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ABSTRACT 

Detailed noise modelling of approximately 34 850 km of major roads and 3 100 km of railways in Queensland, Australia 
was conducted to support decision making processes for residential buildings in transport noise corridors under the 
Queensland Development Code (QDC). The modelling is believed to be the largest project of its kind undertaken in 
the world to date. The project replaces earlier modelling that did not consider terrain and barrier effects, potentially 
resulting in conservative acoustic requirements for buildings. SoundPLAN software managed high resolution terrain 
data using a tiling methodology and calculated noise levels on a fine grid. GIS software then produced the required 
noise category contours from the modelled results. Preliminary analysis of the detailed road modelling shows that 
the numbers of properties within QDC noise category 4 and noise category 3 mandatory noise corridors were reduced 
by 28% and 7% respectively State-wide. This should result in significant savings for new residential development. 
Work has commenced on a second stage of modelling incorporating additional high resolution data. This paper 
describes the modelling methodology, summarises challenges, issues and solutions, and presents a preliminary 
analysis of results. 

1. INTRODUCTION 

Detailed noise modelling on a large scale such as a city or region has only recently become practical through 
advances in computer and software technology. The European programs in this area are driven by the Europe Union 
Environmental Noise Directive (2002/49/EC) established in 2002 (END, 2002). The Directive recognises environmental 
noise pollution as a major health burden and aims to define a common approach across the European Union to avoid, 
prevent or reduce, on a prioritised basis, the harmful effects of environmental noise exposure. The Directive requires 
member states to prepare and publish strategic noise maps and noise management action plans for major urban 
areas, major roads, railways and airports every 5 years. To date, there have been two rounds of noise mapping and 
action planning (in 2007 and 2012). The European Commission is currently undertaking an evaluation of the END and 
trying to assess its effectiveness and efficiency, including benefits, costs and hurdles to the implementation of an 
effective EU noise policy (Juraga, 2015).  

Australia has no nation-wide overarching policies that require large scale noise modelling. A draft issue of the 
National Construction Code (NCC) in 2014 featured the inclusion of measures to address noise intrusion into habitable 
rooms, but this was abandoned prior to release in 2015 (NCC, 2015). However, if the future NCC reintroduces a noise 
treatment requirement, it may trigger the need for large scale noise modelling to assist governing authorities with 
building approvals.  

Nevertheless, some large scale noise modelling projects have been undertaken in Australia (Hinze 2015). For 
example, Adelaide City commissioned Australia’s first city noise map for roads in 2006 (Adelaide City Council Fact 
Sheet 9). VicRoads developed noise maps for the Highways Retrofit Noise Assessment (VicRoads, 2011) and the 
Victorian Environmental Protection Authority produced the Greater Melbourne Noise Map (EPA Victoria, 2013).  

In September 2010, the Queensland Government released a mandatory building code, the Queensland 
Development Code Mandatory Part 4.4 – Buildings in Transport Noise Corridors (QDC MP4.4) (QDC 2010, 2015). The 
purpose of the code is to ensure that new residential buildings located near roads and railways are constructed in a 
way that attenuates adverse noise impacts for building users. The code defines four noise categories for roads and 
railways and stipulates the required acoustic specifications of building materials. To implement the code, transport 
noise corridors must be declared and the noise category contours must be produced. This requires noise modelling 



9-11 November 2016, Brisbane, Australia Proceedings of ACOUSTICS 2016 

 
 
 

 

Page 2 of 10 ACOUSTICS 2016 

 
 

and mapping for all declared roads and railways.  
Transport noise corridors for State-controlled roads were declared in August 2010, with mandatory and voluntary 

noise corridors introduced in June 2015. Transport noise corridors for selected railways were also declared in June 
2015.  

Queensland Department of Transport and Main Roads (DTMR) manages the noise modelling and mapping 
projects for State-controlled roads and railways. There have been two rounds of noise modelling. The first round 
involved a flat-earth based spreadsheet approach. The modelling was completed in 2010 for State-controlled roads 
and in 2014 for railways. The noise mapping results presented as the four QDC noise category contours are publicly 
available on a government website for use by the public, consultants, development industry and local governments.  

