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ABSTRACT 

Recent projects at local and overseas airports have highlighted some of the benefits and challenges in the use of 

auralisation as a tool for communicating the expected noise impacts from new airport or airport expansion projects. 

Opportunities for future development are also presented, including the use of signal processing to simulate changes to 

flight paths, changed meteorological conditions, or the changed noise emission characteristics of potential future aircraft. 

These projects also provide a useful body of data to investigate the application of the predicted noise levels from AS2021 

in practice. The measurements suggest that AS2021 is broadly accurate in predicting noise levels from operation of 

Australian airports under typical flight conditions, but also highlight operational practices which may significantly increase 

the actual noise levels compared to the predicted noise levels that are based on idealised flight profiles. 

1. INTRODUCTION 

 Noise from aircraft can have a significant impact on people that live near airports and is a major 

community concern when considering changed or additional flight operations.  Proposed increases in capacity 

(often due to increases in peak, rather than overall demand) and expansion of runway facilities in major cities in 

Australia and overseas is likely to exacerbate the issue. Proposed new airports (e.g. a second airport for Sydney) and 

additional parallel runways will result in new populations being exposed to significant levels of aircraft noise. During 

the planning and development phases of an airport expansion project, community response to aircraft noise 

impacts is significant political and commercial risk (Fidell, 2015) that requires careful consideration.  

The Commonwealth Department of Infrastructure and Regional Development’s (DIRD) Guidance Material for 

Selecting and Providing Aircraft Noise Information (DIRD n.d.) provides principles to be followed in communicating 

aircraft noise impacts to potentially-affected communities. The Guidance Material establishes the principle of a 

“right to know” for communities to have access to details regarding the flight patterns of an airport and how these 

may affect the received noise levels. Under this principle of “right to know”, “transparent information” must be 

communicated to allow potentially-affected communities to make their own judgments regarding the degree of 

impact – in essence, providing “fact” without “interpretation”. This recognises that there can be considerable 

difference between an individual’s response to noise and the averaged community reaction to noise.  The Guidance 

Material states that:  

It is vital that when using an aircraft noise descriptor it is selected so that it matches the needs of the issue 

being examined. In the past this match has not been achieved effectively and this has contributed significantly 

to the expert and non-expert failing to reach a common understanding about aircraft noise exposure patterns 

around airports. 

The traditional approach to describing aircraft noise in Australia and internationally is using aircraft noise 

exposure contours (e.g. Australian Noise Exposure Forecast, ANEF). However, it is accepted that the ANEF and other 

equal-energy noise contours (such as DNL, used in the US, or Lnight, adopted by the European Union) do not, by 

themselves, provide a complete picture of aircraft noise level impacts (Plotkin et al, 2011, Southgate, 2011). 

The use of ANEF contours for reporting of noise impacts to non-noise experts and in community consultation 

has come under scrutiny since the opening of the third runway expansion at Sydney Airport in the 1990s led to 

significant public complaints regarding noise impacts from the airport. A 1995 Senate Enquiry (Falling on Deaf Ears; 

Department of the Senate 1995) into the third runway expansion identified ‘major deficiencies’ in the assessment of 

aircraft noise for that project. 

The Senate Enquiry prompted the development of a discussion paper Expanding Ways to Describe and Assess 

Aircraft Noise (DOTARS, 2000) published by the Department of Transportation and Regional Services (DOTARS). 

Expanding Ways acknowledged that the majority of complaints regarding aircraft noise from Sydney Airport actually 
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came from outside the 20 ANEF contour. 

In response, Expanding Ways introduced the “number above” indices N60 and N70, and the use of the 

Transparent Noise Information Package (TNIP) software (DOTARS, 2000) as alternate approaches for describing 

aircraft noise impacts. In order to provide a better understanding of the potential for aircraft noise impacts and to 

assist in describing aircraft noise to non-experts, the discussion paper recommended the use of flight-path maps, 

showing the number of movements and type of aircraft flying on particular flight paths, and several additional 

aircraft noise metrics. In particular the use of the N70 metric was proposed as a way of reporting noise impacts in a 

way that corresponded most closely to the community’s understanding of aircraft noise – by the number of aircraft 

noise events (DIRD n.d.). The N70 is a measure of the number of events which are equal to, or exceed, a maximum 

aircraft noise level (LAmax,slow) of 70 dB(A) at a given location. N values can be determined for any noise level, for 

example, an N60 or N80 could also be calculated. 

