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ABSTRACT 

One approach to locate the point of fire of a supersonic bullet is to first estimate the trajectory of the bullet and then 
trace the trajectory back to topographic or man-made obstructions on a digital map. The supersonic flight of a bullet 
generates a ballistic shock wave, and the trajectory of the bullet can be estimated by measuring the time delay between 
the shock wave arrivals at each sensor pair of an acoustic array and using an exterior ballistics model for the bullet to 
account for its decreasing speed with the distance travelled. In this paper, the bullet trajectory estimation problem is 
formulated, followed by a Cramer-Rao lower bound error analysis. A nonlinear least-squares (NLS) solution to the bullet 
trajectory estimation problem is then described, which assumes the ballistic constant of the bullet is known a priori. Any 
uncertainty in the ballistic constant will degrade the accuracy of the bullet trajectory estimation and subsequently the 
localization accuracy for the point of fire. The performance of the NLS method when the ballistic constant is exactly 
known and the degrading effect of an erroneous ballistic constant are evaluated using both simulated data and real data. 

1. INTRODUCTION 

 Hostile small arms fire poses a serious threat to the military community. A capability to locate the sniper or 
point of fire is essential for an effective counter-sniper system. The firing of a supersonic bullet produces two 
acoustic impulses: the muzzle blast (MB) generated during the launch of the bullet from the rifle and the ballistic 
shock wave (SW) generated by the supersonic flight of the bullet (Maher 2007). The point of fire can be located 
using the MB arrivals, the SW arrivals, or both at an array of acoustic sensors distributed around the target of the 
sniper or within the protected area (Damarla, Kaplan & Whipps 2010, Duckworth, Gilbert & Barger 1997, Lindgren, 
Wilsson, Gustafsson & Habberstad 2010, Lo & Ferguson 2011, Lo & Ferguson 2012). As the shooting range 
increases, the MB arrivals become too weak and only the SW arrivals can be used. Duckworth et al proposed a 
method using only the SW arrivals to estimate the trajectory of the bullet, which can then be used to locate the 
sniper if digital maps are available to trace the trajectory back to topographic or man-made obstructions 
(Duckworth, Gilbert & Barger 1997). Specifically, this method for bullet trajectory estimation measures the time 
delay between the SW arrivals at each sensor pair of the array and adopts an exterior ballistics model for the 
supersonic bullet to account for the deceleration of the bullet along its trajectory. The method assumes that one of 
the two ballistic model parameters: the ballistic constant of the bullet is known a priori or has been correctly 
determined by estimating the calibre from the received shock wave waveform. However, this assumption is 
impractical because the ballistic constant spans a wide range of values due to a large number of bullet types that 
are available (Lo & Ferguson 2015), and there is not a one-to-one relationship between the ballistic constant of the 
bullet and its calibre (Lo & Ferguson 2016). Any uncertainty in the ballistic constant will degrade the accuracy of the 
bullet trajectory estimation and subsequently the accuracy of the sniper localization. This paper formulates the 
bullet trajectory estimation problem and presents a Cramer-Rao lower bound (CRLB) error analysis. A nonlinear 
least-squares (NLS) solution to the bullet trajectory estimation problem is then described, which assumes the 
ballistic constant of the bullet is known a priori or has been correctly estimated by some means. The performance of 
the NLS method when the ballistic constant is exactly known and the degrading effect of an erroneous ballistic 
constant are evaluated using both simulated data and real data recorded from a field experiment for two different 
types of bullets.   

2. PROBLEM FORMULATION 

 Figure 1(a) shows the general geometrical configuration for an array of N acoustic sensors, the point of fire G, 
and the linear trajectory of the bullet passing through a point Q on the YZ-plane. The position vector of sensor n 

(denoted as nS ) is given by T
nnnn ZYX ],,[R , for  Nn 1 , and the position vectors of the two points G and Q are 

given by T
GGGG ZYX ],,[R and T

QQQ ZY ],,0[R , respectively, where the superscript T denotes vector transpose.
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Figure 1: (a) General geometric configuration for an array of N acoustic sensors, the point of fire G, and the linear 

trajectory of the bullet passing through a point Q on the YZ-plane. (b) Schematic diagram showing the bullet 
trajectory, point of fire G, point Q, and detach point Pn of the SW arriving at sensor Sn. 

