0.75 second audio sample, recorded at a sample rate of 192 kHz, ap-
peared to provide sufficient information to differentiate between species to the level that experts can dis-
cern these species from spectrograms. All of ARI’s bat recordings are at either 192 kHz or 384 kHz
making 192 kHz a natural choice.
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• Similarly for other fauna, a 1.5 second audio sample of good quality was deemed sufficient to identify 
the vast majority of frog, bird and non-flying mammal (hereafter ‘mammal’) calls. Longer calls, such as 
that of the Laughing Kookaburra (Dacelo novaeguineae) are often repetitive or have sufficient audio in-
formation within the 1.5 second sample, such that they can be identified by a human observer. In addi-
tion, isolating single species calls is increasingly becoming difficult with longer sampling periods for 
many species, due to the presence of other species and unwanted noises. Most non-bat audio record-
ings collected by ARI are at a 48 kHz sample rate and this rate is used as the default for audio pro-
cessing. 

• Audio datasets collected by research partners and clients are often collected at other sampling rates 
such as 44.1 kHz, 24 kHz and 22.05 kHz. In some cases, these datasets constitute the majority of tar-
get species training calls available. Our audio recognisers support both the incorporation these data for 
training and the processing of these datasets.  

We developed a ‘fusion’ type 1-D CNN framework for our models which makes use of both spectrograms and 
many other time-related parameters derived from encountered sounds. 1-D CNNs can better cope with varying 
sample lengths encountered in audio (Sharan et al., 2021), and this is a practical consideration given the varied 
sampling rates of the audio collected for studies these models are applied to. We started with two base audio 
sampling strategies, one for high sample rate recordings of bats and the other for other fauna such as frogs, 
birds and mammals. These base sampling strategies were then modified into custom sampling strategies either 
for specific species or the model’s application to large existing datasets.  

2.1 Base bat sampling strategy  
A 192 kHz sampling rate was selected as the model standard as this is the minimum frequency commonly used 
in quality field recorders. Also, the fundamental frequencies of the calls of all target species from southwest Vic-
toria were encapsulated with the 96 kHz audio frequency range this offers, with only a small proportion of high 
harmonics of some species outside this range. Input data were converted from stereophonic to monophonic 
form. A 0.75 second exemplar sample at 192 kHz provides 144,000 measurements per sample for analysis. 
Each of the exemplars were partitioned into 281 non-overlapping frames of 512 measurements for analysis, 
each frame being a 2.6 millisecond subsample. A decibel spectrogram for each of the 281 frames was calcu-
lated in the software Librosa (McFee et al., 2015) using a short-term Fourier transform. The 256 (+1 zero fre-
quency) frequencies were subsampled to 128 (+1 zero frequency) frequencies and normalised to a -1 to +1 
range. The result was a 281x129 matrix representing the spectral data. In addition, the 281 frames of sound 
data were analysed with PyAudioAnalysis (Giannakopoulos 2015) to extract summary short-term features for 
each of the 281 frames. The high-frequency bat data were analysed as if they were within human auditory range 
as the PyAudioAnalysis was intentionally misinformed that the data was recorded at 48 kHz. This has the effect 
of stretching the 0.75 second sample to a 3 second sample. PyAudioAnalysis produces 34 features such as en-
ergy, spectral centroid, Mel Frequency Cepstral Coefficients (MFCCs) and Chroma Vectors. A full list of all pa-
rameters is provided in Table 1. These data were also normalised by the ranges observed across thousands of 
samples. These 281x34 features were then appended to the spectral data matrix resulting in 281x163 exemplar 
matrices that constituted the raw data for the neural network. 

Table 1. The 34 short-term features provided by PyAudioAnalysis used in addition to the dB spectrogram to 
characterise the sounds (Giannakopoulos 2015). 

