
Proceedings of ACOUSTICS 2016  9-11 November 2016, Brisbane, Australia   
 
 
 

 
ACOUSTICS 2016 Page 1 of 9 

 

 

Easy-to-use closed-form equations for modal cut-on frequencies 
of a surface duct with an exponential sound speed profile 

 
Alex Zinoviev

1 

1
Maritime Division, Defence Science and Technology Group, Edinburgh, South Australia 

 

 

ABSTRACT 

An acoustic surface duct with the sound speed tending exponentially towards an asymptotic value with increasing depth 
is considered. It is demonstrated that the exponential sound speed profile (SSP) is a limiting case of the SSP in the 
transitional layer described by Brekhovskikh. It is shown that the SSP caused by wind-induced bubbles near the surface 
fits well to the exponential profile. The theory by Brekhovskikh describing wave propagation in the transitional layer is 
applied to the layer with exponential SSP and an equation for an acoustic wave propagating through this layer is derived. 
This equation is used to obtain a solution for an acoustic wave trapped in the surface duct with the exponential SSP. 
Conditions of existence of this solution are obtained and utilised to derive easy-to-use equations for the modal cut-on 
frequencies of such a duct. The duct modal cut-on frequencies so obtained are compared with the frequencies obtained 
by means of a well-known formula. It is shown that the values of these two sets of cut-on frequencies are very close in 
the case of the surface layer due to gas bubbles. The slight difference between these values and its decrease with mode 
number is explained by the wave-based nature of the solution obtained in this work. 

1. Introduction 

 Formation of an acoustic duct near the ocean surface occurs when the gradient of the sound speed below 
the surface becomes positive with respect to depth. It is well-known that a sound speed profile (SSP) with positive 
gradient leads to refraction of acoustic waves towards the surface, which affects acoustic propagation in the duct 
and sonar detection ranges in at least two ways. First, it increases the angle at which the acoustic energy 
approaches the surface thus increasing the rate of reflection loss if the surface is rough due to gravitational waves 
caused by wind. This effect was considered, for example, by Zinoviev et al (2012) and Jones et al. (2014). Also, due 
to multiple reflections from the surface, the acoustic energy can propagate in the duct to distances much longer 
than the ones achieved in an environment with uniform sound speed. 

 An important characteristic of a surface duct is a set of cut-on frequencies of its normal modes. The 
propagation range at any particular frequency depends on the number of modes excited at this frequency as well as 
on their vertical pressure profile. The value of the cut-on frequency of the first mode is the most significant, as at 
frequencies below this value no mode can propagate in the duct and, therefore, propagation to large ranges is not 
possible (Jones et al., 2015). 

 The duct cut-on frequencies can be calculated by an existing formula (Kerr, 1951). However, this formula has 
some limitations. First of all, it is derived on the basis of the geometrical (ray) acoustics, so that it can be less 
accurate at low frequencies. In addition, it is inconvenient to use in practice, as an integral in the formula can be 
found analytically only for some specific sound speed profiles. 

 The main purpose of this paper is to derive closed-form  equations for cut-on frequencies of a duct with the 
sound speed tending exponentially towards its asymptotic value with increasing depth. As shown in the paper, this 
profile can fit well to the SSP of a surface layer containing wind-induced gas bubbles. Also, if linearized with respect 
to the vertical coordinate, the exponential profile can approximate the SSP in the isothermal surface layer as well as 
in the deep water duct. Therefore, a solution for a sound wave obtained for the exponential SSP can be applied to 
these two cases. However, consideration of these cases is outside the scope of this work. 