 

The direction of travel of the bullet is described by the unit directional vector T
v ]sin,sincos,cos[cos e , 

where   and   are the respective elevation and azimuth angles of the point of fire G relative to point Q. The 

trajectory of the bullet is specified by the set of four parameters },,,{ QQ ZY . 

2.1 Ballistic model 

 Let x denote the distance from the point of fire G along the bullet trajectory – see Fig. 1(a), and c the speed of 
sound in air. The (supersonic) speed of the bullet at x can be expressed accurately as (Lo & Ferguson 2016) 

 

 2121
0 )()( xCVxv b

 ,  cxx 0 , (1) 

 

where )0(0 vV   is the muzzle speed of the bullet and bC  is its ballistic constant in (m.s)0.5 ; )( 2121
0 cVCx bc   is 

the distance beyond which the bullet speed becomes subsonic. The time required for the bullet to travel to a 
distance x from the point of fire G can be derived from (1) as (Lo & Ferguson 2012) 
 

 ])([)( 21
0

21   VxvCxt b ,  cxx 0 . (2) 

 
 Let r )( cx  denote the distance from the point of fire G to point Q. The variable xrx   then represents 

the displacement from point Q along the bullet trajectory – see Fig. 1(a); x' is positive if xr   and negative 
otherwise. Substituting xrx   into (1) and after some manipulation gives 
 

 2121 )()()( xCVxrvxv br   ,  rxxr c  , (3) 

 

where 2121
0 )()( rCVrvV br

  is the speed of the bullet at point Q. The quantity )(xv   represents the speed of the 

bullet at a position x relative to point Q.  Substituting xrx   into (2) and after some manipulation gives 

 

 ])([)()()( 2121   xvVCrtxrtxt rb ,  rxxr c  , (4) 

 

where )()( 21
0

21   VVCrt rb  is the time required for the bullet to travel from the point of fire G to point Q. The 
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quantity  )(xt  represents the time required for the bullet to travel from the point of fire G to a position x  relative 

to point Q. When 0x , the second term in (4) is positive and represents the bullet’s time of travel to point Q from 

a distance x . When 0x , the second term in (4) is negative and its magnitude represents the bullet’s time of 

travel to a distance ||x   from point Q. It can be easily shown that taking the limit as bC (equivalent to the 

bullet travelling at a constant speed rVV 0 ) reduces (4) to rVxrtxt  )()( . 

2.2 Time delay model 

 Figure 1(b) is a schematic diagram showing the bullet trajectory, point of fire G, point Q, sensor nS , and 

detach point nP  of the SW arriving at nS , Nn 1 . The detach point nP  is located on the trajectory at a position 

nx  relative to point Q. If nP  lies before point Q as shown in Fig. 1(b), then 0nx ; if nP  lies after point Q, then

0nx . The following derivations apply to both cases. The opening angle n  of the SW at nP  is given by 

 

 ])([sin])([sin 11
nnn xvcxvc   . (5) 

 
The distance nr   to point Q from sensor nS , and the angle na  between the unit directional vector ve  and the 

position vector of point Q  relative to sensor nS  are given, respectively, by 

 

 |||| nQnr RR  ,     nnQ
T
vn r  )(cos RRea , (6) 

 
where ||.||  denotes the 2L  norm of a vector. Applying the law of sines to the triangle nnQSP  gives 

)cos(cos nnnnn xr a  , which can be expanded as  

 
 nnnnnnn rrx aa sinsincos)cos(  .  (7) 

 
Squaring both sides of (7) and using (5) and (3) yields (after some manipulation) a sixth-order polynomial equation 
of nx : 

 

 0),;,|( 66
0  


m

nm nmbrnnnn xaCVrxf a , (8) 

 

where 4
0

 bn Ca , )2cos(2 2113
1 rnnbbn VrCCa   a , ]6cos8)cos[( 211212

2 rnnrbnnbbn VrVCrCCa   aa ,  (9a) 

 

 ]cos3)cos[(4 21121211
3 rnnrbnnbrbn VrVCrCVCa   aa ,  (9b) 

 

 2223121
4 cos8)cos(6 cVrVCrCVa rnnrbnnbrn   aa , (9c) 

 

 )cos2(cos2 22231
5 cVrVCra rnnrbnnn   aa , )cos( 2222

6 cVra nrnn  a . (9d) 

