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ABSTRACT

One approach to locate the point of fire of a supersonic bullet is to first estimate the trajectory of the bullet and then
trace the trajectory back to topographic or man-made obstructions on a digital map. The supersonic flight of a bullet
generates a ballistic shock wave, and the trajectory of the bullet can be estimated by measuring the time delay between
the shock wave arrivals at each sensor pair of an acoustic array and using an exterior ballistics model for the bullet to
account for its decreasing speed with the distance travelled. In this paper, the bullet trajectory estimation problem is
formulated, followed by a Cramer-Rao lower bound error analysis. A nonlinear least-squares (NLS) solution to the bullet
trajectory estimation problem is then described, which assumes the ballistic constant of the bullet is known a priori. Any
uncertainty in the ballistic constant will degrade the accuracy of the bullet trajectory estimation and subsequently the
localization accuracy for the point of fire. The performance of the NLS method when the ballistic constant is exactly
known and the degrading effect of an erroneous ballistic constant are evaluated using both simulated data and real data.

1. INTRODUCTION

Hostile small arms fire poses a serious threat to the military community. A capability to locate the sniper or
point of fire is essential for an effective counter-sniper system. The firing of a supersonic bullet produces two
acoustic impulses: the muzzle blast (MB) generated during the launch of the bullet from the rifle and the ballistic
shock wave (SW) generated by the supersonic flight of the bullet (Maher 2007). The point of fire can be located
using the MB arrivals, the SW arrivals, or both at an array of acoustic sensors distributed around the target of the
sniper or within the protected area (Damarla, Kaplan & Whipps 2010, Duckworth, Gilbert & Barger 1997, Lindgren,
Wilsson, Gustafsson & Habberstad 2010, Lo & Ferguson 2011, Lo & Ferguson 2012). As the shooting range
increases, the MB arrivals become too weak and only the SW arrivals can be used. Duckworth et al proposed a
method using only the SW arrivals to estimate the trajectory of the bullet, which can then be used to locate the
sniper if digital maps are available to trace the trajectory back to topographic or man-made obstructions
(Duckworth, Gilbert & Barger 1997). Specifically, this method for bullet trajectory estimation measures the time
delay between the SW arrivals at each sensor pair of the array and adopts an exterior ballistics model for the
supersonic bullet to account for the deceleration of the bullet along its trajectory. The method assumes that one of
the two ballistic model parameters: the ballistic constant of the bullet is known a priori or has been correctly
determined by estimating the calibre from the received shock wave waveform. However, this assumption is
impractical because the ballistic constant spans a wide range of values due to a large number of bullet types that
are available (Lo & Ferguson 2015), and there is not a one-to-one relationship between the ballistic constant of the
bullet and its calibre (Lo & Ferguson 2016). Any uncertainty in the ballistic constant will degrade the accuracy of the
bullet trajectory estimation and subsequently the accuracy of the sniper localization. This paper formulates the
bullet trajectory estimation problem and presents a Cramer-Rao lower bound (CRLB) error analysis. A nonlinear
least-squares (NLS) solution to the bullet trajectory estimation problem is then described, which assumes the
ballistic constant of the bullet is known a priori or has been correctly estimated by some means. The performance of
the NLS method when the ballistic constant is exactly known and the degrading effect of an erroneous ballistic
constant are evaluated using both simulated data and real data recorded from a field experiment for two different
types of bullets.

2. PROBLEM FORMULATION

Figure 1(a) shows the general geometrical configuration for an array of N acoustic sensors, the point of fire G,
and the linear trajectory of the bullet passing through a point Q on the YZ-plane. The position vector of sensor n

(denoted as S, ) is given by R, =[Xn,Yn,Zn]T ,for 1<n<N, and the position vectors of the two points G and Q are

given by R =[XG,YG,ZG]Tand Rq =[0,YQ,ZQ]T, respectively, where the superscript T denotes vector transpose.
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Figure 1: (a) General geometric configuration for an array of N acoustic sensors, the point of fire G, and the linear
trajectory of the bullet passing through a point Q on the YZ-plane. (b) Schematic diagram showing the bullet
trajectory, point of fire G, point Q, and detach point P, of the SW arriving at sensor S,.