 This paper has the following structure. In Section 2, the exponential SSP is derived from the SSP of the 
transitional layer described by Brekhovskikh (1960). The exponential SSP and the sound speed profile of a bubbly 
layer are combined in Section 3. A solution for the vertical pressure profile of an acoustic wave propagating through 
a layer with the exponential SSP is derived in Section 4. In Section 5, a condition for the existence of a wave trapped 
in the duct is obtained, and Section 6 is devoted to derivation of equations for the cut-on frequencies of the duct 
and their comparison with the results obtained by the existing formula. 
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2. Exponential SSP as a limiting case of the transitional layer SSP 

 Consider an acoustic medium which is a fluid half-space with the sound speed c0 = 1500 m/s far below the 
surface and with the equilibrium fluid density ρ0 = 1000 kg/m3. The boundary of the half-space is considered to be 
pressure-release and smooth. Assume that, in the fluid immediately below the surface, the sound speed profile 
coincides with the SSP of the transitional layer described by Brekhovskikh (1960) and is determined by the following 
equation (Zinoviev et al., 2012): 

 

 𝑐𝑡𝑟(𝑧) = 𝑐0√
1−𝑁

1−𝑁
𝑒𝑚(𝑧+𝑧0)

1+𝑒𝑚(𝑧+𝑧0)

,   𝑧 ≥ 0.  (1) 

 
 In this analysis, the water surface is considered to be located at 𝑧 = 0. The parameters 𝑚−1 > 0 and N > 0 

characterise the depth of the layer and the difference between 𝑐0 and the sound speed at the surface, 𝑐𝑠 = 𝑐𝑡𝑟(0), 
respectively. The vertical coordinate of the surface is denoted 𝑧0. 

 The substitution of 𝑐𝑠 = 𝑐𝑡𝑟(0) to Eq. (1) leads to the following equation for the parameter N: 
 

 𝑁 =
𝑐0

2−𝑐𝑠
2

𝑐0
2−𝑐𝑠

2 𝑒𝑚𝑧0

1+𝑒𝑚𝑧0

, (2) 

 
which, if substituted into Eq. (1), transforms the latter equation as follows: 

 

 𝑐𝑡𝑟(𝑧) = 𝑐0√
𝑐𝑠

2+𝑐𝑠
2𝑒𝑚𝑧+𝑚𝑧0

𝑐0
2+𝑐0

2𝑒𝑚𝑧0−𝑐𝑠
2𝑒𝑚𝑧0+𝑐𝑠

2𝑒𝑚𝑧+𝑚𝑧0
. (3) 

 
 Assume that the parameters m and z0 are such that 𝑒−𝑚𝑧0 ≪ 1. Then, Eq. (3) reduces to the following 

equation for the exponential sound speed profile 𝑐𝑒𝑥𝑝, where the sound speed exponentially tends to 𝑐0 with 

increasing z: 

 

 𝑐𝑒𝑥𝑝(𝑧) =
𝑐0𝑐𝑠

√(𝑐0
2−𝑐𝑠

2)𝑒−𝑚𝑧+𝑐𝑠
2
 . (4) 

 
If the difference ∆𝑐= 𝑐0 − 𝑐𝑠 is small in comparison with 𝑐0, the exponential sound speed profile can be further 
simplified: 
 

 𝑐𝑒𝑥𝑝(𝑧) = 𝑐0 (1 −
∆𝑐

𝑐0
𝑒−𝑚𝑧) , ∆𝑐 𝑐0 ≪ 1⁄ . (5) 

 
 Eq. (5) allows one to clarify the meaning of the parameter m. The sound speed gradient at the surface, gs, can 

be expressed as follows: 
 
  𝑔𝑠 = 𝑐′𝑒𝑥𝑝(0) = ∆𝑐𝑚.  (6)  

 
As a result, for the SSP determined by Eq. (5), m can be represented as a ratio between the sound speed gradient at 
the surface and the difference between the sound speed values below the layer and at the surface:  
 

 𝑚 =
𝑔𝑠

Δ𝑐
. (7) 

 
 The above argument demonstrates that Eq. (4) for the exponential SSP is a limiting case of Eq. (1) for the SSP 

of the transitional layer with 𝑒−𝑚𝑧0 → 0. An additional assumption that ∆𝑐 𝑐0 ≪ 1⁄  leads to a simplified exponential 
SSP described by Eq. (5). Therefore, sound propagation within a layer with the exponential SSP can be described by 
equations derived for the transitional layer SSP applying the same assumptions. 
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3. Fitting the exponential SSP to the SSP for a layer due to gas bubbles 