Feature ID Feature Description 

1  Zero Crossing Rate  The rate of sign-changes of the signal for a frame.  

2  Energy  The sum of squares of the signal values.  

3  Entropy of Energy  The entropy of sub-frames' normalized energies.  

4  Spectral Centroid  The centre of gravity of the spectrum.  

5  Spectral Spread  The second central moment of the spectrum.  

6  Spectral Entropy  Entropy of the normalized spectral energies.  

7  Spectral Flux  The squared difference between the normalized magnitudes of the 
spectra of the two successive frames.  

8  Spectral Rolloff  The frequency below which 90% of the magnitude distribution of the 
spectrum is concentrated.  

9-21  MFCCs  Mel Frequency Cepstral Coefficients where the frequency bands are 
distributed according to the mel-scale.  

22-33  Chroma Vector  Spectral energy where the bins represent the 12 equal-tempered pitch 
classes of western-type music (semitone spacing).  

34  Chroma Deviation  The standard deviation of the 12 chroma coefficients.  
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2.2 Base frog, bird and mammal strategy 
Our non-bat recordings use a sample rate of 48 kHz. A 1.4933 second mono audio sample is used in the base 
strategy. This provides 71,680 measurements per sample, which are partitioned into 70 non-overlapping frames 
of 1,024 measurements for analysis, each frame being a 21.3 millisecond subsample. Similar to the bats, a dec-
ibel spectrogram for each of the 70 frames was calculated in the software Librosa using a short-term Fourier 
transform, with the 512 (+1) frequency bins subsampled to 128 (+1 zero frequency) frequencies. The 70 frames 
were analysed with PyAudioAnalysis at 48 kHz producing the same 34 features per frame. This results in a 
70x163 matrix of -1 to +1 normalised values that are provided to the neural network (Figure 1). 

 
Figure 1. An example (using a Ground Parrot Pezoporus wallicus call) of a data matrix call normalised to a -1 to 
+1 scale. The PyAudioAnalysis parameters are in rows 0 to 33, and the spectrogram frequencies are in rows 34 

to 162 for 70 frames. 

2.3 Varied sampling strategies 
By implementing alternative sampling strategies (Table 2), we were able to streamline the production and appli-
cation of the audio recogniser models. For model production, the sampling strategies aid the standardisation of 
the frames and parameters, the defining matrix dimensions, expected by the model. This allows the re-use of 
the same CNN designs by all strategies that have the same set of frames and parameters. In situations where 
the frames are a multiple of 2 or 4 of that of the base strategy (see PreciseBat and BirdFrogSlowWide below), 
the judicious addition of simple MaxPooling layers or tweaking of kernel and stride parameters in the CNN 
(Kritchen 2023) would allow the reuse of a base design.  

 
Models made with a chosen sampling strategy must be applied to field data processed with the same sampling 
strategy. By storing a JSON file describing the sampling strategy with the model, generic model application soft-
ware was then developed and informed as to how to preprocess the audio data for application in that model. 

 
The sampling strategies can also be used to coalesce training data recorded at different sampling rates. For ex-
ample, the large datasets collected to detect Koalas (Phascolarctos cinereus) in Victoria, have been recorded at 
lower sampling rates (24 kHz) rather than the 48 kHz of frog and bird surveys. As a result, almost all of the Ko-
ala call training data is derived from these 24 kHz files. Models made with the ‘24kHzRestrict’ strategy can be 
applied without resampling to 48 kHz field files, using both 24 kHz Koala training data and 48 kHz training noise 
data. This is because the strategy restricts the spectrograms to 12 kHz audio which is available to all the train-
ing data. This restriction is reproduced when processing the field files. Similarly, for Koala datasets from New 
South Wales (NSW) recorded at 22.05 kHz, we use a custom sampling strategy which resamples all training 
data to this sampling rate and adjusts the sample step between frames such that the data fits the 70x163 tem-
plate. This creates a custom model tuned to NSW field files, of which there are many (>100TB). 
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Table 2. The sampling strategies used to tune models for their training and application datasets. Each strategy 
is defined by custom input, processing sampling rates, sample durations and analysis frame sizes and steps. 

The first five are bat sampling strategies with the remainder being the other groups. SR: sampling rate; FFT: fast 
Fourier transform. 