The direction of travel of the bullet is described by the unit directional vector e, = —[cosOcosg,cosbsing,sind]”,
where 6 and ¢ are the respective elevation and azimuth angles of the point of fire G relative to point Q. The
trajectory of the bullet is specified by the set of four parameters {6,4,Y,,Z,}.

2.1 Ballistic model
Let x denote the distance from the point of fire G along the bullet trajectory — see Fig. 1(a), and c the speed of
sound in air. The (supersonic) speed of the bullet at x can be expressed accurately as (Lo & Ferguson 2016)

vix) =2 —C;x)?, 0<x<x,, (1)

where V, =v(0) is the muzzle speed of the bullet and C, is its ballistic constant in (m.s)®’; X, :Cb(Vol/2 —cl/z) is
the distance beyond which the bullet speed becomes subsonic. The time required for the bullet to travel to a
distance x from the point of fire G can be derived from (1) as (Lo & Ferguson 2012)
tx)=C,Ivix) Y2 v, 2], 0<x<x,. (2)
Let r (< x.) denote the distance from the point of fire G to point Q. The variable x"=r—x then represents
the displacement from point Q along the bullet trajectory — see Fig. 1(a); x' is positive if r>x and negative
otherwise. Substituting x =r—x' into (1) and after some manipulation gives

V(XY =vir—x') = (VY +C,*x')?, r—x.<x'<r, (3)

where V, =v(r)= (Vol/2 —C,;lr)2 is the speed of the bullet at point Q. The quantity v'(x’) represents the speed of the
bullet at a position x’ relative to point Q. Substituting x =r—x’ into (2) and after some manipulation gives

t'(x)=t(r—x")=t(r)—C, [V, ? —v'(x')¥?], r—x_<x'<r, (4)
where t(r)=C, (Vfl/2 —Vofl/z) is the time required for the bullet to travel from the point of fire G to point Q. The
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quantity t'(x') represents the time required for the bullet to travel from the point of fire G to a position x' relative
to point Q. When x’ >0, the second term in (4) is positive and represents the bullet’s time of travel to point Q from
a distance x’ . When x' <0, the second term in (4) is negative and its magnitude represents the bullet’s time of
travel to a distance |x'| from point Q. It can be easily shown that taking the limit as C, — oo (equivalent to the
bullet travelling at a constant speed V;, =V, ) reduces (4) to t'(x") =t(r)—x"/V, .

2.2 Time delay model
Figure 1(b) is a schematic diagram showing the bullet trajectory, point of fire G, point Q, sensor §,, and
detach point P, of the SW arriving at S,, 1<n<N. The detach point P, is located on the trajectory at a position

’

x, relative to point Q. If P, lies before point Q as shown in Fig. 1(b), then x, >0; if P, lies after point Q, then

x), < 0. The following derivations apply to both cases. The opening angle 6, of the SW at P, is given by
0, :sin’l[c/v(xn J=sin™? [c/v'(x)]. (5)

The distance r, to point Q from sensor S,, and the angle «, between the unit directional vector e, and the
position vector of point Q relative to sensor S, are given, respectively, by

r.=|IRq—R, 1], cosa,=e]Rq—R,)/r, (6)

where ||.|| denotes the L, norm of a vector. Applying the law of sines to the triangle P,QS, gives
r, /cosB, =x;, [cos@, —a;,), which can be expanded as

(x;, —r, cosa, )cosd, =r, sina;, sind, . (7)

Squaring both sides of (7) and using (5) and (3) yields (after some manipulation) a sixth-order polynomial equation
of x, :

