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ABSTRACT 
This paper presents a method of calculating the radiated sound power of vibrating structures based on the time domain 
estimation of acoustic radiation modes (ARMs). Each ARM is frequency-dependent, radiates power independent of the 
other ARMs and can be estimated in the time domain from measurements made at discrete sensor locations on the 
surface of the radiating structure. The individual ARM components are estimated digitally in the time domain using finite 
impulse response filters, which are designed to provide a best weighted fit to the ARMs in the frequency domain. The 
ARM amplitudes are estimated by filtering the vectors of measured velocities at points on the radiating surface with these 
ARM filters, before summing the product of the square of these amplitudes with the relevant eigenvalues to estimate the 
radiated sound power. The method is described with reference to a simply supported beam model. The results show that 
the sound power calculated from the proposed approach and from a frequency domain approach are comparable. Finally, 
a time domain feedforward active structural acoustic control system developed using the proposed method is presented 
and time domain simulations demonstrate the performance of the system.  

1. INTRODUCTION 
Advances in sensor, actuator and microprocessor technologies nowadays provide more possibilities for noise 

control, namely active noise control (ANC) and active structural acoustic control (ASAC). ANC uses secondary 
sources to generate a sound signal which has an equal magnitude and is 180 degrees out of phase with the 
unwanted noise signal, in order to cancel that noise (Elliott & Nelson 1990; Kuo & Morgan 1999; Qiu & Ji 2010). 
Although it is a particularly efficient tool for 1-dimensional noise problems, ANC systems become increasingly 
complicated and uneconomical, with the number of secondary loudspeakers rising in proportion to the cube of the 
excitation frequency in a 3-dimensional enclosure (Elliott 1994). The ASAC method however can reduce this 
complexity to a 2-dimensional problem by controlling the vibration of the surface of a structure to suppress the 
radiated noise. This uses a smaller number of structural actuators to produce global far-field attenuation as 
compared to ANC (Clark & Fuller 1991; Fuller et al. 1996; Pan & Bao 1998; Carneal & Fuller 2004).  

A number of approaches to ASAC methods have been developed. For instance, Pinte et al. (2009) proposed 
iterative learning control for active control of repetitive impact noise. The approaches of vibro-acoustic modes were 
proposed to control both sound and vibration simultaneously (Grewal et al. 2000; Palumbo et al. 2001; Kaizuka & 
Tanaka 2008). Bianchi et al.(2004), and Gardonio et al. (2004a, 2004b) developed a sound radiation control system 
using direct velocity feedback (DVF) with a configuration of collocated accelerometers and piezoelectric patches. 
Sound radiation from structural vibration modes was decoupled by investigating the acoustic radiation modes 
(ARMs) and radiation modal expansion before application to practical real-time control (Currey & Cunefare 1995; 
Gibbs et al. 2000). Volume velocity control has proven to be an effective strategy to reduce overall sound radiation 
especially at low frequencies, since the first ARM accounts for the most sound energy radiation, and has a close 
relationship to the net volume velocity at low frequency (Johnson & Elliott 1995; Sors & Elliott 2002). With the 
identified model, the control system was designed according to a Hankel-Norm specification to suppress noise 
radiated from a vibrating structure (Choi 2006). 

The accuracy of estimating the sound power is vital in ASAC. The sound power generated by a vibrating 
structure can be measured as a superposition of its ARMs, i.e. the velocity distributions that radiate power 
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independently to the acoustic far-field (Cunefare 1991; Elliott & Johnson 1993). These ARMs are physically basis 
vectors orthogonal to each other in vector space, and each basis vector represents a particular velocity pattern. The 
unique feature of ARMs is that they depend only on the radiator geometry and frequency. Thus, the far-field sound 
pressure and power can be estimated even without information of the mechanical properties and boundary 
conditions of the radiators (Elliott & Johnson 1993). Equally, by using actuators to reduce the corresponding 
distributed surface velocities that contribute to the, often few, ARMs with significant radiation efficiencies, the 
overall radiated sound power can be reduced considerably. However, one problem with ARM approaches is that the 
individual radiation mode shapes are frequency dependent, and that the radiation efficiency of each ARM is also 
frequency dependent. This frequency dependence introduces significant difficulties for broad-band, real-time 
control, and hence the majority of previous work concerns discrete frequency or frequency-domain methods. This 
paper however concerns a time domain approach for broad-band control. 

