

Acoustic retroreflection in Indian stepwells: Field measurements in Bundi

Manuj Yadav (1,2), Densil Cabrera (1), Shuai Lu (1), and Damien Holloway (3)

(1) School of Architecture, Design and Planning, The University of Sydney, Australia
(2) Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
(3) School of Engineering, University of Tasmania, Hobart, Australia

ABSTRACT

This study examines retroreflection — sound reflections directed back towards the source — in three historic stepwells in Bundi (India) using field measurements. Originally built for diverse purposes such water storage, bathing grounds, and religious rituals, these subterranean stepwells represent significant examples of architectural heritage of the Indian subcontinent (Livingston 2002). The stepwells were selected for their potential in terms of retroreflection due to a relatively dense collection of simultaneously visible concave trihedral corners. Previous studies of stepwell retroreflection were based only on computational models, without real world verification (Cabrera et al. 2022). On-site measurements were conducted at Dhabhai Kund, Nagar Kund, and Baba Meer Kund using sinusoidal sweeps reproduced from a loudspeaker collocated with the microphone. Numerous source-receiver positions were selected in each stepwell. The derived impulse responses show evidence of retroreflection from the cascade of steps at high frequencies. However, the retroreflected energy level is weak relative to retroreflective building facades previously studied. Nevertheless, these results suggest that retroreflection may have plausibly contributed to anecdotal reports of unusual acoustic experiences in stepwells. These fascinating buildings provide some of the most extensive exemplars of acoustic retroreflector arrays.

ACKNOWLEDGEMENTS

Fieldwork for this research was funded by the Australian Acoustical Society via its Education Grant scheme. M.Y. was supported by a Deutsche Forschungsgemeinschaft (DFG) Research Grant (Project No. 503914237).

REFERENCES

Cabrera, Densil, Shuai Lu, Jonothan Holmes, and Manuj Yadav. 2022. "Sound Reflections in Indian Stepwells: Modelling Acoustically Retroreflective Architecture." *Acoustics* 4 (1): 1. https://doi.org/10.3390/acoustics4010014.

Livingston, Morna. 2002. Steps to Water: The Ancient Stepwells of India. Princeton Architectural Press.

ACOUSTICS 2025 Page 1 of 1