£, 1l V,,Cl) =38 0a, X" =0, (8)
where a,, =C,*, a,, =2C,>(-C,*r! cosal, +2V¥?), a,, =C,*[(C, r! cosal,)* —8C, V*r! cosar, +6V.], (9a)
a,, =4C;*VY2[(C;rr! cosal)? —3C, VY2 cosal +V. ], (9b)
a,, =6V.(C,r, cosa)? —8C, V¥?r! cosal, +V? —c?, (9¢)
a,s =—2r cosa! (—2C,*V¥?r! cosal +V?* —c?), a,c =r'* (V2 cos’ a), —c?). (9d)

Equation (8) shows that the position x; of the detach point P, relative to point Q can be computed by finding the
roots of the sixth-order polynomial equation (8). The relevant root is the real root that satisfies (7).

The time of arrival of the SW at sensor S, is given by

7, =t'(x))+s,/c, (10)

where s, is the distance from P, to S, . It can be shown from Fig. 1(b) that

s, =r,sina, /cos6, . (11)
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The time delay 7,,, between the SW arrivals at sensors S, and S,, is defined as the arrival time 7, of the SWat §,
relative to the arrival time r,, oftheSWat §S,,: ,, =7,—7,,. Using (10) and (4), z,,,, can be expressed as

Tom =Co V(X)) Y2 —v'(x! ) Y2 ]4+(s, —5,,)/c, L<m,n<N. (12)

Equations (3), (5)-(9), (11) and (12) constitute a time delay model for the SW arrivals at sensors S, and S, . Define
the bullet trajectory parameter vector 7\:[9,¢,YQ,ZQ]T . This time delay model is a function of A, V, and C,, i.e,,
Tom =Tam(\,V,,Cp) . Given the bullet trajectory parameter vector A, the speed V, of the bullet at point Q and its
ballistic constant C,, the time delay between the SW arrivals at S, and S, can be computed as follows.
1. Fork=m,n,
a. Compute r, and «, using (6).
b. Find x, using (8), (9a)-(9d), (7), (5) and (3).
c. Compute v'(x;) using (3) and then s, using (11) and (5).
2. Compute 7, using (12).

2.3 Objective
In this paper any quantity with a caret » overhead represents an estimate of that quantity. For example, 7,,

denote the estimate of the time delay 7, between the SW arrivals at sensors S, and §;, for 2<k<N. In the
presence of additive measurement errors, these (N-1) time delay estimates can be written in vector form as

b=bQ,V,,C,)+n, (13)

where b=[%,,,751,...,7511", b=[s1,731,...,73u]"» and n=[n,,n,,...,ny 1" are the time delay observation
vector, time delay model vector, and time delay observation error vector, respectively. The objective is to estimate
A along with V,, given the time delay observation vector b and the ballistic constant C, of the bullet.

In this paper, X; is assumed to be known (e.g. an obstruction exists at X; on the digital map). Once A is
estimated, the distance r to the point of fire from point Q and the y- and z-coordinates (Y;,Z;) of the point of fire
can be determined from the equation R; =R, —re,, or

r=Xg/cosdcosp, Yo =Yq+rcosOsing, Zo=2Zy+rsind. (14)
3. CRLB ERROR ANALYSIS

Assume the time delay observation error vector n is zero-mean, Gaussian distributed, with a covariance
matrix N. Given the ballistic constant C,, the CRLB on the error covariance matrix for any unbiased estimator of

{A,V.} is given by (Lindgren, Wilsson, Gustafsson & Habberstad 2010)
amV, [c,)=[ve' N (vb') |, (15)

Where V =[6/69,6/6¢,8/6YQ,6/6ZQ,6/8V,]T is the gradient operator and Vb’ is evaluated at the actual values of

A and V,. The expressions for the elements of Vb’ can be derived using (12), (11), (5)-(7) and (3). Using a first-
order approximation, the CRLB on the error covariance matrix for any unbiased estimator of {Y;,Z;} is given by

CY;,Zs |C,)=HQ AV, |C,)H, (16)

where H™ =[0/06,0/0¢,0/0Y,,0/0Z4,0/0V,1" [Ys,Zs1, which can be computed using (14).
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Figure 2: Geometry configuration used for CRLB analysis, simulations and field experiment.