 There is at least one type of a surface duct for which an existing model predicts a sound speed profile fitting 
very well to the exponential one described by Eq. (5). Ainslie (2005) derived equations determining the SSP in a 
layer below the ocean surface where, due to wind action, gas bubbles accumulate thus affecting the compressibility 
of water and, therefore, changing the sound speed.  

 Figure 1 shows the SSP of the layer due to bubbles for the wind speed, 𝑤 = 12.5 m/s. The wind speed is 
measured at the height of 19.5 m above the water surface. The parameter m for the corresponding exponential SSP, 
which is also shown in Figure 1, is found by the “best fit” method.  

 It can be clearly seen that the two sound speed profiles are very close. In fact, the discrepancy between the 
two curves shown in Figure 1 is much smaller than the one achieved by Zinoviev et al. (2014) between the SSP of 
the layer due to bubbles and the transitional layer SSP described by Eq. (1). 
 

 

Figure 1: SSP of the surface layer due to gas bubbles compared with the “best fit” exponential SSP. Parameters used 
in the calculations: ∆𝑐= 24.7942 m/s, m=1.17 m-1. 

4. Solution for the pressure profile of an acoustic wave in the layer with the exponential SSP 

4.1 Derivation of the pressure profile 

 Brekhovskikh (1960) considered propagation of a plane acoustic wave through an infinite medium with a 
horizontal transitional layer where the sound speed increases along the propagation path of the wave. He showed 
that the vertical profile of the acoustic pressure, 𝑝(𝑧), in such a wave can be represented via hypergeometric series. 
Based on Brekhovskikh’s results, Zinoviev et al. (2012) formulated a solution for a plane wave in a fluid half-space 
with sound speed decreasing towards the surface as determined by Eq. (1). According to this solution, for a plane 
wave of the frequency, f, propagating through the layer after having approached its lower boundary with grazing 
angle 𝜃0, the vertical dependence of acoustic pressure 𝑝(𝑧) can be determined as follows: 

 
 𝑝(𝑧) = ∑ 𝑝𝑛(𝑧),∞

𝑛=0   (8) 
 

 𝑝0(𝑧) = (𝑒−𝑚(𝑧+𝑧0) + 1)𝑒−𝑖𝑘0(𝑧+𝑧0)sin𝜃0 , (9) 

 

 𝑝𝑛(𝑧) = −𝑝𝑛−1(𝑧) (1 +
𝜇2

𝑛(𝑛+2𝑖𝑘0sin𝜃0/𝑚)
) 𝑒−𝑚(𝑧+𝑧0), (10) 
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 𝜇2 =
𝑁𝑘0

2

𝑚2(1−𝑁)
,  (11) 

 

 𝑘0 =
2𝜋𝑓

𝑐0
.    (12) 

 
It can be easily shown that, if 𝑒−𝑚𝑧0 → 0, Eq. (2) can be simplified as follows: 

 

 𝑁 = 1 − 𝑒−𝑚𝑧0
𝑐𝑠

2

𝑐0
2−𝑐𝑠

2. (13) 

 
 Utilising Eq. (13) and considering that 𝑒−𝑚𝑧0 → 0 it is possible to obtain the following equations for the 
vertical profile of the pressure field of an acoustic wave of the unit amplitude propagating through the exponential 
layer determined by Eq. (4): 

 
 𝑝(𝜁) = ∑ 𝑝𝑛(𝜁),∞

𝑛=0   (14) 
 

 𝑝0(𝜁) = 𝑒−𝑖𝛿𝜁,  (15) 
 