 

Strategy Name Description SR  
PyAudio 

SR  
Duration 

(sec) 
Frames / Pa-

rameters 
Sample 
Length 

Sample 
Width / Step 

Audio Freq 
Mask 

DefaultBat PyAudio set to 
48000 

192000 48000 0.74933 281/163 143872 512/512   

SlowBat Slow PyAudio 192000 12000 0.74933 281/163 143872 512/512   

SlowFilteredBat Slow PyAudio 
Filtered 

192000 12000 0.74933 281/163 143872 512/512 >7.5kHz 

PreciseBat High sampling 
bats 

192000 12000 0.75000 1124/163 144000 256/128   

PreciseBatFiltered High sampling 
with filter 

192000 12000 0.75000 1124/163 144000 256/128 >7.5kHz 

DefaultFrogBird Frog/bird with 
129 FFT bins 

48000 48000 1.49333 70/163 71680 1024/1024   

BirdFrogSlowAudio Slow audio 
down 

48000 12000 1.49333 70/163 71680 1024/1024   

GroundParrotSlow Filter Ground 
Parrot  

48000 12000 1.49333 70/163 71680 1024/1024 2.4375-
6.5625kHz 

BirdFrogSlowWide High sampling 
birds 

48000 12000 1.49333 140/163 71680 512/512   

24kHzRestrict Filter to 24kHz 
and below  

48000 12000 1.49333 70/163 71680 1024/1024 <12kHz 

KoalaAudio24kHz Slow audio 
down 

24000 12000 1.49333 70/163 35840 512/512   

NSWKoala 22.050kHz re-
cordings 

22050 22050 1.48608 70/163 32768 512/466   

 
Finally, fine tuning of the data to aid detection of the target species can be implemented by tuning the sampling 
strategies. For example, the PyAudioAnalysis parameters are dominated by the 12 Mel Frequency Cepstral Co-
efficients (MFCC) which are tuned to the human voice. By dropping the audio frequencies, which are up to 24 
kHz for the 48 kHz sampling rate files, into the range of frequencies of the human voice (<8 kHz), the infor-
mation content of the MFCCs is increased. This results in improved accuracy of model fits and was achieved by 
simply setting the sample rate to 12 kHz within the PyAudioAnalysis short-term features function (Figure 2). Ad-
ditionally, filtering can be applied directly to the spectrogram component of the input matrix as required for the 
species being detected (Figure 2 right).  

 
Figure 2. Adjusting the sample rate for the 34 PyAudioAnalysis short-term features from observed SR @ 48 kHz 
(left) to MFCCs range 12 kHz (middle). Upper and lower spectrogram masking evident in the GroundParrotSlow 

sample strategy (right) once the full 70x163 matrix is formed. 

2.4 Network designs 
We currently have 12 bat models and 16 bird/frog/mammal models which can be matched with their corre-
sponding sampling strategies to create models. The sample bat and frog models presented are described in 
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general CNN terms as defined in Kritchen (2023). For each training exemplar, model data consists of the output 
matrix as defined by the sampling strategy combined with a ‘1-hot-vector’ label data. This has a 1 in the appro-
priate label class column and 0 in all other class columns. All convolutional layers within both networks use Relu 
activation except for the output layer which uses a Softmax function to provide probability-like estimates across 
the output classes.  

 
The bat model 1-D CNN is a relatively simple design of 7 convolutional layers and a dense output layer, all of 
which contain approximately 540,000 trainable parameters. The frog model CNN is an example of a deep Res-
Net design (He et al., 2015) and contains 30 convolutional layers, a dense output layer and consists of 2.76 mil-
lion parameters. It’s Identity Resnet layers are implemented as described in Kritchen (2023) and consist of two 
convolution layers and an ‘add-in’ layer of the original input. Generally, these maintain the input layer size on 
output. However an additional convolutional layer is applied to the ‘Add-in’ layer in the frog model at Identity 
Resnet layers marked with * in Table 3 to transform layer sizes.  

Table 3. CNN model designs used for bat and frog models. Layers marked with * contain an extra convolutional 
layer for layer size reduction. CNN terms are from Kritchen (2023). 