Consider the two dimensional (2D) case as shown in Fig. 2, where the sensor array, the point of fire, and the
target are located on the XY-plane. In this case, =2,=2; =0 and A reduces to A,, :[¢,YQ]T. The array
consists of three pairs of sensors (each forming an acoustic node): {S;,S,}, {S;,5,} and {S;,S¢} distributed on the
Y-axis, with S, located at (0, 0) and S, at approximately (80, 0) m. The intersensor spacing for each sensor pair (or

node) is about 1 m, and the separation distance between two adjacent nodes is approximately 40 m. The array is
used to estimate any bullet trajectory passing between the two outermost nodes (nodes 1 and 3).
First, consider a type ‘A’ 7.62 mm calibre bullet (V, = 833.69 m/s and C, = 90.82 (m.s)®?). In the first

scenario, the firing position (X;,Y;) = (74.4, 19.6) m and the target position (X;,Y;) =(-44.2, 21.2) m. The CRLBs
(on the error standard deviations) for {&,VQ,V,,?G} are calculated using (15) and (16) for the 2D case, and the
results are shown in the last row of Table 1 (a), with the actual values of {g,Y,,V,} shown on top of the table. The

time delay measurement error covariance matrix N used in (15) is derived using real data recorded from a field
experiment (see Section 6). In the second scenario, the X-coordinate X of the point of fire is increased by 400 m

and as a result the error covariance matrix N is multiplied by a realistic factor of 2.2, while other conditions remain
the same as for the first scenario. The calculated CRLBs for {&,VQ,V,,VG} are shown in the last row of Table 1(b). In
the third scenario, the Y-coordinate Y, of the target is changed to 76.2 m while other conditions remain the same
as for the second scenario. The calculated CRLBs for {¢?,)7Q ,\7, ,?G} are shown in the last row of Table 1(c). The above
CRLB calculations are repeated for a type ‘B’ 5.56 mm calibre bullet (V, =912.37 m/s and C, = 60.34 (m.s)®?), and
the corresponding results for the three scenarios are shown in the last rows of Tables 2(a), (b) and (c) respectively.

4. NLS METHOD FOR BULLET TRAJECTORY ESTIMATION
The NLS method is formulated based on (13). Given an estimated (or presumed) value fb for the ballistic
constant of the bullet, the NLS estimates of {A,V,} are given by

AV, }=argminb—bA",V/,C,))" N [b—bA",V/,C,)], (17)
%

where )A\:[é,é,);a,fa]r. Substituting {é,;z;,)?a,fa} into (14) gives {?G,fG}. Equation (17) requires the time delay
measurement error covariance matrix N. If it is unknown, then a coarse estimate I§l=o*2(I+E) can be used instead
(where o? is a constant that can be omitted; I is the identity matrix; E is the unit matrix consisting of ones), which
will more or less degrade the precision of {i\,\7,} . Any error in 6b will also induce bias errors in {)A\,V,}. Note that the

NLS estimates given by (17) are also the maximum likelihood estimates when éb is exact and the time delay

measurement error vector n is zero-mean, Gaussian distributed, with a covariance matrix N. Equation (17) can be
solved iteratively using existing numerical optimization algorithms, which often require good initial estimates of
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{A,V,} for fast convergence to the global minimum. If the acoustic array is configured as an array of acoustic nodes,

each being a smaller array of sensors capable of providing estimates of the direction of arrival (DOA) of the SW at
the node, then initial estimates of {A,V,} can be obtained using the DOA estimate of the SW at each node and the

time delay estimate between the SW arrivals at each pair of nodes, with the assumption that the bullet speed is
approximately constant between the detach point for each node and point Q. For the 2D case, the method to
compute the initial estimates is similar to that described in a previous paper (Lo & Ferguson 2012).