 𝑝𝑛(𝜁) = −𝑝𝑛−1(𝜁)
𝜙2𝑒−𝜁

𝑛(𝑛+2𝑖𝛿)
, (16) 

 
where 
 
 𝜁 = 𝑚𝑧,   (17) 
  

 𝜙 =
2𝜋𝑓

𝑚𝑐0𝑐𝑠
√𝑐0

2 − 𝑐𝑠
2, (18) 

 
and 

 

 𝛿 =
2𝜋𝑓

𝑚𝑐0
sin𝜃0 =

𝑘0

𝑚
sin𝜃0, (19) 

 

are the non-dimensional depth, frequency, and vertical wavenumber respectively. Denoting  ≡ iδ, one can write 
the solution for 𝑝(𝜁) in a shorter way using the product symbol: 
 

 𝑝(𝜁) = 𝑒−𝜅𝜁 (1 + ∑
𝜙2𝑛𝑒−𝑛𝜁(−1)𝑛

𝑛!
∏

1

𝑙+2𝜅

𝑛
𝑙=1

∞
𝑛=1 ). (20) 

 
With the first four terms shown explicitly, Eq. (20) takes the following form: 

 

 𝑝(𝜁) = 𝑒−𝜅𝜁 (1 −
𝜙2𝑒−𝜁

1+2𝜅
+

𝜙4𝑒−2𝜁

2(1+2𝜅)(2+2𝜅)
−

𝜙6𝑒−3𝜁

6(1+2𝜅)(2+2𝜅)(3+2𝜅)
+ ⋯ ).   (21) 

 
Utilising Equations (8.331) and (8.402) of Gradshteyn & Ryzhik (2000), one can conclude that Eq. (20) can be written 

via the Bessel function, Jα(x), of the order  = 2:  
 

 𝑝(𝜁) = 2𝜅Γ(2𝜅)𝜙−2𝜅𝐽2𝜅(2𝜙𝑒−𝜁/2).         (22) 

 
In Eq. (22), Γ(2𝜅) is the gamma function. If the normalising multipliers are omitted in Eq. (22), the shape of the 
vertical sound speed profile can be described by the following equation: 
 

 𝑝(𝜁)~𝐽2𝜅(2𝜙𝑒−𝜁/2).  (23)        (24) 
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 Eqs. (17) to (23) describe the vertical acoustic pressure profile in the exponential layer and represent one of 
the main results of this paper. The solution determined by these equations is derived without any assumptions 
about environmental and acoustic parameters and, therefore, can be considered to be exact for any layer where 
the SSP is determined by Eq. (4).  

4.2 Convergence of the series 

 Since the pressure field within the exponential layer is determined by the Bessel function (Eq. (22)), the 
corresponding series in Eqs. (20) and (21) converges. However, the number of terms required for the series to 
converge can be important for carrying out calculations in some specific cases. It can be shown that the series 
converges quickly in a wide range of parameters. For example, consider the convergence of the series at the surface 
(𝜁 = 0) where it converges slower than at other depths as seen from Eq. (16). If 𝜙 > 1, it is possible that the 
absolute value of terms increases with n for the first several terms of the series, so that |𝑝𝑛(0)| > |𝑝𝑛−1(0)|. At the 
same time, it is clear from Eq. (16) that  

 

 |𝑝𝑛(0)||
𝑛→∞

→
𝜙2𝑛

(𝑛!)2, (25) 

 
and, therefore, the series converges quickly when the term number n becomes greater than some value depending 
on 𝜙.  

 The convergence of the series is demonstrated in Figure 2 for the frequency 𝑓 = 6 kHz at the water surface 
(𝜁 = 0). The Figure shows the absolute value, |𝑝𝑁(0)|, of the term of the order n = N as well as that of the partial 
sum, |∑ 𝑝𝑛(0)𝑁

𝑛=0 | of N+1 first terms in dependence on N. The calculations are carried out for the exponential SSP 
shown in Figure 1. The value of the grazing angle, 𝜃0, used in the calculations is 3°. This value is a typical value 
considered in models predicting the loss of acoustic energy due to reflection from the rough sea surface (Jones et 
al., 2010).  