2. CONVEYING AIRCRAFT NOISE INFORMATION TRANSPARENLY 

Aircraft operations, particularly jet aircraft, produce high levels of noise.  While the noise impacts are 

generally greatest nearer to the take-off and landing flight paths, the impacts of aircraft noise can extend a long way 

from the airport, and cover large sections of the community.  Furthermore, since aircraft noise impacts may be 

widespread, and are not clearly restricted to pre-existing and defined locations (such as adjacent to freeways or 

railway corridors), new aircraft noise impacts can ‘surprise’ unsuspecting communities that were previously 

unaffected or only marginally-affected.  Noise from aircraft operations is therefore a very emotive issue, and can 

generate high levels of public reaction. 

Aircraft noise assessments are, by their nature, very complicated, since they must account for a large number 

of variables (e.g. proposed flight tracks, aircraft types, weather conditions etc.) and many options.  The noise 

assessment must also combine technical accuracy with ways of fairly-describing expected impacts to a lay audience 

in a succinct and representative manner. Indeed, the high-profile ‘failure’ of the aircraft noise assessment for the 

3rd Runway at Sydney’s Kingsford Smith airport attracted substantial media and public criticism, and cemented the 

community’s distrust in the assessment process.  This has brought subsequent assessments for projects such as the 

2nd Sydney Airport at Badgery’s Creek under increased public scrutiny, and resulted in new and better ways of 

describing aircraft noise to the general public (e.g. TNIP, N70). 

Furthermore, there is increasing concern about using single number technical descriptors such as ANEF or 

DNL (or even N70) for aircraft noise (Fidell, 2015), since the subjective quality of aircraft noise is changing– noise 

from aircraft has evolved and changed so much in the intervening period, predominantly due to a change from 

older and noisier pure jet engines on ‘Chapter 2’ aircraft to more efficient high-bypass turbofan engines on modern 

‘Chapter 3’ and ‘Chapter 4’ compliant aircraft. The subjective difference in characteristic between jet aircraft and 

piston aircraft is what sparked the development of parameters such as (A)NEF in the 1950s (Beranek, 2008); in this 

light, the ongoing evolution in the subjective characteristics of aircraft noise emission should be accompanied by a 

concurrent evolution in the methods used to describe and communicate aircraft noise to the community.  

Finally, with increasing number of aircraft movements occurring, but with aircraft (in general) becoming 

quieter, the pattern of aircraft noise exposure from future airports is likely to be different to existing scenarios, 

typically with a higher number of “quieter” events. 

These factors all pose challenges to future methods for communicating aircraft noise information, whether as 

part of a formal Environmental Impact Statement (EIS) process, or as part of a wider community engagement 

process. In short, the aircraft noise assessment must be: 

• scientifically based 

• technically rigorous, with a comprehensive and robust methodology 

• transparent, open to review, and with no hint of anything being ‘hidden’ 

• fairly representative of the expected impacts 

• presented in a clear manner, which effectively communicates the extent of the impacts. 

Given the existing levels of community mistrust and concern regarding aircraft noise, a failure to adequately 

and comprehensively address aircraft noise issues during the EIS stage of a new airport or runway development is 

likely to be unacceptable to both the approval agencies and the general public, and could also result in lengthy and 

costly delays to the project, which in the worst case could jeopardise the viability of the project as a whole. 

For some infrastructure projects (most notably wind farms), developers have sometimes taken potentially 
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affected residents at newly-planned sites on tours of existing developments in order for them to experience the 

particular sound (i.e. wind farms) for themselves. However such study tours are necessarily limited in the number of 

people who can attend and, more importantly, are subject to the particular weather and operational conditions that 

exist at the time of the tour. 