Table 1: Simulation results (2nd to 5th rows) and CRLBs (6th row) for type ‘A’ 7.62 mm calibre bullet (V, =833.69
m/s and C, =90.82 (m.s)*?). Simulation results were obtained for different values of éb :90.82 (actual value), 40,

200, and . For each of {¢3,3;Q/‘7r ,\?G}, (1st entry, 2nd entry) = (bias error, standard deviation).

(a) First scenario: X;=74.45m, Y; =19.64m, Y, =20.64 m, ¢= -0.77°, V,=787.02m/s

¢, (m.s)>® ¢ (deg) Yq (m) V. (m/s) Ve (m)
90.82 (0.01, 0.20) (0.01,0.11) (-0.64, 6.99) (0.02, 0.27)
40 (0.11, 0.20) (0.01, 0.11) (-10.62, 7.03) (0.14, 0.27)
200 (-0.04, 0.20) (0.01, 0.11) (3.78, 6.97) (-0.04, 0.27)
o (-0.07, 0.20) (0.01, 0.11) (7.51, 6.95) (-0.09, 0.27)
CRLB 0.21 0.10 7.13 0.28
(b) Second scenario: X;=474.45m, Y, =19.64 m, Y, =21.09 m, ¢=-0.18° V, =559.31 m/s

¢, (m.s)*® $ (deg) Vo (m) v, (m/s) Vs (m)
90.82 (0.00, 0.35) (-0.03, 0.26) (0.61, 5.41) (-0.02, 2.85)
40 (0.28, 0.35) (-0.02, 0.27) (-12.18, 5.55) (2.31, 2.89)
200 (-0.12, 0.34) (-0.03, 0.26) (6.45, 5.35) (-1.06, 2.84)
o (-0.23, 0.34) (-0.03, 0.26) (11.50, 5.30) (-1.95, 2.83)
CRLB 0.35 0.26 5.34 2.85

(c) Third scenario: X;=474.45m, Y; =19.64m, Y, =71.40m, ¢= -6.23°, V. =557.84 m/s

C,(m.s)* $ (deg) Vo (m) V, (m/s) Vs (m)
90.82 (-0.01, 0.48) (-0.00, 0.10) (0.17,7.19) (-0.11, 3.97)
40 (-0.87,0.47) (0.21, 0.10) (-12.14, 7.24) (-7.08,3.91)
200 (0.36, 0.48) (-0.10, 0.09) (6.06, 7.17) (2.92, 4.01)
o (0.67, 0.49) (-0.19, 0.09) (11.37, 7.16) (5.44, 4.06)
CRLB 0.44 0.10 6.72 3.67

5. SIMULATION RESULTS

Computer simulations were performed in MATLAB® for the same sensor configuration and scenarios
considered in Section 3. Given the sensor positions (X,,Y,), 1<n<N, the firing position (X;,Y;), the target

position (X;,Y;), and the bullet’s ballistic model parameters {V,,C,}, the bullet trajectory parameter vector
Ap =[¢,YQ]T and the bullet speed V, at point Q were calculated using the equation e, =(R; —R;)/| IR —R; ||,
(14) and (1) . Then the time delay model vector b=|[r,,, r31,...,z'N1]T was computed using the procedure outlined

in Section 2.2. Next, the time delay observation vector B:[fu, T31,...,Ty1] was generated by adding a zero-mean

Gaussian error vector with a covariance matrix N to b. The error covariance matrices used here were the same as
those previously used for CRLB calculations. The bullet trajectory parameter vector A,, was estimated along with

V. using the NLS method (Eq. (17) for the 2D case), and the results were then substituted into (14) to obtain an
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estimate of Y for the given value of X, . The minimization in (17) was performed using the MATLAB optimization
function Isqnonlin. The required initial estimates of {A,;,V,} were computed as follows.

Table 2: Similar to Table 1 but for type ‘B’ 5.56 mm calibre bullet (V, = 912.37 m/s and C, = 60.34 (m.s)o's).