The noise results from the first round of modelling are considered to be over-conservative in some circumstances 
due to the flat-earth assumption and absence of structures such as noise barriers. As a result, developers may accept 
conservative construction requirements for residential buildings in transport noise corridors or commission their own 
detailed noise modelling studies. To improve the modelling accuracy, a second round of noise modelling was 
conducted, incorporating terrain data, existing noise barriers and buildings. The re-modelling was conducted using 
sophisticated acoustic software. The second round of modelling is separated into stages. For both roads and railways, 
Stage 1 includes the input of terrain and noise barriers while Stage 2 includes the addition of buildings.  

Stage 1 declared road modelling (Road Stage 1) is complete and the results after consultation are expected to be 
published in November 2016. Stage 1 declared rail modelling (Rail Stage 1) is also complete with the results yet to be 
published. Stage 2 for declared roads and railways are expected to be completed in late 2016 and late 2017 
respectively.  

This paper focuses on the second round of noise modelling for declared roads. While railway noise modelling uses 
a different noise calculation method from roads, the noise mapping processes and issues encountered are very 
similar. This paper describes the modelling methodology, summarises challenges, issues and solutions, and presents 
the findings of a preliminary analysis of the modelling outputs. 

Key terms and acronyms used in this paper are summarised below for convenient reference: 
AADT - Annual Average Daily Traffic 
ALOS - Advanced Land Observing Satellite 
ALS - Airborne Laser Scanning 
ArcMAP - Main component of Esri's ArcGIS suite of geospatial processing programs 
BHM - Building Height Model 
CoRTN - Formulae for the Calculation of Road Traffic Noise developed in the United Kingdom 
DGM - Digital Ground Model 
DTMR - Queensland Department of Transport and Main Roads 
GIS - Geographical Information System 
LGA - Local Government Area 
MapInfo - GIS software developed by Pitney Bowes. 
MLS - Mobile Laser Scanning 
NCC - National Construction Code of Australia 
Point cloud - A set of data points in a coordinate system representing the surface of objects 
QDC MP4.4 - Qld Development Code Mandatory Part 4.4 – Buildings in Transport Noise Corridors 
Qld - The State of Queensland, Australia 
SoundPLAN - Noise modelling software by SoundPLAN GmbH 
SRTM - Shuttle Radar Topography Mission  

2. METHODOLOGY FOR ROAD NOISE MODELLING 

For road traffic noise modelling, the United Kingdom Department of Transport Calculation of Road Traffic Noise 
(CoRTN) algorithm 1988 version was adopted. The CoRTN algorithm is well tested in Queensland and corrections for 
Queensland conditions were utilised in the project (Noise Code, 2013, Saunders et al 1983). The model can be 
represented by the following formula:  

 


i

iCLL 0  (1) 
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In this formula:  
 𝐿 is the calculated noise level, described by LA10 (18h).  
 𝐿0 is the basic noise level, related to 18 hours traffic volume in a reference environment.  
 𝐶𝑖 are additional linear corrections, related to factors such as vehicle speed and heavy vehicle percentage, road 

gradient, road surface pavement type, propagation distance, angle of view, ground absorption, barrier 
screening  and reflection.  

CoRTN assumes the source of traffic noise is a line 0.5 m above the carriageway level and 3.5 m in from the 
nearside carriageway edge.  

The following data from the DTMR data repository relating to the noise emission source was collated for both 
rounds of road noise modelling - annual averaged daily traffic (AADT) and growth rate, sign-posted speed, percentage 
of heavy vehicles and road pavement surface type. The AADT and growth rate were used to project traffic volumes 
for noise predictions for a 10-year horizon, as required by the QDC. This is 2020 for the first round of noise modelling 
and 2025 for the second round of noise modelling.  

Spreadsheets can be used to carry out CoRTN calculations for simple situations, for example, those having limited 
road sections and simple attenuation features. Specialised software packages such as SoundPLAN are more capable 
in applying the various correction factors and modelling complex terrain in CoRTN.  

2.1 Methodology for the first round of modelling 

A spreadsheet approach was used in the first round of noise modelling. It consisted of three steps: data 
preparation, noise calculation and noise mapping. The data related to the noise emission source was collated and 
attached to the road centrelines as attributes. Assumptions were made for some road sections to correct 
unsustainable traffic growth rates when predicting future traffic volumes.  