 It is clearly seen that, although the absolute value of the series terms grows with N for the first few terms, 
starting with the 3rd term the absolute value quickly decreases and any term with 𝑁 ≥ 6 does not affect significantly 
the sum of the series.  

 

 

Figure 2: The absolute value of the partial sum of N terms of the series and that of the N-th term vs N. The 
parameters used in the calculations are: ∆𝑐= 24.7942 m/s, m=1.17 m-1, 𝜃0 = 3°. 

 For practical purposes, it is necessary to know the number of terms required to achieve a given accuracy. The 
following criterion of the series convergence is considered here. The series 𝑝(𝜁) = ∑ 𝑝𝑛(𝜁)∞

𝑛=0  is deemed to 
converge at 𝑛 = 𝑁 with the accuracy 𝜀 ≪ 1 if the absolute value of its term of the order N+1 is less than the 
absolute value of the sum of all previous terms multiplied by 𝜀: 
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 |𝑝𝑁+1(𝜁)| < 𝜀|∑ 𝑝𝑛(𝜁)𝑁
𝑛=0 |, 0 < 𝜀 ≪ 1.   (26) 

 
 Figure 3 shows the number of terms, 𝑁 + 1, required for the series to converge for 𝜀 = 10−2 and 𝜀 = 10−4. 

The Figure demonstrates that the series converges quickly. Although the required number of terms grows 
approximately linearly with frequency, the series needs no more than 10 terms to achieve the accuracy 𝜀 = 10−4 if 
the frequency is not greater than 6 kHz. In addition, improving the accuracy by two orders of magnitude is achieved 
by increasing the number of terms by only 1 or 2. Consequently, the summation of the series can be stopped after 
first several terms are taken into account.  

 

Figure 3: Number of terms required to achieve the convergence of the series determined by Eqs. (17) to (20). The 
parameters used in the calculations are: ∆𝑐= 24.7942 m/s, m=1.17 m-1, 𝜃0 = 3° 

 It can be concluded from Figure 3 that, for the environment under consideration, only one term in the 
brackets in Eq. (21) is required to achieve the accuracy of 𝜀 = 10−2 at frequencies below approximately 200 Hz. As 
this term describes the incident plane wave, the influence of the sound speed gradient on sound propagation in the 
layer can be neglected at these frequencies. Analogously, the first two, three and four terms in the brackets in Eq. 
(21) appropriately describe the wave propagation in the layer at frequencies below 1 kHz, 1.7 kHz and 2.6 kHz 
respectively. More terms can be easily added for consideration of wave propagation at higher frequencies. 

5. Condition of existence of a wave trapped in the duct with the exponential sound speed profile 

 The layer with the exponential SSP constitutes a surface duct, where propagation of a trapped wave is 
possible. The pressure field of a wave trapped in the duct must satisfy the following two conditions: 

 
 𝑝(0) = 0,  (27) 

 
 𝑝(𝜁 → ∞) = 0. (28) 
 
 The first of the above conditions is due to the pressure-release surface. The solution for 𝑝(𝑧) described by 

Eq. (20) can satisfy this condition only if the expression in brackets is zero, which can be achieved only if Re(𝛿) = 0. 
The second condition (Eq. (28)) is the condition of the wave being trapped in the duct as it prevents the wave from 
propagating in the vertical direction. The solution for 𝑝(𝑧) described by Eq. (20) can satisfy this condition only if the 
exponential term tends to zero as 𝜁 → ∞, which occurs when Im(𝛿) < 0 and, therefore, when the following 
condition for the variable 𝜅 is satisfied: 
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 𝜅 = 𝑖𝛿 > 0. (29) 
 

The substitution of Eq. (29) to Eq. (22) and, subsequently, to Eq. (27), leads to the following condition of existence 
of the trapped wave:  

 
 𝐽2𝜅(2𝜙) = 0. (30) 
 

This condition determines relationships between the frequency and the vertical wavenumber in a wave trapped in 
the duct. It does not depend explicitly on the parameters of both the layer and the wave and, therefore, is valid for 
any layer that can be described by the exponential layer SSP determined by Eq. (4).  