 
Equation (8) shows that the position nx of the detach point nP  relative to point Q can be computed by finding the 

roots of the sixth-order polynomial equation (8). The relevant root is the real root that satisfies (7). 
 The time of arrival of the SW at sensor nS  is given by 

 
 csxt nnn  )( , (10) 

 
where ns  is the distance from nP  to nS . It can be shown from Fig. 1(b) that  

 
 nnnn rs a cossin  . (11) 
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The time delay nm  between the SW arrivals at sensors nS  and mS  is defined as the arrival time n  of the SW at nS  

relative to the arrival time m  of the SW at mS :  mnnm   . Using (10) and (4), nm  can be expressed as  

 

 cssxvxvC mnmnbnm )(])()([ 2121   , Nnm  ,1 . (12) 

 
Equations (3), (5)-(9), (11) and (12) constitute a time delay model for the SW arrivals at sensors nS  and mS . Define 

the bullet trajectory parameter vector T
QQ ZY ],,,[ λ . This time delay model is a function of λ , rV  and ,bC i.e., 

),,( brnmnm CVλ  . Given the bullet trajectory parameter vector λ , the speed rV  of the bullet at point Q and its 

ballistic constant bC , the time delay between the SW arrivals at nS  and mS  can be computed as follows. 

1. For k = m,n, 
a. Compute kr   and ka using (6). 

b. Find kx using (8), (9a)-(9d), (7), (5) and (3). 

c. Compute )( kxv   using (3) and then ks  using (11) and (5). 

2.  Compute nm  using (12). 

2.3 Objective 

 In this paper any quantity with a caret ^ overhead represents an estimate of that quantity. For example, 1ˆk  

denote the estimate of the time delay 1k  between the SW arrivals at sensors kS  and 1S , for Nk 2 . In the 

presence of additive measurement errors, these (N-1) time delay estimates can be written in vector form as  
 

 nλbb  ),,(ˆ
br CV , (13) 

 

where T
N ]ˆ,,ˆ,ˆ[ˆ

13121  b , T
N ],,,[ 13121  b , and T

Nnnn ],,,[ 121  n  are the time delay observation 

vector, time delay model vector, and time delay observation error vector, respectively. The objective is to estimate 

λ  along with rV , given the time delay observation vector b̂  and the ballistic constant bC  of the bullet.  

 In this paper, GX  is assumed to be known (e.g. an obstruction exists at GX  on the digital map). Once  is 

estimated, the distance r to the point of fire from point Q and the y- and z-coordinates ),( GG ZY  of the point of fire 

can be determined from the equation vQG reRR  , or 

  
  coscosGXr  ,      sincosrYY QG  ,     sinrZZ QG  .           (14) 

3. CRLB ERROR ANALYSIS 

 Assume the time delay observation error vector n is zero-mean, Gaussian distributed, with a covariance 
matrix N. Given the ballistic constant bC , the CRLB on the error covariance matrix for any unbiased estimator of 

},{ rVλ  is given by (Lindgren, Wilsson, Gustafsson & Habberstad 2010) 

 

   11 )()|,(
  TTT

br CV bNbλQ , (15) 

 

Where T
rQQ VZY ],,,,[    is the gradient operator and Tb  is evaluated at the actual values of 

λ  and rV . The expressions for the elements of Tb  can be derived using (12), (11), (5)-(7) and (3). Using a first-

order approximation, the CRLB on the error covariance matrix for any unbiased estimator of },{ GG ZY  is given by 

 

 T
brbGG CVCZY HλHQC )|,()|,( 1 , (16) 

 

where ],[],,,,[ GG
T

rQQ
T ZYVZY  H , which can be computed using (14). 
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Figure 2: Geometry configuration used for CRLB analysis, simulations and field experiment. 
 