Unlike frequency-domain approaches, time-domain estimation of ARMs enables a broader frequency range 
of approximation and thus reduces the controller dimensionality in ASAC system (Berkhoff 2002). However, few 
studies on time domain ARMs and the radiated sound power have been carried out.  Among the earliest works on 
this is the Discrete Structural Acoustic Sensing (DSAS) technique by Maillard (1997). His work provides time domain 
estimates of the radiated far-field sound pressure. Arrays of FIR filters, whose impulse responses were constructed 
from the appropriate Green function, were employed to process the measured acceleration signals in the time 
domain.  Berkhoff (2002) identified the ARMs by extracting the underlying Green function using a time-domain 
inverse filtering technique. The work of Wu (2009) managed to calculate the sound power using measured 
acceleration distribution instead of velocity distribution. However, none of them estimate the sound power from 
the time-domain estimates of the ARM itself.  

This paper presents a method of calculating the radiated sound power of vibrating structures based on the 
time domain estimation of ARMs. A time domain ASAC system developed using the proposed method is also 
presented. The remainder of this paper is organized as follows. The theoretical background of acoustic radiation 
modes and the radiation efficiency are described in Section 2. The method of estimation of ARMs in the time 
domain using FIR filters is proposed in Section 3. Section 4 discusses the time domain estimation of the radiated 
sound power in ARM filters introduced in Section 3. Comparison between theoretical and time-domain simulated 
sound power is also made. Section 5 presents the implementation of feedforward ASAC strategy on a vibrating 
beam. Finally, section 6 concludes this paper. 

2. THEORY 
2.1 Acoustic radiation modes 

The radiated sound power from the surface can be expressed in term of the ARMs of the surface using the 
elemental radiator formulation approach, which can be written in a vector-matrix form as (Elliott & Johnson 1993) 

 
   HW = v Mv , (1) 
 

where W is the sound power, superscript H is the Hermitian transpose, v is the velocity vector whose entries are the 
elemental velocities. The radiation resistance matrix M can be decomposed into   

 
   T=M QΛQ , (2) 
 

where the superscript T is the transpose, Λ  is a diagonal matrix of real and positive eigenvalues, λr, and Q is a 
matrix whose columns are the orthogonal eigenvectors of matrix M. Each eigenvector in matrix Q represents a 
possible velocity pattern of the surface, which is also known as an acoustic radiation mode (ARM). The rth ARM 
amplitude yr is the product of the rth eigenvector of matrix Q, Qr, and the velocity vector v, i.e. 

 
   T

r ry = Q v , (3) 
 

 
Page 2 of 10 ACOUSTICS 2016 

 
 



Proceedings of ACOUSTICS 2016  9-11 November 2016, Brisbane, Australia   
 
 
 

These ARM amplitudes are functions of position and frequency only but not boundary conditions, hence are not 
dependent on the natural modes of the structure. The total radiated acoustic power can then be re-written in the 
form  

 

   2

1

R
H

r r
r

W y λ
=

= =∑y Λy . (4) 

 
The radiation efficiency of the individual ARM is defined as (Mao & Pietrzko 2013) 
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where ρ0 is the air density, c0 is the sound velocity in air, N is the total number of elemental radiators with equal 
area and A is the total surface area of the radiator. The ARMs are frequency-dependent and Equation (3) can be 
written in the frequency domain as    
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where ω is the angular frequency and 𝑌𝑟(𝜔) is the ARM amplitude in the frequency domain. In vector-matrix form, 
this becomes 
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where rQn(ω) is the entry of vector rQ(ω) for the rth ARM and at the nth element, and Vn(ω) is the nth element of 
vector V(ω).  

2.2 Numerical examples of ARMs 
Numerical examples of the frequency-dependent ARMs and the radiation efficiencies are presented here. 