(a) First scenario: X;=74.45m, Y; =19.64m, Y, =20.64 m, ¢= -0.77°, V., =839.35m/s

¢, (m.s)°? $ (deg) Vo (m) V. (m/s) Vs (m)

60.34 (-0.03, 0.22) (0.01, 0.05) (0.59, 9.47) (-0.02, 0.29)
40 (0.04, 0.23) (0.01, 0.05) (-4.67, 9.50) (0.06, 0.29)
200 (-0.12, 0.22) (0.01, 0.05) (8.04, 9.42) (-0.14, 0.29)
o (-0.16, 0.22) (0.02, 0.05) (11.35, 9.40) (-0.19, 0.29)
CRLB 0.25 0.05 9.42 0.32

(b) Second scenario: X;=474.45m, Y; =19.64m, Y, =21.09m, ¢= -0.18°% V, =499.19 m/s

éb (m.s)? ¢3 (deg) VQ (m) \7r (m/s) YG (m)

60.34 (-0.01, 0.35) (-0.01, 0.15) (0.14, 3.82) (-0.06, 2.91)
40 (0.30, 0.36) (-0.05, 0.15) (-7.49, 3.89) (2.43,2.95)
200 (-0.46, 0.35) (0.04, 0.15) (11.49, 3.71) (-3.79, 2.85)
o (-0.67, 0.34) (0.06, 0.15) (16.85, 3.66) (-5.52, 2.84)
CRLB 0.35 0.15 3.99 2.87

(c) Third scenario: X;=474.45m, Y; =19.64m, Y, =71.40 m, ¢= -6.23°% V. =497.11m/s

¢, (m.s)°® ¢ (deg) Yq (m) V. (m/s) Ys (m)

60.34 (0.02, 0.41) (0.01, 0.13) (0.00, 4.35) (0.17, 3.43)
40 (-0.85, 0.41) (0.23,0.13) (-7.05, 4.40) (-6.91, 3.45)
200 (1.32,0.41) (-0.32,0.11) (10.51, 4.28) (10.72, 3.42)
o (1.93,0.41) (-0.47,0.11) (15.52, 4.25) (15.64, 3.43)
CRLB 0.41 0.13 3.83 3.43

Each of the three sensor pairs {5;,S,}, {S5,5,} and {S;,S.} formed an acoustic node (see Fig. 2) that was

able to provide a DOA estimate of the SW at the node. The DOA of the SW at a given node is specified by the unit
directional vector pointing from the node’s reference sensor S, to the detach point P, of the SW arrivingat S, :

e, =(R,—R,—x;e,)/| IR, R, —x,e, || (18)

Good initial estimates of {A,;,V,} were obtained using the DOA estimates ¢, and ¢, of the SW at the respective
outermost nodes {Sg,S¢} and {S;,S,}, and the time delay estimate 7, between the SW arrivals at Sg and S, (the
respective reference sensors of these two nodes). The DOA estimates were generated by adding zero-mean,

independent, Gaussian noise with a standard deviation of 0.5°to their predicted values. The initial estimates of
{#,Yq,V,} are given by (Lo & Ferguson 2012)

R [ sinp. —sing N CTeq 4. sin@;°+é )| - Lo

COSQ, —COSPs 2cosb; cosg’

ACOUSTICS 2016 Page 7 of 7



9-11 November 2016, Brisbane, Australia Proceedings of ACOUSTICS 2016

where és =sin ' |cosl@s —,)/21], and (rs,ys) are the polar coordinates of S, .
For each scenario, a total of 100 simulations were carried out and the statistics of {&,YQ,V,,VG} were

compiled. The bias errors and standard deviations in the estimates of these four parameters are shown in Table 1
for bullet ‘A’ and Table 2 for bullet ‘B’. In each table, the second row corresponds to the results when the estimated

value éb in (17) equals the actual value C,; the third to fifth rows correspond to the results when éb equals 40,
200 and oo (equivalent to constant bullet speed) respectively. Both Tables 1 and 2 were obtained using the exact
error covariance matrix N in (17). Simulations were also performed using IQ:GZ(I+E) , Which resulted in slightly
larger standard deviations in most cases due to the mismatch between N and N.