Noise calculations were conducted using a spreadsheet. A simplified version of the CoRTN formula, considering 
only the emission data, gradient and receptor distances, was coded using Visual Basic to calculate the noise category 
extents from each road centreline. The calculated extents were then imported into GIS software (MapInfo) to produce 
the four noise category contours by creating buffers around the road centrelines.  

The spreadsheet approach assumed noise was emitted from a road section with an infinite length and 
perpendicular to the receptor location. It did not consider the contributions from other road sections. The receptors 
had an angle of view of 180 degrees. The height of the receptors was 1.8m above the ground. Hard ground was 
assumed for the ground absorption. Low traffic flow correction was not considered.  

This approach produced noise contours parallel to the road centrelines. While they are easy to understand, the 
results tend to be conservative in some circumstances due to lack of consideration of the noise attenuation effects 
along the noise propagation path.  

2.2 Methodology for the second round of modelling  

The second round of noise modelling aimed to improve the modelling accuracy by considering terrain, existing 
noise barriers and buildings. SoundPLAN Version 7.4 was selected as the modelling tool to implement the CoRTN 
algorithm. The noise re-modelling process is shown in Figure 1. It consisted of three steps: data preparation, noise 
modelling and post processing.  
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Figure 1: Process for road noise modelling and mapping  

2.2.1 Data preparation 

The input data for re-modelling contained four elements: road data, existing noise barriers, existing buildings and 
terrain data. The road data was prepared in the same way as the first round of modelling. It was collated and 
processed if necessary, then attached as attributes to the centrelines of the State-controlled roads.  

Existing noise barrier data was collected mainly from desktop studies. MapInfo was used to digitise noise barrier 
alignments as polylines based on aerial photos, DTMR video records and cadastral boundaries. The barrier heights 
were also estimated in the process. Some barrier information was collected from site inspection during barrier 
condition surveys. Both DTMR and developers’ noise barriers were identified as far as possible and included in the 
modelling.  

Existing buildings adjacent to the State-controlled roads were identified from classified Airborne Laser Scanning 
(ALS) data and imagery. Polygons representing the building footprints were built using a combination of automated 
extraction from the classified ALS and manual digitising. A Building Height Model (BHM) was generated using the 
difference between the mean height within the building footprint and the adjacent bare earth Digital Ground Model 
(DGM).  

Terrain data preparation was the most time consuming task in the data preparation process. The terrain elevation 
data was collected from different sources. For Road Stage 1, year 2014 ALS data was used in the coastal areas and 
year 2000 Shuttle Radar Topography Mission (SRTM) Version 1.0 data was used in the inland areas of Queensland. 
The data was processed in ArcMAP software to generate a DGM. The DGM has stepped resolutions for the corridor 
up to 500 m each side of the road, with 1 m spacing from 0 to 25 m, 2.5 m spacing from 25 m to 50 m, and 5 m spacing 
from 50 m to 500 m. The terrain was produced in a comma separate value (CSV) file format, with each line identifying 
a height at a specific coordinate. The SRTM data will be replaced by Advanced Land Observing Satellite (ALOS) data 
in Stage 2. The input data used for each round of noise modelling are summarised in Table 1.  
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Table 1: Input data for each round of noise modelling 

Round / Stage Roads Barriers Buildings Terrain 

Round 1 2D No No No 

Round 2: Stage 1 3D Yes No ALS and SRTM 

Round 2: Stage 2 3D Yes detailed Yes ALS and ALOS 

 

2.2.2 Noise modelling 

Noise modelling was conducted in SoundPLAN 7.4 for each Local Government Area (LGA). The terrain data was 
imported into SoundPLAN and triangulated to produce a DGM that extended into any adjacent LGAs to ensure the 
road traffic noise level contribution from outside the LGA was considered. Road centrelines, noise barriers and 
buildings were then set on the DGM to assign appropriate base heights. Quality assurance (QA) was conducted to 
make sure the ground and above ground objects matched.  

Noise calculations were carried out using the SoundPLAN Grid Noise Mapping module to produce noise levels on 
5 m spaced grids. Noise calculations were completed via a suite of quad core modelling computers. Calculation times 
for each LGA ranged from approximately 2 hours to 2 days, depending on the size of the LGA terrain data.   