Bat model layers  
(neurons, kernel, stride) Layer size 

Frog model layers 
(neurons, kernel, stride) Layer size 

Input Layer 1124, 163 Input layer 70, 163 

Conv1D (128, 3, 2) 560, 128 Conv1D (128, 3, 1) 68, 128 

Conv1D (128,3,1) 558, 128 Identity Resnet Conv1D (128, 3, 1) 68, 128 

Dropout 0.2  Identity Resnet Conv1D (128, 3, 1) 68, 128 

Conv1D (129, 9,4) 138, 128 Identity Resnet Conv1D (128, 3, 2) * 34, 128 

Conv1D (128, 5,2) 67, 128 Dropout 0.2  
MaxPooling 2x 33, 128 Conv1D (128, 3, 1) 32, 128 

Conv1D (128, 3, 1) 31, 128 Identity Resnet Conv1D (128, 3, 1) 32, 128 

MaxPooling 2x 15, 128 Identity Resnet Conv1D (128, 3, 1) 32, 128 

Conv1D (128, 3,1) 13, 128 Identity Resnet Conv1D (128, 3, 2) * 16, 128 

MaxPooling 2x 6, 128 Dropout 0.2  
Dropout 0.2  Conv1D (128, 3, 1) 14, 128 

Conv1D (128, 3, 1) 4, 128 Identity Resnet Conv1D (128, 3, 1) 14, 128 

Flatten 512 Identity Resnet Conv1D (128, 3, 2) * 7, 128 

Dense (17) Softmax 17 Dropout 0.2  

  Conv1D (256, 3, 1) 5, 256 

  Identity Resnet Conv1D (256, 3, 1) 5, 256 

  Identity Resnet Conv1D (256, 3, 1) 5, 256 

  Identity Resnet Conv1D (256, 3, 2) * 3, 256 

  Conv1D (512, 3, 1) 1, 512 

  Flatten 512 

  Dense (17) Softmax 17 

2.5 Model training data 
The bat model training data was extracted from free-flight recordings of identified individuals from 16 species of 
bat that occur in southwest Victoria, excluding the atypical pulses recorded immediately after release. The 
59,229 0.75-second exemplars used for the model were assembled from three sources with ARI contributing 
approximately 51% of the calls, NSW Department of Primary Industries and Regional Development contributing 
28% and the University of Melbourne 21%. For species that display geographic variation in their calls (e.g. 
Vespadelus spp., Law et al., 2002) only calls from southwest Victoria were used, while calls from outside the 
region were included for some species without known geographic variation. The noise data was extracted from 
sections of the recordings that did not containing bat calls (Table 4). Noise data includes environmental sounds 
such as insects and sections of relative silence. The PreciseBatFiltered sampling strategy was selected (Table 
2) for the bat model as the higher frame rate may provide precision required to differentiate species with similar 
calls.  
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The frog model training data consisted of expert-identified calls assembled from many years of recordings cu-
rated by ARI (Table 4). The model targets 15 frog species and a ‘catch-all’ class named ‘Frog chorus’. This 
class covers the common instance of two or more frog species calling simultaneously and where there is a ca-
cophony of calls making species identification difficult. This class provides a fall-back level of frog activity as 
simultaneous multi-species identification is not the purpose of a model trained with ‘one-hot-vector’ labels. Note 
that the frog model has an order of magnitude more noise exemplars than that of the bat model. This is due to 
the vast variety of lower frequency noise sounds that may be encountered. Some are extracted from FSD50K 
sound dataset (Fonseca et al., 2022) which contains a huge variety of anthropogenic sounds such as voices, 
music, vehicles and common household and farm sounds. Many exemplars are noises identified within ARI au-
dio files such as wind, rain, sticks rubbing, and anthropogenic sounds such as planes and traffic. Exemplars of 
other native bird and mammal species contained within the ARI dataset are also included but reclassed as 
noise. The BirdFrogSlowAudio sampling strategy was selected (Table 2) for the frog model. 

 
Table 4. The number of training and test exemplars used in the models for bats and frogs. 