The following observations can be made from Tables 1 and 2. The CRLBs for {é,YQ,VG} increase with the
firing range X, for very small trajectory angles ¢ (cf. first and second scenarios). The CRLBs for {(;3,?6} increase with
¢for a given X (cf. second and third scenarios). When (3,, =C,, all bias errors are small and all standard deviations
are close to the CRLBs for each scenario. As fb deviates from C,, all bias errors generally increase in magnitude but
there are little changes in the standard deviations for each scenario; also, the bias errors in {¢3,\7, ,?G}obtained with
(fb =40 (<C,) can be larger or smaller in magnitude than those obtained with fb =200 (6>Cb) for each
scenario, depending on whether the bullet is type ‘A’ or type ‘B’. For a given éb #Cp, all bias errors increase in
magnitude with the firing range X, for very small trajectory angles ¢ (cf. first and second scenarios); also, the bias
errorsin {gz;,?Q,)?G} increases in magnitude with ¢ for a given X (cf. second and third scenarios).

Among the results for éb #C, in Table 2(c), the root-mean-square errors (RMSEs) in {é,?Q,V,,?G} are the
biggest when éb =0, Figure 3 shows the estimated bullet trajectories of all 100 simulations for the third scenario

of bullet ‘B’ when (a) éb is exact and (b) éb =o0. Also shown in Fig. 3 are the estimated positions for the point of
fire as well as the actual positions of the three sensor pairs (or nodes), the point of fire and the target.

100 I I I I I I I I I I I
o
= 50 | -
;E/ )
ol o (a) -
1 1 1 1 1 1 1 1 1 1 1
-50 0 50 100 150 200 250 300 350 400 450 500
X (m)
100 1 1 1 1 1 1 1 1 1 1 1
@\O node 3 {S, S¢}
target N
€ %0t -
; Onode 2 {S;,S,}
ol Onode 1{S,,5,} (b) point of fire |
1 1 1 1 1 1 1 1 1 1 1
-50 0 50 100 150 200 250 300 350 400 450 500
X (m)

Figure 3: Estimated bullet trajectories (green lines) of all 100 simulations for the third scenario of bullet ‘B’
when (a) éb is exact and (b) éb = 0. Blue dots indicate estimated positions for the point of fire.
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6. EXPERIMENTAL RESULTS
In the field experiment (Lo & Ferguson 2012), acoustic data were recorded only for a short firing range. The
geometry configuration for the six sensors S, to S, (which formed three sensor pairs or acoustic nodes), the point

of fire and the target was similar to Fig. 2 but they were not located exactly on the XY-plane. Their X- and Y-
coordinates were the same as those for the first scenario considered in Sections 3 and 5. The Z-coordinates of the
sensors ranged from 0 to 0.32 m, while those of the point of fire and the target were -1.49 m and 2.21 m
respectively. However, as the separation distances between the sensors, the point of fire and the target were much
larger than the differences between their Z-coordinates, and the horizontal miss distance was much larger than the
vertical miss distance for each sensor, the assumption of a 2D geometry was approximately valid. Therefore, in the
bullet trajectory estimation, the sensors, the point of fire and the target were assumed to lie on the XY-plane.