The tiling function of SoundPLAN was adopted in the modelling process for preparing DGM data in the Geo-
Database module, calculating noise levels in the Calculation Kernel and visualising results in the Graphics module. The 
tiling function allows sections of a large model to be loaded to complete the above mentioned tasks without the need 
to load the entire model.  

2.2.3 Post-processing  

The grid based calculated noise levels were exported from SoundPLAN in a raster form. ArcMAP was used to 
process the raster data by interpolating the raster pixel values and generate the four QDC noise category contours.  

3. MODELLING RESULTS 

3.1 Terrain models 

Incorporating terrain and noise barriers is expected to have significantly improved the accuracy of the noise 
results in the second round of noise modelling. Sufficient QA was performed to ensure the accuracy of the terrain 
model and also the accuracy of noise barrier alignment. Figure 2 presents a snapshot of the terrain with noise barriers 
in a modelling area. It demonstrates that the noise barriers are placed at the appropriate locations, i.e. road edges 
and the top of the road cutting.  

 
Figure 2: Terrain model with noise barriers 
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3.2 Noise category contours 

The noise levels in the first round of modelling using the flat earth assumption were mainly affected by the road 
noise emission levels, scaled by propagation distances. The noise levels in the second round of modelling were 
affected by not only the road noise emission levels and propagation distance, but also the noise attenuation due to 
terrain and barriers.  

For a selected road section, Figure 3 illustrates the QDC noise category contours from the first round of modelling, 
while Figure 4 represents the second round of modelling.  

 

Figure 3: QDC noise contours from the first round of modelling 
 

Figure 4: QDC noise contours from the second round of modelling 
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It is evident from Figure 4 that the noise categories are affected by shielding provided by terrain and noise 

barriers. The inclusion of existing noise barriers in most cases is expected to reduce the noise categories behind the 
barrier to the next lower category.  

3.3 Comparisons of noise category changes 

The second round of noise modelling appears to produce more accurate and realistic acoustic attenuation 
requirements for the affected properties. As a result of the re-modelling, it was generally found that the number of 
properties within higher noise categories was reduced. Analysis was conducted to compare the change in the number 
of properties within the noise categories from the two rounds of modelling for the entire State. Table 2 shows the 
results for the State for mandatory noise corridors only. The year 2016 study area was taken as a base to ensure the 
percentages are comparable between round 1 and 2 results.   

It was found that State-wide, a 28.5 % and 7.3% reduction was achieved for the number of properties within noise 
category 4 and 3 respectively. A 38 .5 % and 7.2 % increase was recorded for noise category 1 and 2 respectively. The 
increase in numbers for noise category 1 was primarily due to the number of properties formerly within higher 
categories being downgraded to the lower noise categories. These numbers varied within each LGA.  

In accordance with QDC MP4.4, a new development in noise category 1 normally requires minimal additional 
building attenuation above standard construction. Properties within category 2 and above require further noise 
mitigation measures. For mandatory noise corridors throughout the State of Queensland, the number of residential 
properties with a noise category of 2 or above was lowered by approximately 8.4 %, equivalent to approximately 
15 000 properties.  

Table 2: Percentage of allotments within TNC noise categories 

TNC Year 
Percentage of Allotments within TNC Noise Category (Mandatory Noise Corridors) 

0 1 2 3 4 

2010 6.7% 17.7% 28.1% 24.2% 23.4% 

2016 6.3% 24.5% 30.1% 22.4% 16.7% 

% Change from 2010 - 38.5% 7.2% -7.3% -28.5% 

4. ISSUES AND LEARNINGS 

It was found that data preparation, particularly for terrain data, accounted for the majority of time and resources 
of the project. Time required to set up and compute the noise models was not as high as initially expected. The project 
became more of an exercise in data management, than of noise modelling and mapping.  

4.1 Data and file management 

Noise modelling was conducted for the entire network of State-controlled roads across Queensland with a total 
length of approximately 34 850 km. Terrain data was prepared up to 500 m on each side of the roads. This resulted 
in a 64 GB dataset containing over 4 billion spot heights.  