Species Scientific name Abbrev. Training / Test  

Bats    

White-striped Freetail Bat Austronomus australis Aa 2229 / 922 

Gould’s Wattled Bat Chalinolobus gouldii Cg 4185 / 1599 

Chocolate Wattled Bat Chalinolobus morio Cm 738 / 372 

Eastern False Pipistrelle Falsistrellus tasmaniensis Ft 1398 / 678 

Southern Bent-wing Bat Miniopterus orianae bassanii Mob 1507 / 673 

Eastern Bent-wing Bat Miniopterus orianae oceanensis Moo 1119 / 341 

Large-footed Myotis Myotis macropus Mm 2056 / 758 

Lesser Long-eared Bat Nyctophilus geoffroyi Nge 1686 / 731 

Gould’s Long-eared Bat Nyctophilus gouldi Ngo 334 / 146 

Southern Freetail Bat Ozimops planiceps Op 2114 / 805 

Eastern Freetail Bat Ozimops ridei Or 717 / 269 

Yellow-bellied Sheathtail Bat Saccolaimus flaviventris Sf 773 / 396 

Inland Broad-nosed Bat Scotorepens balstoni Sb 932 / 399 

Large Forest Bat Vespadelus darlingtoni Vd 636 / 386 

Southern Forest Bat Vespadelus regulus Vr 182 / 69 

Little Forest Bat Vespadelus vulturnus Vv 529 / 202 

Noise for bat models   20,592 / 8,752 

Frogs    

Plains Froglet Crinia parinsignifera PF 1707 / 783 

Common Froglet Crinia signifera CF 6036 / 2710 

Sloane's Froglet Crinia sloanei SF 119 / 50 

Victorian Smooth Froglet Geocrinia victoriana VSF 640 / 272 

Giant Burrowing Frog Heleioporus australiacus GBF 333 / 145 

Pobblebonk Limnodynastes dumerilii PF 381 / 157 

Barking Marsh Frog Limnodynastes fletcheri BMF 894 / 385 

Spotted Marsh Frog Limnodynastes tasmaniensis SMF 674 / 277 

Common Spadefoot Toad Neobatrachus sudellae CST 364 / 147 

Peron’s Tree Frog Pengilleyia peronii PTF 2105 / 953 

Dendy’s Toadlet Pseudophryne dendyi DT 645 / 286 

Southern Toadlet Pseudophryne semimarmorata ST 446 / 195 

Growling Grass Frog Ranoidea raniformis GGF 696 / 292 

Watson’s Tree Frog Rawlinsonia watsoni WTF 1228 / 517 

Southern Brown Tree Frog Rawlinsonia ewingii SBTF 514 / 201 

Frog chorus  FC 2773 / 1017 

Noise for frog models   247,988 / 105,468 
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2.6 Model training 
Models are developed in Python 3.10 utilising TensorFlow 2.10 and Keras 2.10 (Chollet 2015). This runs on a 
Windows 11 computer with 256 Gb RAM, a 64-core Threadripper CPU and a Nvidia RTX3090 GPU. The train-
ing exemplars, in the form of their precomputed sample strategy matrices, and their labels, are queried from a 
MySQL 8.0 database. The models were trained using approximately 70% of the available exemplars and are 
assessed below against the remaining 30% holdout exemplars (Table 4). Audio samples that contributed more 
than one exemplar were not split between train and test datasets resulting in the slight variations of the 70-30 
split. Both models were trained for 20 epochs using the categorial crossentropy loss function and Adam opti-
miser within Keras. The selection of the exemplars from the database and training of each model took approxi-
mately 30 minutes.  

3 Results 
For the bat model, an average accuracy of 90.5% of bat species in the 30% test holdout dataset were correctly 
identified. For the noise class, the accuracy is 99.7%. For the frog model, an average accuracy of 96.8% of frog 
species was achieved for the test dataset, excluding the noise class. The noise class accuracy of the frog model 
is 99.8%. 
 

Table 5. The 70% training and 30% test holdout species accuracies for the bat and frog models. 