 Consider the two dimensional (2D) case as shown in Fig. 2, where the sensor array, the point of fire, and the 

target are located on the XY-plane. In this case, 0 GQ ZZ  and λ  reduces to T
QY ],[2D λ . The array 

consists of three pairs of sensors (each forming an acoustic node): },,{ 21 SS },{ 43 SS  and },{ 65 SS  distributed on the 

Y-axis, with 1S located at (0, 0) and 6S  at approximately (80, 0) m. The intersensor spacing for each sensor pair (or 

node) is about 1 m, and the separation distance between two adjacent nodes is approximately 40 m. The array is 
used to estimate any bullet trajectory passing between the two outermost nodes (nodes 1 and 3). 
 First, consider a type ‘A’ 7.62 mm calibre bullet ( oV  = 833.69 m/s and bC  = 90.82 (m.s)0.5). In the first 

scenario, the firing position ),( GG YX  = (74.4, 19.6) m and the target position ),( TT YX  = (-44.2, 21.2) m. The CRLBs 

(on the error standard deviations) for }ˆ,ˆ,ˆ,ˆ{ GrQ YVY  are calculated using (15) and (16) for the 2D case, and the 

results are shown in the last row of Table 1 (a), with the actual values of },,{ rQ VY  shown on top of the table. The 

time delay measurement error covariance matrix N used in (15) is derived using real data recorded from a field 
experiment (see Section 6). In the second scenario, the X-coordinate GX  of the point of fire is increased by 400 m 

and as a result the error covariance matrix N is multiplied by a realistic factor of 2.2, while other conditions remain 

the same as for the first scenario. The calculated CRLBs for }ˆ,ˆ,ˆ,ˆ{ GrQ YVY  are shown in the last row of Table 1(b). In 

the third scenario, the Y-coordinate TY  of the target is changed to 76.2 m while other conditions remain the same 

as for the second scenario. The calculated CRLBs for }ˆ,ˆ,ˆ,ˆ{ GrQ YVY  are shown in the last row of Table 1(c). The above 

CRLB calculations are repeated for a type ‘B’ 5.56 mm calibre bullet oV(  = 912.37 m/s and bC  = 60.34 (m.s)0.5), and 

the corresponding results for the three scenarios are shown in the last rows of Tables 2(a), (b) and (c) respectively. 

4. NLS METHOD FOR BULLET TRAJECTORY ESTIMATION 

The NLS method is formulated based on (13). Given an estimated (or presumed) value bĈ  for the ballistic 

constant of the bullet, the NLS estimates of },{ rVλ  are given by 

 

 )]ˆ,,(ˆ[)]ˆ,,(ˆ[minarg}ˆ,ˆ{ 1

,
br

T
br

V
r CVCVV

r

 


λbbNλbbλ

λ
,  (17) 

 

where T
QQ ZY ]ˆ,ˆ,ˆ,ˆ[ˆ λ . Substituting }ˆ,ˆ,ˆ,ˆ{ QQ ZY  into (14) gives }ˆ,ˆ{ GG ZY . Equation (17) requires the time delay 

measurement error covariance matrix N. If it is unknown, then a coarse estimate )(ˆ 2 EIN   can be used instead 

(where 2  is a constant that can be omitted; I is the identity matrix; E is the unit matrix consisting of ones), which 

will more or less degrade the precision of }ˆ,ˆ{ rVλ . Any error in bĈ will also induce bias errors in }ˆ,ˆ{ rVλ . Note that the 

NLS estimates given by (17) are also the maximum likelihood estimates when bĈ  is exact and the time delay 

measurement error vector n is zero-mean, Gaussian distributed, with a covariance matrix N. Equation (17) can be 
solved iteratively using existing numerical optimization algorithms, which often require good initial estimates of 


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},{ rVλ  for fast convergence to the global minimum. If the acoustic array is configured as an array of acoustic nodes, 

each being a smaller array of sensors capable of providing estimates of the direction of arrival (DOA) of the SW at 
the node, then initial estimates of },{ rVλ  can be obtained using the DOA estimate of the SW at each node and the 

time delay estimate between the SW arrivals at each pair of nodes, with the assumption that the bullet speed is 
approximately constant between the detach point for each node and point Q. For the 2D case, the method to 
compute the initial estimates is similar to that described in a previous paper (Lo & Ferguson 2012).  
 

Table 1: Simulation results (2nd to 5th rows) and CRLBs (6th row) for type ‘A’ 7.62 mm calibre bullet ( oV  = 833.69 

m/s and bC  = 90.82 (m.s)0.5).  Simulation results were obtained for different values of bĈ : 90.82 (actual value), 40, 

200, and . For each of }ˆ,ˆ,ˆ,ˆ{ GrQ YVY , (1st entry, 2nd entry) = (bias error, standard deviation). 