Figure 1 shows the first three ARM shapes of a one-dimensional radiating plane structure, e.g. a baffled beam, when 
excited in the frequency range of kl=0 to kl=10, where kl is the dimensionless frequency, k=ω/c0 is the wavenumber, 
and l is the length of the structure. At low frequencies, i.e. kl ≤ 1, the velocity distributions for the first, second and 
third ARMs of a beam shown in Figure 1, are similar to a piston-like motion, a rocking motion and a quadratic 
velocity variation, respectively. As frequency increases, their shapes become more curved.  

 

 
(a) (b) (c) 

Figure 1: (a) First, (b) second and (c) third ARMs of one-dimensional baffled structure against position and 
dimensionless frequency kl. 
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Figure 2 shows the corresponding radiation efficiency of the first five ARMs of the beam which increase when 
frequency increases. It can be seen that the lower ARM orders are more efficient at low frequencies. This means, 
that significant attenuation of the total radiated sound power at low frequencies can be achieved by controlling the 
sound power of only the first few ARMs.   

 

 
Figure 2: Radiation efficiencies of the first five ARMs 

3. ACOUSTIC RADIATION MODE FILTERS 
The ARM estimates are made by measuring responses at a number of discrete points on the radiating surface 

and then weighting and summing these point measurements. It is important to highlight that the ARM shapes are 
frequency dependent implying that the weights themselves must be frequency dependent as well. The time-domain 
ARM amplitude, yr (t) is given by  
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where rqn(t) is the inverse Fourier transform and also the impulse response of a filter whose frequency response is 
rQn(ω) and vn(t) is the inverse Fourier transform of Vn(ω). In digital applications, the ARMs are estimated at discrete 
times t=mτ with a sampling frequency of fs=1/τ, hence Equation (8) becomes 
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where yr(m) is the rth ARM amplitude at time sample m. qr,n(s) is the time sampled values of rqn(t) truncated to a 
sample length of S+1, thus it is regarded as the filter coefficients of a finite impulse response (FIR) filter which as  
applied to the velocity measurements vn of each n velocity sensors.  

This causal FIR filter in equation (9) will never be better than a non-causal filter that uses future values of vk, 
i.e. for s < 0, because causality adds a constraint to the approximation. However, the non-causal filter is not 
practical for the purpose of real-time application.  To make a non-causal yet practically feasible filter for a real time 
implementation, a time-delay of d time steps is introduced (Mace & Halkyard 2000). This new filter will try to have a 
frequency response Qr,n(ω)exp(-iωd/fs) where i is the imaginary unit. This filter will produce an approximation of 
yr(m) at time step m+d and at the same time is able to use (2d +1) coefficients for the optimal estimation of rQn(ω) 
in the least square sense, i.e. 
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For certain applications, providing an estimate d time steps later is not important, for example for the 

estimation of radiated sound power or use as an error function in adaptation schemes. For real time control 
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applications the delay deteriorates the performance of the system, the issue being whether the non-causal, delayed 
filter of equation (10) perform better than the causal filter approximation of equation (9). 

4. NUMERICAL SIMULATIONS 
This section demonstrates how the radiated sound power of a vibrating structure can be estimated in the 

time domain and realized using MATLAB/Simulink. The method is illustrated with reference to a baffled simply 
supported beam model with size 500 mm x 40 mm x 4 mm. Other parameters are given in Table 1. Here, the Matlab 
function invfreqz is used to calculate the filter coefficients of the FIR filters and the frequency response of the 
implemented filter is calculated using the function freqz. 

Table 1: Parameters 

Parameter Value 
Density of beam, ρ (kg m-3) 7800 

Young Modulus of beam, E (GPa) 200 
Modal damping ratio of beam, βp 0.01 

Density of air, ρ0 (kg m-3) 1.239 
Speed of sound in air, c0 (m s-1) 340 

Sampling frequency, fs (Hz) 1024 

4.1 Estimation of acoustic radiation modes 
The ARMs filters, discussed in Section 3, are constructed in the time domain using 23rd order FIR filters with 

11-step delay. These FIR filters are designed by a least-squares fit to the ideal frequency responses at 512 uniformly 
spaced frequencies up to the Nyquist frequency, i.e. 512 Hz with uniform weighting. Examples of the estimated 
frequency-dependent ARMs at x=325 mm on the beam are illustrated in Figure 3. It can be seen that the magnitude 
is estimated very accurately while the phase is linear to a very good approximation, this representing the time 
delay. 