Bat species Training 
accuracy 

Test ac-
curacy Frog species Training 

accuracy 
Test accu-
racy 

White-striped Freetail Bat 99.0% 96.6% Barking Marsh Frog 100.0% 95.3% 

Gould’s Wattled Bat 98.2% 93.9% Common Froglet 99.6% 98.0% 

Chocolate Wattled Bat 99.7% 88.4% Common Spadefoot Toad 99.2% 95.2% 

Eastern False Pipistrelle 99.7% 98.1% Dendy’s Toadlet 100.0% 98.2% 

Southern Bent-wing Bat 94.4% 86.0% Plains Froglet 99.6% 94.1% 

Eastern Bent-wing Bat 92.1% 81.6% Giant Burrowing Frog 97.0% 97.3% 

Large-footed Myotis 99.4% 97.2% Growling Grass Frog 100.0% 100.0% 

Lesser Long-eared Bat 99.3% 92.7% Watson’s Tree Frog 100.0% 98.9% 

Gould’s Long-eared Bat 75.4% 40.4% Peron’s Tree Frog 98.6% 95.5% 

Southern Freetail Bat 98.9% 91.5% Pobblebonk Frog 99.7% 94.3% 

Eastern Freetail Bat 97.8% 79.2% Sloane's Froglet 96.6% 94.0% 

Yellow-bellied Sheathtail Bat 100.0% 99.7% Southern Brown Tree Frog 99.6% 99.0% 

Inland Broad-nosed Bat 99.2% 82.2% Southern Toadlet 99.6% 99.0% 

Large Forest Bat 93.6% 77.2% Spotted Marsh Frog 99.0% 89.2% 

Southern Forest Bat 83.0% 62.3% Victorian Smooth Froglet 99.8% 97.4% 

Little Forest Bat 98.7% 93.0% Frog chorus 99.6% 96.5% 

Noise 99.9% 99.7% Noise 99.9% 99.8% 

 
Due to the large and arbitrary number of noise exemplars used in each model, traditional precision, recall and 
accuracy statistics are skewed by the zero-class exemplar counts. For the 30% test holdout data, it is far more 
informative to examine the confusion matrices. The confusion matrix for the bat model (Table 6) indicates that 
calls of Gould’s Wattled Bat (Chalinolobus morio) are the most likely to be confused with a variety of other bat 
species. Other confused species are discussed below.  
 
For the frog model, the confusion matrix (Table 7) indicates that the catch-all class ‘Frog chorus’ is most likely to 
be confused across a variety of species. However, this is to be expected to some degree, as this class contains 
the calls of other species and reflects the short-comings of the ‘1-hot-vector’ approach for frog choruses. 
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Table 6. The confusion matrix of the 30% test holdout exemplars for the bat model. Observed species (row) ver-
sus predicted (column). See Table 4 for species name abbreviations. 

 Aa Cg Cm Ft Mob Moo Mm Nge Ngo Op Or Sf Sb Vd Vr Vv Noise 

Aa 890 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 

Cg 0 1502 0 0 0 0 3 0 2 23 8 0 61 0 0 0 0 

Cm 0 0 329 0 9 2 0 3 1 2 0 0 2 0 1 13 10 

Ft 0 0 0 665 0 0 0 5 0 0 0 0 3 2 0 0 3 

Mob 0 0 9 0 579 31 0 2 0 0 0 0 0 0 0 47 5 

Moo 0 0 2 0 12 278 0 4 10 0 0 0 0 0 4 28 3 

Mm 0 1 0 3 0 0 737 13 1 1 0 0 2 0 0 0 0 

Nge 0 4 0 15 0 0 4 678 18 2 0 0 2 1 0 1 6 

Ngo 0 1 0 0 0 0 1 80 59 0 0 0 0 0 0 0 5 

Op 0 43 0 0 0 0 8 0 0 736 7 0 9 0 0 0 2 

Or 0 14 0 1 0 0 0 0 0 4 213 0 37 0 0 0 0 

Sf 0 0 0 0 0 0 0 0 0 0 0 395 0 0 0 0 1 

Sb 0 34 0 0 0 0 2 0 0 35 0 0 328 0 0 0 0 

Vd 0 0 0 34 0 9 0 19 3 0 0 0 0 298 18 3 2 

Vr 0 0 0 0 0 1 0 14 3 0 0 0 0 6 43 1 1 

Vv 0 0 3 0 4 2 0 1 0 0 0 0 0 0 0 188 4 

Noise 9 1 0 3 0 0 3 3 0 3 2 2 2 0 0 1 8723 

 

Table 7. The confusion matrix of the 30% test holdout exemplars for the frog model. Observed species (row) 
versus predicted (column). See Table 4 for species name abbreviations. 