 (a) First scenario: GX = 74.45 m, GY  = 19.64 m, QY  = 20.64 m,  = -0.77o, rV = 787.02 m/s 

bĈ (m.s)0.5 
̂  (deg) QŶ  (m) rV̂  (m/s) GŶ  (m) 

 90.82  (0.01, 0.20) (0.01, 0.11) (-0.64, 6.99)  (0.02, 0.27) 

 40  (0.11, 0.20)  (0.01, 0.11)      (-10.62, 7.03)  (0.14, 0.27) 

 200 (-0.04, 0.20)  (0.01, 0.11)  (3.78, 6.97) (-0.04, 0.27) 

  (-0.07, 0.20)  (0.01, 0.11)         (7.51, 6.95) (-0.09, 0.27) 

CRLB              0.21               0.10             7.13              0.28 

  

 (b) Second scenario: GX = 474.45 m, GY  = 19.64 m, QY  = 21.09 m,  = -0.18o, rV = 559.31 m/s 

  bĈ (m.s)0.5 
̂  (deg) QŶ  (m) rV̂  (m/s) GŶ  (m) 

 90.82  (0.00, 0.35) (-0.03, 0.26)          (0.61, 5.41)        (-0.02, 2.85) 

 40  (0.28, 0.35)  (-0.02, 0.27)      (-12.18, 5.55)  (2.31, 2.89) 

 200 (-0.12, 0.34)          (-0.03, 0.26)          (6.45, 5.35) (-1.06, 2.84) 

  (-0.23, 0.34)  (-0.03, 0.26)        (11.50, 5.30) (-1.95, 2.83) 

CRLB              0.35                 0.26              5.34              2.85 

  

 (c) Third scenario: GX = 474.45 m, GY  = 19.64 m, QY  = 71.40 m,  = -6.23o, rV = 557.84 m/s 

bĈ (m.s)0.5 
̂  (deg) QŶ  (m) rV̂  (m/s) GŶ  (m) 

 90.82 (-0.01, 0.48) (-0.00, 0.10)  (0.17, 7.19)        (-0.11, 3.97) 

 40 (-0.87, 0.47)   (0.21, 0.10)      (-12.14, 7.24)        (-7.08, 3.91) 

 200  (0.36, 0.48)  (-0.10, 0.09)  (6.06, 7.17)  (2.92, 4.01) 

   (0.67, 0.49)  (-0.19, 0.09)        (11.37, 7.16)  (5.44, 4.06) 

CRLB              0.44                 0.10              6.72              3.67 
 

5. SIMULATION RESULTS 

  Computer simulations were performed in MATLAB for the same sensor configuration and scenarios 
considered in Section 3. Given the sensor positions ),( nn YX , Nn 1 , the firing position ),( GG YX , the target 

position ),( TT YX , and the bullet’s ballistic model parameters },{ 0 bCV , the bullet trajectory parameter vector 
T

QY ],[2D λ  and the bullet speed rV  at point Q were calculated using the equation ||||)( GTGTv RRRRe  , 

(14)  and (1) . Then the time delay model vector  T
N ],,,[ 13121  b  was computed using the procedure outlined 

in Section 2.2. Next, the time delay observation vector T
N ]ˆ,,ˆ,ˆ[ˆ

13121  b  was generated by adding a zero-mean 

Gaussian error vector with a covariance matrix N to b. The error covariance matrices used here were the same as 
those previously used for CRLB calculations. The bullet trajectory parameter vector 2Dλ  was estimated along with 

rV  using the NLS method (Eq. (17) for the 2D case), and the results were then substituted into (14) to obtain an 



Proceedings of ACOUSTICS 2016  9-11 November 2016, Brisbane, Australia   
 
 
 

 
ACOUSTICS 2016 Page 7 of 7 

 

 

estimate of GY  for the given value of GX . The minimization in (17) was performed using the MATLAB optimization 

function lsqnonlin. The required initial estimates of },{ 2D rVλ  were computed as follows.  

 
Table 2: Similar to Table 1 but for type ‘B’ 5.56 mm calibre bullet ( oV = 912.37 m/s and bC  = 60.34 (m.s)0.5). 