Auralisations have the benefit that they:  

• can be shown to a wide range of the potentially affected community,  

• allow a wide range of ‘virtual flight operations’ to be experienced, and  

• allow direct ‘back-to-back comparison between various operational scenarios, so that subtle aural 

characteristics can be more easily compared (Arntzen, 2015, Sahai, 2016). 

Auralisation offers the potential to significantly improve this process of communication by accurately 

conveying the frequency characteristics of aircraft noise events in a more-sophisticated way than any single-number 

technical index can. Arup is a pioneer in the field of auralisation, having established over ten SoundLab auralisation 

facilities around the world, and recently using mobile versions of the SoundLab as community consultation tools on 

major new infrastructure projects such as the High Speed 2 rail line in the UK. The Arup SoundLabs have facilitated 

greater stakeholder input into acoustic design and have had significant impact on the design of numerous 

architectural, environmental and transportation projects. 

The SoundLab provides an intuitive understanding of specific acoustic parameters, allowing them to be heard 

during the acoustic design and planning phase. It allows for difficult acoustic terminology to be demonstrated, 

listened to and easily understood for various aircraft and flight paths at various locations, under a range of 

environmental and receiver conditions including inside buildings.  

3. FACTORS AFFECTING AIRCRAFT NOISE IN THE COMMUNITY 

The aviation industry is currently in a state of change, with significant changes to aircraft fleets as older 

aircraft models (e.g. Boeing 747-400) are phased out and new aircraft models are introduced. This is part of a larger 

programme of industry upgrades which are expected to reduce fuel consumption, and allow for capacity increases 

(or at least maintenance of existing capacity) within existing noise exposure footprints. Future tools for 

communicating aircraft noise impacts should be able to demonstrate the results of these potential future changes 

to aircraft noise levels. 

With regard to the acoustic characteristics of aircraft, the key improvement is likely to be the more 

widespread introduction of lighter aircraft manufactured largely out of composite materials (eg. the Boeing 787 

‘Dreamliner’ or Airbus A350), plus higher capacity aircraft such as the Airbus A380. These are expected to have 20% 

greater fuel efficiency, per passenger, than previous generation aircraft, and result in fewer flight movements for 

the same level of capacity. 

In addition, new engine options (‘neo’) for existing aircraft models (e.g. Airbus A320 and A330), including the 

use of geared turbofan (GTF) engines and ‘next generation’ models (e.g. the Boeing 737 MAX, 747-8 and the 777-

8/9) will result in changes in the noise emission characteristics of even these older aircraft designs. 

Overall, these changes could result in either a reduction in aviation movements or a much lower level of 

growth in the next 30 years, resulting in reduced noise levels around airports. The aircraft industry has also made 

significant reductions in aircraft noise emission since the 1960’s particularly through the introduction of high-bypass 

turbofan engines. Achieving significant further noise reductions is likely to be considerably more difficult. A wide 

range of noise reduction techniques are noted in the literature (Casalinoa et al., 2008). 

Noise from aircraft was first regulated by the introduction of the US Federal Aviation Authority’s (FAA) 

aviation regulations FAR Part 36 and ICAO Annex 16 Chapter 2 in 1971. More stringent noise requirements came 

into force under ‘Chapter 3’ restrictions in 1981, and ‘Chapter 4’ restrictions in 2006. 

Apart from further incremental reductions to engine and airframe noise, additional noise reductions are most 

likely to come from the adoption of ‘low noise’ flight operations. Already many airports require the use of ‘noise 

abatement’ flight procedures, such as PANS-OPS NADP (Noise Abatement Departure Procedure), although the 

requirement to operate safely usually over-rides any requirement to adopt low-noise operating modes. 

There are also several new ‘on-board’ technologies available to airlines, such as Required Navigational 

Performance (RNP) and Continuous Descent Approach (CDA) flight management systems which use advanced GPS 

systems to allow more accurate aircraft positioning and higher approach flight paths which result in fewer ‘noisy’ 

manoeuvring movements. 
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4. MEASUREMENT AND RECORDING OF AIRCRAFT NOISE 

Arup has recently conducted projects at two Australian and one UK airport consisting of extensive 

measurement and high-quality spatial recording of aircraft operations in order to produce auralisations of existing 

and future aircraft operations for use as a community consultation tool. (For client confidentiality reasons the 

airports cannot be directly named.) 