 BMF CF CST DT ESB FC GBF GGF WTF PTF PF SF SBTF ST SMF VSF Noise 

BMF 367 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 15 

CF 0 2657 0 1 11 19 0 0 0 0 0 3 1 0 0 0 18 

CST 1 0 140 0 0 3 0 0 0 0 0 0 0 0 0 0 3 

DT 0 2 0 281 0 0 0 0 0 0 0 0 3 0 0 0 0 

ESB 0 5 0 0 737 13 0 0 0 1 0 0 0 0 0 0 27 

FC 0 1 9 0 19 981 0 0 0 2 0 0 0 0 1 0 4 

GBF 0 0 0 0 0 0 141 0 0 0 0 0 0 0 0 0 4 

GGF 0 0 0 0 0 0 0 292 0 0 0 0 0 0 0 0 0 

WTF 0 0 0 0 0 0 0 0 511 0 0 0 0 0 0 0 6 

PTF 1 5 3 0 0 14 0 0 0 910 0 0 0 0 2 0 18 

PF 0 0 0 0 0 0 0 0 0 0 148 0 0 0 0 0 9 

SF 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 3 

SBTF 0 1 0 0 0 0 0 0 0 0 0 0 199 0 0 1 0 

ST 0 0 0 1 0 0 0 0 0 0 0 0 0 193 0 1 0 

SMF 2 0 0 1 0 10 0 1 0 2 0 0 0 0 247 0 14 

VSF 0 0 0 0 1 0 0 0 0 0 0 0 3 1 0 265 2 

Noise 34 6 1 0 52 5 0 23 5 12 34 0 2 1 25 1 105267 

 

3.1 Production software 
Our custom model application software, ARI Species Acoustics (ARISA), allows the user to select the model 
and audio files to be batch processed by directory, where each directory may contain many files. Each file may 
be seconds to hours long and may be recorded at differing sampling rates. ARISA loads not only the model, but 
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also the instructions gleaned from the sampling strategy JSON file, on how to correctly supply the data to the 
model. ARISA produces a comma separated text file (CSV file) that reports on which files contain target species 
calls and the time(s) within each recording at which they were detected. A vector of probabilities across all the 
model classes is also given. The software processes many files simultaneously, up to hundreds if they are brief, 
provided the computer has sufficient processing power. This software can process audio files at a rate of 300 
seconds/second on a powerful workstation. Thus, one year’s worth of continuous recordings may be processed 
in little more than one day. 

 
The resultant CSV file, which may be subsetted by the user to sites, species or times of interest, can then be 
examined using the ARI Ecological Listener (ARIEL) validation software (Francis and Griffioen, 2024). This soft-
ware steps through each identification, displaying the corresponding spectrogram, the model probability esti-
mates, allows the user to listen to the call identified within the original sound file, and most crucially, provide the 
capacity for the user to annotate the call identified. The user may accept or reject the identification and in doing 
so, provide a new label for the sound encountered. This feedback is stored in a validation CSV file which may 
be used for post analysis, reporting, or to improve the model with new training data for the next generation. 

4 Discussion 
The results indicate that given high-quality training data, the 1-D CNN produced with these designs and sam-
pling strategies produce excellent results. Of note is the very low false positive error rate for the noise category. 
This has significant implications in the utility of the models for identifying species within field data. Models 
should include a ‘noise’ or ‘non-target’ class, for without such a class and significant preprocessing, there would 
likely be an abundance of false positives that would undermine the model’s application for field data. In practice, 
most of the post-model iterative tuning is done by the identification of noise sources that generate false positives 
and resupplying these as ’non-target’ exemplars. 

 
The models performed well on both the training and independent test dataset. As to be expected, the models 
overfitted the training data compared to the test holdout data (see Table 5). However, the bat model performed 
exceptionally well on the test dataset. The worst performing bat species, Gould’s Long-eared Bat, cannot be 
reliably distinguished from Lesser Long-eared Bats by experts from spectrograms, so similar are their calls 
(Lindy Lumsden pers. obs.). Interestingly, another species with similar calls, the Large-footed Myotis, which is 
often combined with the long-eared bats into a species complex, had a high positive identification rate (97%). 
The frog model performed well across all species. For both models, classification accuracies of species with 
fewer exemplars were generally lower, highlighting the need for a large number of calls to be included to train 
these models.  