 (a) First scenario: GX = 74.45 m, GY  = 19.64 m, QY  = 20.64 m,  = -0.77o, rV = 839.35 m/s 

bĈ (m.s)0.5 
̂  (deg) QŶ  (m) rV̂  (m/s) GŶ  (m) 

 60.34         (-0.03, 0.22)  (0.01, 0.05) (0.59, 9.47) (-0.02, 0.29) 

 40          (0.04, 0.23)   (0.01, 0.05)        (-4.67, 9.50)  (0.06, 0.29) 

 200         (-0.12, 0.22)   (0.01, 0.05)  (8.04, 9.42) (-0.14, 0.29) 

          (-0.16, 0.22)   (0.02, 0.05)       (11.35, 9.40) (-0.19, 0.29) 

CRLB              0.25                0.05             9.42              0.32 

  

 (b) Second scenario: GX = 474.45 m, GY  = 19.64 m, QY  = 21.09 m,  = -0.18o, rV = 499.19 m/s 

bĈ (m.s)0.5 
̂  (deg) QŶ  (m) rV̂  (m/s) GŶ  (m) 

 60.34 (-0.01, 0.35) (-0.01, 0.15)  (0.14, 3.82)        (-0.06, 2.91) 

 40  (0.30, 0.36)  (-0.05, 0.15) (-7.49, 3.89)  (2.43, 2.95) 

 200 (-0.46, 0.35)   (0.04, 0.15)        (11.49, 3.71) (-3.79, 2.85) 

  (-0.67, 0.34)   (0.06, 0.15)        (16.85, 3.66) (-5.52, 2.84) 

CRLB              0.35                 0.15              3.99              2.87 

  

 (c) Third scenario: GX = 474.45 m, GY  = 19.64 m, QY  = 71.40 m,  = -6.23o, rV = 497.11 m/s 

bĈ (m.s)0.5 
̂  (deg) QŶ  (m) rV̂  (m/s) GŶ  (m) 

 60.34  (0.02, 0.41)  (0.01, 0.13)  (0.00, 4.35)  (0.17, 3.43) 

 40 (-0.85, 0.41)   (0.23, 0.13)         (-7.05, 4.40) (-6.91, 3.45) 

 200  (1.32, 0.41)  (-0.32, 0.11)        (10.51, 4.28)        (10.72, 3.42) 

   (1.93, 0.41)  (-0.47, 0.11)        (15.52, 4.25)        (15.64, 3.43) 

CRLB              0.41               0.13              3.83              3.43 
 

 
 Each of the three sensor pairs },{ 21 SS , },{ 43 SS  and },{ 65 SS  formed an acoustic node (see Fig. 2) that was 

able to provide a DOA estimate of the SW at the node. The DOA of the SW at a given node is specified by the unit 
directional vector pointing from the node’s reference sensor nS  to the detach point nP  of the SW arriving at nS : 

 
 ||||)( vnnQvnnQn xx eRReRRe  . (18)  

 

Good initial estimates of },{ 2D rVλ  were obtained using the DOA estimates 5̂  and 1̂  of the SW at the respective 

outermost nodes },{ 65 SS  and },{ 21 SS , and the time delay estimate 51̂  between the SW arrivals at 5S  and 1S  (the 

respective reference sensors of these two nodes). The DOA estimates were generated by adding zero-mean, 

independent, Gaussian noise with a standard deviation of o5.0 to their predicted values. The initial estimates of 
},,{ rQ VY  are given by (Lo & Ferguson 2012) 
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where |]2)ˆˆ(cos[|sinˆ
15

1
5    , and ),( 55 r  are the polar coordinates of 5S . 

 For each scenario, a total of 100 simulations were carried out and the statistics of }ˆ,ˆ,ˆ,ˆ{ GrQ YVY  were 

compiled. The bias errors and standard deviations in the estimates of these four parameters are shown in Table 1 
for bullet ‘A’ and Table 2 for bullet ‘B’. In each table, the second row corresponds to the results when the estimated 

value bĈ  in (17) equals the actual value bC ; the third to fifth rows correspond to the results when bĈ  equals 40, 

200 and  (equivalent to constant bullet speed) respectively. Both Tables 1 and 2 were obtained using the exact 

error covariance matrix N in (17). Simulations were also performed using )(ˆ 2 EIN  , which resulted in slightly 

larger standard deviations in most cases due to the mismatch between N̂  and N. 