 

 
 

(a) (b) (c) 
Figure 3: Estimation of (a) the first, (b) second and (c) third ARMs of the beam at x = 325mm using 23th order 

FIR filters with 11-step delay 
 

4.2 Time-domain estimation of the radiated sound power 
Simulink is used to estimate the radiated sound power in real time. The primary source is a random point 

force, Fpri (t) (band-passed filtered using a 5th order elliptical filter with normalized edge frequencies of 0.1 and 0.9 
of Nyquist frequency, 0.5 dB passband ripple and 20dB stopband attenuation) acts on the beam at x0. The 
simulation duration is 10 seconds. 
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  A total of ten sensors (N=10), equally spaced on the radiating surface, are employed to measure the velocity 
distribution. The transfer function from the excitation point x0 to the nth sensor located at x = xn is defined as (Mao 
& Pietrzko 2013) 

 

   ( ) ( ) ( ) ( )
12 2
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2p p p p p
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n ni x xH iω ω ω β ωω ϕ ϕω
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where p is the mode number, ωp is the pth natural frequency of the beam and 𝜑𝑝(𝑥) is the mass normalized 
structural mode shape. The mode shapes for a simply supported beam are 𝜑𝑝(𝑥) = sin(𝑝𝜋𝑥 𝑙⁄ ). These sensor 
transfer functions are then implemented in the time domain using 9th order infinite impulse response (IIR) filters.  

Next, the time series of ARM amplitudes are measured by filtering the time series of the sensor outputs with 
the ARM filters developed in the previous section, before summing them. Note that each ARM amplitude requires a 
number N of ARM filters. The resulting time series are sampled with 50% overlapped Hanning-window to create 39 
frames with 512 points in length and zero-padded with an additional 2048 points. Then the frequency-domain 
estimate of the ARM amplitude is obtained by finding the average of the discrete Fourier transform of these time 
series. Finally the radiated sound power is estimated by calculating the product of the square of these amplitudes 
with the corresponding eigenvalues. The block diagram representation of radiated sound power estimation is given 
in Figure 4.  

Figure 5 shows the radiated sound power obtained using theoretical and time-domain estimation methods 
when the beam is excited by a point force at x0 = 75 mm. It is found that the radiated sound power estimated from 
the time domain ARM method is in good agreement with the theoretical value. 
 

 
Figure 4: Block diagram representation of the time domain radiated sound power estimation 

 

 
Figure 5: Estimation of radiated sound power for beam when the primary force located at x0 =  75 mm  
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5. FEEDFORWARD ACTIVE STRUCTURAL ACOUSTIC CONTROL 
This section discusses the implementation of feedforward ASAC strategy on the vibrating beam. 

Theoretically, the sound power of the first j ARMs can be completely attenuated when the structure’s velocity is 
orthogonal to the first j ARM vectors, i.e. the ARM amplitudes of the corresponding modes are zero (Mao & Pietrzko 
2013). Mathematically it can be written as 

 

   ( ) ( ) ( ) ( ) ( )11 j

T T
jY Yω ω ω ω ω      = = 0Q ……Q V  . (12) 

 
The velocity can be divided into part caused by the primary and secondary forces, vpri and vsec respectively. Here  
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where 𝐹pri(𝜔) is the primary force acting at x = xpri, 𝐹sec,𝑗(𝜔)   is the jth secondary force acting at x = xsec,j, 
𝐇pri(𝜔) = {𝐻1(𝜔) … …𝐻𝑁(𝜔)}pri𝑇  and 𝐇sec,j(𝜔) = {𝐻1(𝜔) … …𝐻𝑁(𝜔)}sec,𝑗

𝑇  are the vectors of sensor transfer 
functions due to primary force 𝐹pri(𝜔) and the secondary forces 𝐹sec,𝑗(𝜔), respectively. Substituting Equation (13) 
into Equation (12) and rearranging yields the feedforward controller transfer function corresponding to the jth 
secondary force 𝐹sec,𝑗(𝜔),  
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Equation (14) implies that at least j control forces are required to cancel the sound power contributed by the 

first j ARMs (Mao & Pietrzko 2013). To implement Equation (14) in time-domain simulations, the estimated value of 
each frequency-dependent ARM, Q� r,n, and sensor transfer functions, Ĥn, must be used instead. Figure 6 shows the 
block diagram representation of the feedforward ASAC system. A reference signal is obtained from the disturbance 
and is used as an input to the digital controller. This controller produces a signal which, when used to drive an 
appropriate actuation system, is able to reduce the targeted ARM amplitudes, hence reducing the overall radiated 
sound power.   