For each aircraft, measurements were conducted of existing airport operations at locations underneath the 

flight path. Four measurement locations were used: “on-axis” locations at (nominally) 5 km and 10 km from the 

runway threshold, as well as corresponding “lateral” locations offset 2 km to the side of the flightpath, as shown in 

Figure 1. The actual distances were adjusted based on the receiver locations specific to the airport.  

 

Figure 1: Indicative arrangement showing locations of measurement locations relative to an airport 

Locations with low ambient noise levels were selected to minimise the effect of extraneous noise on the 

measurements or recordings. This led to some challenges in site selection (e.g. construction works starting up at a 

proposed location between the planning stage and the measurement dates required selection of an alternate 

location) as well as some challenges during measurement (e.g. garbage collection truck pass-bys coinciding with key 

aircraft flyovers). In addition, representative ambient noise levels at locations under future planned flight paths 

were measured (and calibrated recordings taken) to provide context for demonstrations of future flight path 

impacts. 

At each location, the published flight schedules and websites such as FlightAware were used to plan the 

measurement sessions, aiming to measure and capture recordings of each major aircraft type regularly using the 

airport. Online tools (e.g. FlightRadar 24) were used to identify and track aircraft on approach/departure; these 

tools usually provided sufficient warning of an approaching aircraft to allow measurements to be planned to 

capture the flyover. Two locations were monitored simultaneously for each day of the measurement programme; 

this meant that measurements at the 5 km and 10 km distances were conducted on separate days.  

One challenge in obtaining full datasets was the measurements were subject to the wind conditions that 

occurred on the days of measurement, which meant that not all flight paths were in use during the measurement 

sessions. This meant that on four out of the five measurement days at one airport, the flight paths were such that 

only arrivals were measured; aircraft on departure were only measured on one day when wind conditions differed.  

Because aircraft on departure tend to adopt diverging tracks once more than ~5 km from the runway 

threshold, for departures the only measurements that were conducted were on-axis measurements at 5 km. At 

other locations, departing aircraft would not regularly overfly the location. For arrivals, the flight tracks are more-

consistent with most aircraft directly overflying the 10 km on-axis locations and virtually all aircraft directly 

overflying the 5 km location. 
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The studies conducted were preliminary studies based on the available measurement time; however for a full 

study this would potentially mean extensive (and unpredictable) site time in order to capture sufficient data under 

all possible operational conditions.  

4.1 Equipment 

For the two Australian projects, aircraft noise levels were measured simultaneously at each location using a 

Brüel and Kjær Type 2250 or Type 2270 Precision Sound Level Meter, measuring the LAmax,slow noise level from the 

aircraft fly-over as well as taking a calibrated audio recording. A Soundfield© ST350 Ambisonic microphone was 

located adjacent to the sound level meter (sufficiently far away to avoid affecting the measurement but close 

enough so that the sound field was essentially identical at both the microphone and the meter). An image of the 

site set-up is shown in Figure 2. 

The SoundField© microphone has four separate capsules arranged in a tetrahedron, which allows the three-

dimensional ‘spatial’ character of the sound to be captured. The sound is recorded in a four-channel ambisonic 

format called ‘B-Format’ which separates the sound into distinct orthogonal X, Y, Z channels and an omni-

directional (W) channel. This B-Format recording is then played back in the Arup SoundLab via a spatialisation 

engine (the Spat Ambisonic Decoder) to accurately recreate the recordings through the specially arranged 

ambisonic loudspeaker array. The way this is recreated is determined through the use of spherical harmonic 

mathematics and the sound through each loudspeaker is determined based specifically on its orientation and 

physical location relative to the listener to recreate the original recording accurately in  a very immersive and highly 

realistic listening experience. 