 
The confusion matrices of both models (Tables 6 and 7) point to which training data deserves further examina-
tion. Some false positives are expected, such as the Gould’s and Lesser Long-eared Bats, and Frog choruses 
with individual species, but others may indicate a problem with mis-labelling or poor exemplars. For example, 
the White-striped Freetail Bat typically has a longer time between calls than other bats, often spaced at one sec-
ond between calls. The high noise misclassification for this species may indicate that some of the 0.75-second 
labelled exemplars fell between actual calls, and hence only contained noise. In addition, further testing needs 
to be undertaken on field-collected bat calls, which are likely to be of lower quality than the exemplars used to 
train and test the model, with the learnings fed back into the model to refine it further. 
 
In most cases it is preferrable that common species are incorrectly classified as noise (false negatives) rather 
than being mis-identified as other species (false positives). Large numbers of false positives make the validation 
process difficult even with the efficient ARIEL software. If common misidentifications are readily identified, they 
usually can be corrected through retraining of the model. Conversely, if rare species are sought, false positives 
may be tolerated at a reasonable level given the ARIEL software’s ability to rapidly validate hundreds of calls 
per hour.  

 
The fusion of spectrographic and other audio indices within the one model is a major advantage of our 1-D de-
sign. Similar to side and front elevations of house designs, this approach offers different views of the same data. 
Adding other indices, be they derived from musical characterisation, speech analysis, or signal processing, can 
easily be accommodated provided the indices are relevant at the frame size.  

 
The merits of layer designs of CNN models are often discussed (Kritchen 2023, Carvalho et al., 2021). While 
this is essential to progress the technology, experience has shown that provided the designs are well config-
ured, the performance differences may not be large between designs. Many CCN designs are available for 
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selection within our system, varying from 7 to 30 convolutional layers and with 500,000 to 4,000,000 parame-
ters. Different designs seem to be sensitive to different sound characteristics for some species and noise within 
the training data. For example, another bat model with 1,150,000 parameters trained with the exact same 70% 
training data produced the slightly lesser species accuracy of 89.9% compared to the model presented (90.5%). 
However, if this model is average-ensembled with the model presented, the ensemble produces an average 
species accuracy of 92.0% for the test data. As a result, models destined for processing field data produced by 
our system are always ensembles of 3 to 5 models, of varying designs and each trained with folds of 70% of the 
total data available. These ensembles should perform at least as well as, and most likely better, than the com-
ponent models. However, as these mixed-fold ensembles have ‘seen’ all the training data, their holdout statis-
tics are compromised and only the component models statistics can be cited. Ensembles incur only a modest 
computational cost as TensorFlow efficiently ensembles the models and applies them on the computer’s GPU. 

5 Conclusion 
Our 1-D CNN approach combined with tailored sampling strategies has streamlined our production of acoustic 
models and their application. The production environment is managed by a database, which collates field audio 
files, species observations, sampling strategies, CNN designs, model class lists, model configuration and model 
fit statistics. Custom models may be configured and batched in minutes and produced without intervention after 
that. This has greatly sped up the investigation into data sampling strategies and model designs and the crea-
tion of custom models, such as is required for a 22.05 kHz Koala dataset recorded in NSW. The combination of 
spectrographic and other sound indices within the one CNN design is easily implemented. Furthermore, the ac-
curacy of this classification system may be improved through the augmentation of more descriptive audio indi-
ces in the future.  

 
Sampling strategies support the customisation of the models to reflect the target species, the training data avail-
able and the target dataset to be analysed. The chosen strategy links the model design to its application in 
ARISA. ARIEL efficiently facilitates validation of detections made by ARISA to meet the researcher’s needs. It 
also provides feedback to improve training datasets. The integration of this processing system makes iterative 
model improvement a defining feature. As any audio classification model is only as good as the data used to 
build it, improving the data quality can provide significant accuracy gains, complementing the novel designs pre-
sented here. This system embodies the principle that the best model is often your last model. 
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