 The following observations can be made from Tables 1 and 2. The CRLBs for }ˆ,ˆ,ˆ{ GQ YY  increase with the 

firing range GX  for very small trajectory angles  (cf. first and second scenarios). The CRLBs for }ˆ,ˆ{ GY  increase with 

 for a given GX  (cf. second and third scenarios). When bb CC ˆ , all bias errors are small and all standard deviations 

are close to the CRLBs for each scenario. As bĈ  deviates from bC , all bias errors generally increase in magnitude but 

there are little changes in the standard deviations for each scenario; also, the bias errors in }ˆ,ˆ,ˆ{ Gr YV obtained with 

40ˆ bC )( bC  can be larger or smaller in magnitude than those obtained with  ,200ˆ
bC )ˆ( bCC   for each 

scenario, depending on whether the bullet is type ‘A’ or type ‘B’. For a given bb CC ˆ , all bias errors increase in 

magnitude with the firing range GX  for very small trajectory angles  (cf. first and second scenarios); also, the bias 

errors in }ˆ,ˆ,ˆ{ GQ YY  increases in magnitude with  for a given GX  (cf. second and third scenarios). 

Among the results for bb CC ˆ  in Table 2(c), the root-mean-square errors (RMSEs) in }ˆ,ˆ,ˆ,ˆ{ GrQ YVY  are the 

biggest when bĈ . Figure 3 shows the estimated bullet trajectories of all 100 simulations for the third scenario 

of bullet ‘B’ when (a) bĈ  is exact and (b) bĈ . Also shown in Fig. 3 are the estimated positions for the point of 

fire as well as the actual positions of the three sensor pairs (or nodes), the point of fire and the target. 
 

 
Figure 3: Estimated bullet trajectories (green lines) of all 100 simulations for the third scenario of bullet ‘B’ 

when (a) bĈ  is exact and (b) bĈ = . Blue dots indicate estimated positions for the point of fire. 
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6. EXPERIMENTAL RESULTS 

 In the field experiment (Lo & Ferguson 2012), acoustic data were recorded only for a short firing range. The 
geometry configuration for the six sensors 1S  to 6S  (which formed three sensor pairs or acoustic nodes), the point 

of fire and the target was similar to Fig. 2 but they were not located exactly on the XY-plane. Their X- and Y-
coordinates were the same as those for the first scenario considered in Sections 3 and 5. The Z-coordinates of the 
sensors ranged from 0 to 0.32 m, while those of the point of fire and the target were -1.49 m and 2.21 m 
respectively. However, as the separation distances between the sensors, the point of fire and the target were much 
larger than the differences between their Z-coordinates, and the horizontal miss distance was much larger than the 
vertical miss distance for each sensor, the assumption of a 2D geometry was approximately valid. Therefore, in the 
bullet trajectory estimation, the sensors, the point of fire and the target were assumed to lie on the XY-plane.  
 A total of 51 rounds of type ‘A’ bullet and 107 rounds of type ‘B’ bullet were fired. The sampling frequency of 
the output of each sensor was 250 kHz. For a given shot, the arrival time of the SW at each sensor was estimated 
using a wavelet-based edge detector (Sadler, Pham & Sadler 1998), and the results were then used to compute the 
time delay estimate between the SW arrivals at kS  and 1S , for 62  k . The time delay error covariance matrix N 

for each bullet type was estimated using the corresponding (51 or 107) sets of time delay measurements. 
 The DOA 12 k  of the SW at node k (consisting of 12 kS  and kS2 ) was estimated using the following equation  

 

 )ˆ(sinˆ 12,2
1

12 kkkk dc 


   ,     2ˆ2 12   k ,    31  k , (20) 

 

where 12,2ˆ
kk  is the estimate of the time delay between the SW arrivals at kS2 and 12 kS ; kd  ( 1 m) is the 

separation distance between kS2 and 12 kS . The observed standard deviations in 12,2ˆ
kk  and 12ˆ

k  are 

approximately 0.01 ms and o5.0  respectively, for 31  k  and for both bullet types. The respective DOA estimates 

( 51 ˆandˆ  ) at nodes 1 and 3, and the time delay estimate ( 51̂ ) between the SW arrivals at 5S  and 1S  (the 

respective reference sensors of nodes 3 and 1) were used in (19) to compute the required initial estimates of 
},,{ rQ VY  for the minimization in (17).    