The controller digital filter is designed using a 65th order FIR filter with 32-step delay. It is important to 
highlight that, the same amount of delay is applied to the disturbance signal to match the timing between both 
disturbance and controller signals.  

 

 
Figure 6: Block diagram representation of the feedforward ASAC 

 
In this simulation, sound power cancelation of the first three ARMs is considered; hence three control forces 

are required. The locations of the primary force and secondary forces on the beam which controlling the first three 
ARMs are at xpri= 75 mm, xsec,1= 375 mm, xsec,2= 150 mm and xsec,3= 300 mm, respectively. Figure 7 shows the time 
domain attenuation of the first three ARM amplitudes when the feedforward controller is turned on at t = 5 
seconds. The spectra of the radiated powers can be seen in Figure 8 for different numbers of control forces. Having 
more modes cancelled will increase the attenuation level as well as its frequency range. Reductions of 9.19 dB, 
17.43 dB and 18.17 dB at the beam’s first natural frequency of 37 Hz, are achieved by using one control force to 
cancel the first ARM, two control forces to control the first two ARMs and three control forces to control the first 
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three ARMs, respectively. For a frequency range of 0 to 400 Hz, the frequency-averaged reduction achieved is about 
23 dB when all three control forces are employed. As mentioned in section 2.2, the lower ARM orders have more 
significant radiation efficiencies, thus cancelling these lower ARM orders will reduce the radiated power 
considerably. 

 

 
Figure 7: Time histories of the first three ARM amplitudes of beam when the controller is enabled at t=5 seconds 

 

 
Figure 8: The radiated sound power of vibrating beam  

6. CONCLUSIONS 
In this paper, a method of measuring the radiated sound power from the time-domain estimates of acoustic 

radiation modes was presented and illustrated by an application to a simply supported beam, although it is 
applicable to any one-dimensional radiating structure. The ARMs were reconstructed in the time domain using 23rd 
order FIR filters with 11-step delay. These filters were able to fit the ideal frequency responses of ARMs in both 
magnitude and phase.  

To estimate the radiated sound power in the time domain, a Simulink model was created.  The resulting ARM 
filters were used to weight the time series velocities from the vibrating beam and adding them together to produce 
estimates of the time-domain ARM amplitudes. The radiated sound power was estimated by summing the product 
of the squares of these ARM amplitudes with the relevant eigenvalues. Simulation results show the frequency 
response of the radiated sound power estimated using this approach was comparable to the theoretical value.  

An active structural acoustic control system was designed using a feedforward control system and real time 
simulations performed. The proposed digital controllers are able to reduce the targeted ARM amplitudes, hence 
reducing the overall radiated sound power as well. For the frequency range of interest, i.e. between 0 to 400 Hz, 
cancelation of the radiated sound power from the first three ARMs was observed.  The result shows a frequency-
averaged reduction of 23 dB was achieved. This attenuation level can be further improved if the optimal control 
efforts and its locations were considered.  

The benefit of this approach is that it gives broad band control of strongly radiating vibration. It approximates 
volume velocity control at low frequencies, while conventional ARM control could be designed based on the ARM 
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shapes at one specific frequency. The advantage of the approach presented here is that the ARM filters allow for 
the frequency dependence of the ARM shapes, and hence give a better approximation across the frequency range 
of interest than either of those two methods. 

 Finally, it is important to highlight that any implementation in this paper is an approximation. Here, large 
delays/filters were used to explore the potential of the approach. In theory however, fewer filter weights, delays 
and number of sensors mean fast performance due to less computation time involved but with potentially reduced 
attenuation. These and other issues are considered elsewhere.  
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