The large quantity of terrain data, together with the road centrelines, noise barrier and building data, required 
an effective data management solution. This was achieved through LGA based data preparation, use of the tiling 
function within SoundPLAN and appropriate file management.  

 LGA based data preparation 

To make data manageable, terrain data was normally prepared and modelled on an LGA basis. State-controlled 
roads within 65 LGAs were modelled. The Universal Transverse Mercator mapping system divides Australia into zones 
which each cover 6 degrees of longitude. Where an LGA crossed multiple zones, it was split into multiple terrain 
datasets. In some cases small LGAs were combined. This resulted in 68 areas being modelled individually in 
SoundPLAN. 

 Tiling function 

A single terrain dataset for a LGA was found to be too large for SoundPLAN to manage. The tiling function of 
SoundPLAN was used in the Geo-Database module to divide the terrain of an LGA into multiple tiles of 2 km by 2 km. 
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The same tiling system was also used in the Calculation Kernel to expedite the noise calculations and in the Graphics 
module to visualise the modelling results. The tiling function allows data only within the selected and surrounding 
tiles to be loaded, making it possible to prepare data and present results based on tiles within an LGA.  

 File management 

The same arrangement of file structures and naming conventions was maintained for each of the LGA datasets 
and model settings. This consistent approach was of critical importance to maintain data integrity during the entire 
modelling process from data preparation, modelling to post processing.  

4.2 Terrain data processing 

Two sources of terrain data were used in the Stage 1 road traffic noise modelling, with ALS data in the coastal 
area and SRTM data in the inland area. The ALS data has 1 m by 1 m grids and the height of the grid points is considered 
as the true representation of the bare earth spot height. SRTM data has a 1 arc-second resolution (approximately 
30 m by 30 m grids) and the height of the grid points are considered coarse.  

Data manipulation was not necessary for the ALS data due to its high level of accuracy. Resampling was applied 
to the SRTM raster cells from 30 m to 1 m resolution. It produced a terrain model with the same staggered horizontal 
resolutions in the SRTM areas as in the ALS areas.  

The transition from ALS to SRTM areas created a significant terrain discontinuity at the boundary between the 
two datasets. An algorithm was applied to the transitional zones with the width dependent on the data height 
difference to maintain a terrain gradient within 5%. An artificial flat surface was also created for the road and verges. 
This removed the undulation of the terrain due to data variation in the SRTM areas.  

4.3 Bridges and culverts  

The terrain used in this project was based on the DGM which ignored all features sitting above, such as barriers, 
buildings and bridges. When the road centreline was set on the terrain, the road sometimes had an incorrect vertical 
profile. This was particularly the case where bridges or sometimes culverts were present. Where bridges or culverts 
were not part of the terrain, sharp changes to road gradients may cause unreasonable increases to calculated noise 
levels.  

SoundPLAN functions were explored to correct the terrain in the bridge areas. The gradient detection function 
was applied to isolate road sections with sharp gradient changes. Then a smoothing function was applied to the 
subject road sections. This resulted in road sections raised around the bridge but lowered in the neighbouring areas. 
It was found, however, that the lowering of elevation to the neighbouring road segments sometimes placed the road 
underneath the local ground surface to an unacceptable level.  

The SoundPLAN functions for correcting terrain vertical inaccuracies due to bridges were eventually abandoned 
and a manual method was adopted. Where a section of road was located on a man-made structure or below an 
overpass or bridge, this section of road was adjusted to be consistent with the surrounding road elevation.  

4.4 Road alignments 

The road centrelines were taken from DTMR horizontal alignment mapping. It was found that occasionally the 
road centreline strings were displaced horizontally and failed to match the terrain underneath, which sometimes 
caused sharp increases in gradients. Manual adjustments were applied to bring the road strings to the right locations. 

The road centrelines initially had nodes spaced at variable distances with straight lines between nodes. When 
placing these nodes on the DGM, the undulating terrain between the nodes could rise above or fall below the straight 
road segments. This could potentially impact the road traffic noise from those road sections. To resolve this issue, 
additional nodes at 30 m intervals were introduced into the 2D road polylines and the roads were re-set to the DGM 
to ensure the road segments followed the variation in height of the ground surface. 