 

Figure 2: Typical measurement setup 

5. ANALYSIS 

An overview of the measured aircraft types from an Australian airport is given in Table 1 below. In total 346 

aircraft events were measured over four consecutive days of operation of the airport. The airport was operating 

with arrivals above the measurement locations for three days of operation, with the aircraft operating with 

departures above the measurement location for the fourth day. Note at this airport the closest measurement 

location was at 6 km from the runway threshold, which corresponded to the closest noise-sensitive receivers. 
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Table 1: Summary of Measured Aircraft Types and Average Flyover Noise Level, LAmax,S dB(A) re 20 µPa 

LAmax,slow 
6 km On-Axis 

Arrival 

6 km Lateral 

Arrival 

10 km On Axis 

Arrival 

10 km Lateral 

Arrival 

6 km On-Axis  

Departure 

Airbus A320 74 52 69 61  

Airbus A330 77 54 71 60 79 

Airbus A380 76 57 72 59  

Boeing 717 72 49 68 57  

Boeing 737 75 55 70 60 76 

Boeing 747 82 57 74 61 84 

Boeing 767 78 54 71 59  

Boeing 777 78 55 72 62 79 

Boeing 787 75 52 69 60  

Bombardier DHC8 71 50 67 56 60 

Embraer 190 71 52 68 57 74 

Total Number of 

Aircraft Measured 
37 86 113 90 20 

These average noise levels were compared with the published data from AS2021 (Standards Australia, 2015), 

which are based on predicted noise levels from the Integrated Noise Model (INM) software package. For lateral 

locations, AS2021 only provides data out to 1,400 m lateral to the centreline for arrivals; data for the 2 km lateral 

measurement locations was calculated based on the 1,400 m data accounting for the additional geometric 

spreading loss from 1,400 m to 2,000 m (i.e. neglecting any additional atmospheric absorption and assuming that 

aircraft directivity is approximately constant once distance becomes sufficiently large and change in inclination 

angle is small). 

The following figures present the measured noise levels for each aircraft type at each measurement location, 

with the ‘average measured aircraft’ (the arithmetic average of all measurements, which was the level presented in 

the SoundLab auralisation), and the predicted AS2021 level also included for reference. 

 

Figure 3 Summary of On-Axis Arrival Noise Levels, 10 km 
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Figure 4 Summary of Lateral Arrival Noise Levels, 10 km 

 

Figure 5 Summary of On-Axis Arrival Noise Levels, 6 km 
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Figure 6 Summary of Lateral Arrival Noise Levels, 6 km 

 

Figure 7 Summary of On-Axis Departure Noise Levels, 6 km 

In general, there is good agreement between the INM-predicted level for each type and the average 

measured noise level, however there can be considerable spread in the data. In particular, there is less-good 

agreement for lateral locations. This may reflect uncertainty in the actual lateral distance to the aircraft, since the 

actual track followed may not be directly down the centreline of the nominal flight path. This is particularly 

apparent for the B737 and A320 aircraft that form the bulk of domestic flights in Australia, which did not necessarily 

follow a straight track for the last 10 km on arrival, with some aircraft turning onto the track between 6 km and 

10 km from the runway, which would affect the true lateral distance to the flight track. Larger aircraft (particularly 
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international arrivals) tended to follow a straight track for the final ~15 km of the approach and this is generally 

reflected by the tighter clustering of results from larger aircraft types. 

The measurements at 10 km demonstrate greater variation than those undertaken closer to the airport.  

Again, this is likely to reflect uncertainty in the actual track followed; at 10 km there may be considerable lateral 

variation between the tracks of individual aircraft, while closer to the runway the tracks ‘converge’ onto the 

centreline of the runway as aircraft come to the final stages of approach. 

There is generally more variation for smaller aircraft types (e.g. Dash-8, E190 and B717) than for larger 

aircraft.  The measured levels for these aircraft are generally higher than predicted, particularly for lateral locations. 