 To determine one of the parameters 𝜙 and 𝜅 via the other one for the trapped wave, it is necessary to find 
the roots of Eq. (30). Figure 4 shows the value of the function 𝐽2𝜅(2𝜙). It is clear that the light blue diagonal streaks 
correspond to combinations of the parameters where the function changes its sign and, therefore, assumes the 
value of zero thus defining the relationships between the frequency and the vertical wavenumber of the wave 
trapped in the duct. 

  

 

Figure 4: The value of the function 𝐽2𝜅(2𝜙) for  > 0. 

6. Cut-on frequencies of the duct with the exponential sound speed profile 

6.1 Non-dimensional cut-on frequencies 

 Figure 4 shows that, for every value of the vertical wavenumber 𝜅, there is a set of frequencies, 𝜙𝑗(𝜅), 𝑗 =

1,2,3, …, for which 𝐽2𝜅(2𝜙) = 0. It can be assumed that each of these frequencies corresponds to a normal mode of 
the duct. It is clear that the mode of the order j exists only if the frequency 𝜙 exceeds the value 𝜙𝑗(0), which is the 

cut-on frequency of this mode. 
 The substitution of 𝜅 = 0 to Eq. (30) leads to the following equation with respect to 𝜙:  
  

 𝐽0(2𝜙) = 0.  (31) 
 

The roots of Eq. (31) determine the modal cut-on frequencies, 𝜙𝑗 ≡ 𝜙𝑗(0), of the duct under consideration. Since 

the roots of the Bessel function 𝐽0(𝑥) are known, the corresponding cut-on frequencies can be easily calculated. The 
cut-on frequencies in the non-dimensional form 𝜙𝑗 are constant numbers and do not depend on any environmental 
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or acoustical parameters. The dimensional cut-on frequencies, 𝑓𝑗, can be calculated by the following formula 

derived from Eq. (18): 
 

  𝑓𝑗 =
𝜙𝑗𝑚𝑐0𝑐𝑠

2𝜋√𝑐0
2−𝑐𝑠

2
. (32) 

 
 Using an asymptotic expression for the Bessel function at large arguments (Gradshteyn & Ryzhik, 2000, Eq. 
8.451.1), it is possible to suggest the following approximate equation for the non-dimensional cut-on frequencies 
shown in Table 1: 
 

 𝜙𝑗 ≈ 1.2 + (𝑗 − 1)
𝜋

2
≈ 1.2 + 1.57(𝑗 − 1).  (33) 

 
 Table 1 compares the values of the lowest eight non-dimensional cut-on frequencies calculated using the 

exact Eq. (31) and the approximate Eq. (33). The two sets of cut-on frequencies are denoted ϕj
(1)

 and ϕj
(2)

 respectively. 

It is clear from Table 1 that the cut-on frequencies fj
(2)

 calculated with the use of the approximate Eq. (33) are within 
0.4% discrepancy as compared with their more precise values fj

(1)
 and that the discrepancy decreases with increasing 

mode number j if j > 2.  

Table 1: Comparison of the non-dimensional cut-on frequencies with their approximate values 

Mode number, j 1 2 3 4 5 6 7 8 

ϕj
(1)

, Eq. (31)  1.2024 2.7600 4.3269 5.8958 7.4655 9.0355 10.606 12.176 

ϕj
(2)

, Eq. (33) 1.2000        2.7700     4.3400     5.9100     7.4800     9.0500 10.620    12.190 

fj
(1)

/fj
(2)

 1.0020         0.9964 0.9970     0.9976     0.9981     0.9984     0.9987     0.9989 

 
 Eqs. (32) and (33) represent the main result of this work. They are obtained from the exact solution of the 

wave equation in a transitional layer provided by Brekhovskikh (1960) and adapted here for the duct with the 
exponential SSP. These equations allow quick calculation of the modal cut-on frequencies of any duct with the 
exponential SSP if the sound speed values at the surface and below the duct, as well as the parameter m, are 
known. 