 Tables 3 and 4 show the bias errors and standard deviations in the estimates of }ˆ,ˆ,ˆ,ˆ{ GrQ YVY  for type ‘A’ and 

type ‘B’ bullets respectively. In each table, the second row corresponds to the results when the estimated value bĈ  

in (17) is exact; the third to fifth rows correspond to the results when bĈ  equals 40, 200 and  respectively; the last 

row shows the CRLBs on the error standard deviations for unbiased estimators. Tables 3 and 4 were obtained using 
the observed time delay error covariance matrices for bullets ‘A’ and ‘B’ in (17) respectively. Results were also 

obtained using )(ˆ 2 EIN  , which resulted in slightly larger standard deviations. Comparing Table 3 with Table 1(a) 

and Table 4 with Table 2(a), the simulation results and the experimental results are in good agreement on the 

standard deviations, but disagree on the bias errors. When bĈ  equals the actual value, the bias errors from the field 

experiment are larger than those from the simulations. This and any other discrepancies are likely due to the 
measurement uncertainty in the actual values of the ballistic model parameters of the bullets, the assumption of an 
approximate 2D geometry, and the positional errors of the sensors, point of fire and target in the field experiment.  

7. CONCLUSIONS 

 The performance of the NLS method for bullet trajectory estimation has been evaluated for the 2D case with 
a specific sensor configuration by processing simulated data (for both short and long firing ranges) and real data (for 
the short range only), and by comparing the error standard deviations with the CRLBs (for all scenarios). The NLS 
method is able to provide accurate estimates of the bullet trajectory and subsequently the position of fire (given its 
X-coordinate) for each case when the bullet’s ballistic constant is exactly known. An erroneous ballistic constant has 
little effect on the standard deviations in the parameter estimates, but can result in large bias errors that depend on 
the bullet type, firing range and trajectory angle (or, in general, the positions of the target and point of fire) for the 
given sensor configuration. For the worst case (third scenario, bullet ‘B’) considered in this paper, the simulation 
result shows that the RMSEs in the trajectory angle and Y-coordinate of the point of fire are 1.38o 

and 11.25 m 
respectively when the ballistic constant (whose actual value is 60.34) is mistaken to be 200 (m.s)0.5. A possible 
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solution to the problem of uncertainty in the bullet’s ballistic constant bC  is to extend the NLS method to estimate 

simultaneously both },{ rVλ  and bC  (which will require a larger number of sensors). This and the optimal placement 

of sensors in the protected area will be the subjects of future investigation. 
 

Table 3: Experimental results (2nd to 5th rows) and CRLBs (6th row) for type ‘A’ 7.62 mm calibre bullet, GX = 74.4 m, 

GY  = 19.6m and QY  = 20.6 m. Experimental results were obtained for different values of bĈ : 90.82 (actual value), 

40, 200, and . For each of }ˆ,ˆ,ˆ,ˆ{ GrQ YVY , (1st entry, 2nd entry) = (bias error, standard deviation).  

bĈ (m.s)0.5 
̂  (deg) QŶ  (m) rV̂  (m/s) GŶ  (m) 

 90.82 (0.23, 0.21) (0.1, 0.10)        (-8.48, 6.91)        (0.39, 0.28) 

 40 (0.33, 0.21)  (0.1, 0.10)      (-18.37, 6.97) (0.53, 0.28) 

 200 (0.18, 0.21)  (0.1, 0.10) (-4.09, 6.89) (0.34, 0.28) 

  (0.14, 0.21)  (0.1, 0.10)         (-0.38, 6.87) (0.28, 0.28) 

CRLB             0.21              0.10              7.13             0.28 

 

Table 4: Similar to Table 3 but for type ‘B’ 5.56 mm calibre bullet.  

bĈ (m.s)0.5 
̂  (deg) QŶ  (m) rV̂  (m/s) GŶ  (m) 

 60.34         (0.14, 0.25) (-0.24, 0.05)       (-7.51, 9.20)        (-0.06, 0.32) 

 40         (0.21, 0.25)  (-0.25, 0.05)     (-12.78, 9.24)  (0.03, 0.32) 

 200         (0.04, 0.25)  (-0.24, 0.05) (-0.02,9.15)        (-0.18, 0.31) 

         (-0.00, 0.24)  (-0.23, 0.05)         (3.32, 9.12)        (-0.24, 0.31) 

CRLB              0.25                0.05             9.42             0.32 
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