4.5 Noise barriers  

Noise barrier data was mainly collected from desktop studies. The barrier alignments were digitised as polylines 
in MapInfo. The barrier heights were also estimated during the same process. While great efforts were made to 
maintain the accuracy of the horizontal alignment of barriers, misalignment can happen due to human error and 
distortion in the base aerial photographs. This is accentuated when the noise barrier sits on a retaining wall, mound 
or near steep changes in terrain height. A minor shift could place the barrier much lower than where it should be and 
result in reduction of noise attenuation effects. All the noise barriers were reviewed in a GIS environment together 
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with the 3D terrain to ensure the correct footprint locations.  

5. FUTURE DEVELOPMENT 

The following issues were identified from the development of Stage 1 road traffic noise modelling and are 
expected to be addressed in Stage 2.  

5.1 Improvement of input data 

The road centrelines and road data were subject to strict QA checking when being collected by DTMR. They are 
normally accepted for modelling without a requirement for ground truthing. However reasonable assumptions were 
made to adjust some of the data, for example adjusting the traffic growth rate to make the future AADT reasonable.  

Using more accurate terrain is more likely to be of benefit for result accuracy, particularly for the inland area of 
Queensland. In Stage 2, the SRTM data will be replaced by ALOS data with an improved accuracy and horizontal data 
grid spacing of 5 m by 5 m.  

5.2 Inclusion of additional data 

In Road Stage 1, through carriageways are modelled, but not the ramp roads. Major ramp roads, particularly 
those adjacent to residential areas will be included in Stage 2. Traffic data for ramp roads are generally not collected 
by DTMR. A manual process will be used to estimate ramp data by reference to the adjacent major carriageways.  

Concrete safety barriers were excluded from Stage 1, but known to have noise attenuation effects. The same 
process used for identifying noise barriers is to be applied for existing concrete safety barriers to include them in 
Stage 2 modelling.  

The technology of Mobile Laser Scanning (MLS) offers another option for extracting noise barrier data. The MLS 
point cloud data includes the points for the top strings of noise barriers. When extracted, the top strings represent 
the actual barrier alignment and height. However MLS is unable to capture any barrier sections obscured by 
vegetation, resulting in fragmented point cloud data for barrier top strings. The missing sections of the barriers need 
to be added manually. Where noise barrier information is available from point cloud data, it will be incorporated into 
the noise model.  

5.3 Modelling outputs 

Road Stage 1 generates the noise category contours at the building ground levels only. There is a need to prepare 
noise contours for both ground floors and first floors. This will be achieved in the coming modelling stages for both 
road and rail, with no extra resources expected except increased computing time. For a development with multiple 
storeys, site-specific acoustic assessment would normally be required to identify noise levels for all the floors.  

6. CONCLUSIONS 

A detailed noise modelling project for the State-controlled road network has been completed for Queensland. 
The modelling is continuing to another stage to incorporate additional data to further improve the modelling 
accuracy. A similar approach is also being applied to a major part of the state railway system.  

The large scale noise modelling covers all the State-controlled roads across Queensland and is believed to be the 
world’s largest detailed noise mapping exercise. The input data for the project came from different sources. Collecting 
and processing these data needed collaboration from a team with expertise in both acoustics and GIS. Major technical 
difficulties were not encountered in setting up the noise models and conducting calculations. This was due to the 
power of modern computers, efficiencies achieved through the tiling function of SoundPLAN and the extra resources 
available through distributed computing. Effective management of terrain data and segregation of the noise 
modelling domains by LGA were the keys to the success of the project.  

The results of the modelling provides direct support for the implementation of QDC MP4.4 for the building 
industry. The output is also expected to find use in much wider areas. In DTMR, the noise contours and the data 
collected through the project should assist in the daily management of transport noise issues. For example, they can 
be used in evaluating the effectiveness of existing noise barrier heights, managing and planning of noise barrier assets, 
assisting in the assessment of development applications, and management of noise complaints. Externally to DTMR, 
the noise contours could be used for other purposes. For the public, the contours form part of an educational tool for 
improving the awareness of transport noise and its impact. For other government agencies, for example health 
departments, the results could be used to assess the noise exposure for people adjacent to the transport system and 
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estimate the health burden due to noise.  
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