6.2 Comparison with an existing formula 

 The modal cut-on frequencies of the duct can also be calculated using an existing formula (Kerr, 1951), which 
is based on the laws of the geometrical (ray) acoustics: 

 

 𝑓𝑗 = 𝑐𝑠 𝜆𝑗⁄ ,      𝜆𝑗 =
2

𝑗−1 4⁄
∫ √𝑁2(𝑧) − 𝑁2(𝐻)𝑑𝑧

𝐻

0
.  (34) 

 
In Eq. (34), H is the duct depth and N(z) = c0/c(z) is the index of refraction. 

 Table 2 contains the values of fj for the first eight modes of the duct under consideration, which SSP is shown 
in Figure 1. The cut-on frequencies corresponding to the values of 𝜙𝑗 calculated via the roots of Eq. (31) and shown 

in Table 1 are denoted fj
(1), whereas the frequencies calculated by the ray-based Eq. (34) are denoted fj

(3)
.  

Table 2: Comparison of the cut-on frequencies calculated using roots of Eq. (31) and by Eq. (34) 

Mode number, j 1 2 3 4 5 6 7 8 

fj
(1)

(Hz), Eq. (31) 1824 4187 6564 8944 11325 13707 16090 18472 

fj
(3)

 (Hz), Eq. (34) 1767 4124 6480 8837 11194 13550 15907 18264 

fj
(1)

/fj
(3)

 1.0206 1.0040 1.0017 1.0009 1.0006 1.0004 1.0003 1.0002 
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 It is clear from Table 2 that the cut-on frequencies fj
(1) 

and fj
(3)

 calculated respectively by the wave-based 
theory and by the ray theory are close, but the former ones are somewhat larger. This table also shows that the 
ratio between the two values tends to unity with increasing frequency. This can be explained by the fact that the ray 
theory is the limiting case of the wave theory at large frequencies.  

7. Conclusions 

 In this paper, a surface layer with the sound speed profile (SSP) of the transitional layer described by 
Brekhovskikh (1960) is considered. It is shown that, if the vertical coordinate of the surface with respect to the zero 
level in the transitional layer is large, the transitional layer SSP reduces to the exponential SSP which implies that 
the sound speed approaches its equilibrium value with increasing depth according to the exponential law. It is 
demonstrated that the exponential SSP fits well to the SSP modelled by Ainslie (2005) for the surface layer caused 
by wind-induced gas bubbles. 

 An existing wave-based solution in the form of hypergeometric series for a plane acoustic wave propagating 
through the transitional layer is used to obtain a solution for the exponential layer. An equation in the form of an 
infinite series describing the vertical pressure profile in the exponential layer is derived. It is demonstrated that the 
obtained series converges quickly and that it can be represented as a Bessel function. 

  The obtained equation for the pressure profile is used to derive a condition of existence of a sound wave 
trapped in the exponential layer, which constitutes an acoustic duct. Using this condition, cut-on frequencies of the 
normal modes of the duct are obtained, which, in the non-dimensional form, are constant numbers. A simple 
approximate equation for these cut-on frequencies is suggested. It is shown that this equation provides estimates 
for the cut-on frequencies with a good accuracy. 

 The dimensional cut-on frequencies are calculated for the duct, which parameters correspond to the wind-
induced bubbly surface layer. The obtained values are compared with the values calculated by means of an existing 
formula. It is shown that the values of the two sets of cut-on frequencies are close for the duct under consideration 
and that the ratio between them tends to unity with increasing frequency. It is explained by the fact that the 
equations obtained here are wave-based, whereas the existing formula is based on the ray acoustics and, therefore, 
the two solutions should produce closer results at higher frequencies. 
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