This may reflect different glidepath angles for these smaller aircraft compared to the assumptions used to produce 

the INM predicted noise levels; in addition, these aircraft were generally flying short domestic routes (usually 

outside of the busiest operational hours) and were more likely to be flying on visual flight rules (VFR). The one 

exception amongst larger aircraft is the Airbus A330; however the dataset includes both domestically- and 

internationally-configured A330s. Aircraft flown on domestic routes were observed to show more variability in the 

flight track than international aircraft, which tended to follow the flight path more-closely. This may reflect 

differences in air-traffic control (VFR vs ILS), differences in the fuel load, pilot familiarity or other, unidentified, 

factors. 

Although the dataset for departures is smaller (and only includes aircraft that departed ‘straight’ from the 

airport; without turning away from the runway centreline immediately after departure; these aircraft did not 

directly overfly the measurement location), the predicted levels from AS2021 appear more-accurate for departures 

than arrivals. This potentially reflects the flight tracks and climb angles for departures being more-consistent, at 

least in the immediate vicinity of the airport, as all aircraft would be aligned with the runway on departure. 

Currently the data is broken down by aircraft type only. It would be of interest to explore additional 

categorisation of the data within each aircraft type (e.g. domestic/international as a proxy for stage length (which 

reflects the required fuel load, and therefore take-off weight), by engine type, or even by operator) to investigate 

whether any additional trends emerge. 

6. PLAYBACK 

Aircraft noise auralisations were played back using a mobile version of Arup’s SoundLab auralisation suite. 

The mobile version consists of six Genelec 8030A loudspeakers arranged as front, mid and rear pairs with a Genelec 

7060B subwoofer (i.e. a 6.1 system), with a Metric Halo 7882 DSP interface and Spat ambisonic decoder used to 

distribute signal to the loudspeakers, as shown in Figure 8. The mobile SoundLab can be adjusted to allow larger 

listening groups (at the cost of some spatial accuracy) compared to the fixed SoundLabs. The lack of “vertical” 

speakers in the mobile SoundLab does not significantly affect the subjective impression for general demonstrations. 

The mobile SoundLab is calibrated for level using a sound level meter prior to each demonstration. For 

applications requiring precise control of frequency response, filters can be implemented using the Metric Halo 

interface, although this is typically not necessary for most demonstrations. 

 

Figure 8 Portable SoundLab set up for group demonstration 

The virtual environment of the SoundLab allows for careful comparison between aircraft types (including the 

ability to switch between aircraft types during a flyover) that is not possible in real life. The effect of noise 

abatement strategies such as flight path changes can be demonstrated, either by recording real aircraft on different 
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flightpaths, or can be simulated by processing aircraft recordings using a Matlab script to adjust for the changed 

distance-vs-time (and associated geometric dispersion and atmospheric attenuation) characteristics of the new 

flight path. This has been used successfully for demonstrations for an airport in the UK, with the entire process of 

calibration, the playback level and the recordings being peer reviewed by two separate independent consultants. 

In particular, the benefit of auralisation is the ability for a listener to consider the subjective response to 

different aircraft types or flight profiles – especially tonal characteristics such as “whine”. This was very apparent in 

the demonstration when comparing the Boeing 777 and the Airbus A330 which have quite different tonal 

characteristics (particularly on takeoff/when under power) despite the difference in the average flyover level 

between these two aircraft types being within 1 dB(A). 

7. CONCLUSIONS 

Recent experience in the use of auralisation as a transparent approach for demonstrating aircraft noise levels 

for projects in Australia and the UK has shown the value of auralisation as a consultation tool. By presenting aircraft 

noise in its simplest form – “how it will sound”, without requiring technical acoustic parameters, auralisation offers 

a tool for informing communities about aircraft noise in an open, technically rigorous manner that satisfies the 

principles of the Guidance Material for Selecting and Providing Aircraft Noise Information. The experience on three 

airport projects highlights potential opportunities to use auralisation for future research into community perception 

of aircraft noise. 

The measurements for these projects also provide a useful database for comparison with predicted noise 

levels from the internationally-accepted INM calculation software. Measured aircraft noise at 5 and 10 km from 

Australian domestic and international airports closely matches the expected noise levels given in AS2021 (and 

predicted using INM) for most aircraft types. 
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