A total of 51 rounds of type ‘A’ bullet and 107 rounds of type ‘B’ bullet were fired. The sampling frequency of
the output of each sensor was 250 kHz. For a given shot, the arrival time of the SW at each sensor was estimated
using a wavelet-based edge detector (Sadler, Pham & Sadler 1998), and the results were then used to compute the
time delay estimate between the SW arrivals at S, and S;, for 2<k <6. The time delay error covariance matrix N

for each bullet type was estimated using the corresponding (51 or 107) sets of time delay measurements.
The DOA ¢,,_;, of the SW at node k (consisting of S,,_; and S,, ) was estimated using the following equation

gbZk_l=sin71(—cf2k’2k_1/dk), —7[2<Pyq <72, 1<k<3, (20)

where 7,,,, , is the estimate of the time delay between the SW arrivals at S,,and S, ;; d, (~ 1 m) is the
separation distance between S, and S, ;. The observed standard deviations in 7, , , and @, , are

approximately 0.01 ms and 0.5° respectively, for 1<k <3 and for both bullet types. The respective DOA estimates
(¢, and@. ) at nodes 1 and 3, and the time delay estimate (75,) between the SW arrivals at S; and S; (the

respective reference sensors of nodes 3 and 1) were used in (19) to compute the required initial estimates of
{#,Yq,V,} for the minimization in (17).

Tables 3 and 4 show the bias errors and standard deviations in the estimates of {;13,);0,\7,,\76} for type ‘A’ and
type ‘B’ bullets respectively. In each table, the second row corresponds to the results when the estimated value éb

in (17) is exact; the third to fifth rows correspond to the results when éb equals 40, 200 and o respectively; the last
row shows the CRLBs on the error standard deviations for unbiased estimators. Tables 3 and 4 were obtained using
the observed time delay error covariance matrices for bullets ‘A’ and ‘B’ in (17) respectively. Results were also
obtained using N=o?(1+E), which resulted in slightly larger standard deviations. Comparing Table 3 with Table 1(a)
and Table 4 with Table 2(a), the simulation results and the experimental results are in good agreement on the
standard deviations, but disagree on the bias errors. When éb equals the actual value, the bias errors from the field
experiment are larger than those from the simulations. This and any other discrepancies are likely due to the
measurement uncertainty in the actual values of the ballistic model parameters of the bullets, the assumption of an
approximate 2D geometry, and the positional errors of the sensors, point of fire and target in the field experiment.

7. CONCLUSIONS

The performance of the NLS method for bullet trajectory estimation has been evaluated for the 2D case with
a specific sensor configuration by processing simulated data (for both short and long firing ranges) and real data (for
the short range only), and by comparing the error standard deviations with the CRLBs (for all scenarios). The NLS
method is able to provide accurate estimates of the bullet trajectory and subsequently the position of fire (given its
X-coordinate) for each case when the bullet’s ballistic constant is exactly known. An erroneous ballistic constant has
little effect on the standard deviations in the parameter estimates, but can result in large bias errors that depend on
the bullet type, firing range and trajectory angle (or, in general, the positions of the target and point of fire) for the
given sensor configuration. For the worst case (third scenario, bullet ‘B’) considered in this paper, the simulation
result shows that the RMSEs in the trajectory angle and Y-coordinate of the point of fire are 1.38° and 11.25 m
respectively when the ballistic constant (whose actual value is 60.34) is mistaken to be 200 (m.s)®°. A possible

ACOUSTICS 2016 Page 9 of 9



9-11 November 2016, Brisbane, Australia Proceedings of ACOUSTICS 2016

solution to the problem of uncertainty in the bullet’s ballistic constant C, is to extend the NLS method to estimate
simultaneously both {A,V,} and C, (which will require a larger number of sensors). This and the optimal placement
of sensors in the protected area will be the subjects of future investigation.

Table 3: Experimental results (2nd to 5th rows) and CRLBs (6th row) for type ‘A’ 7.62 mm calibre bullet, X;=74.4m,

Y =19.6mand Y, =20.6 m. Experimental results were obtained for different values of éb : 90.82 (actual value),

40, 200, and oo. For each of {é,VQ,Vr,?G}, (1st entry, 2nd entry) = (bias error, standard deviation).

C,(m.s)>? ¢ (deg) Yg (m) V., (m/s) Ys (M)
90.82 (0.23,0.21) (0.1,0.10) (-8.48, 6.91) (0.39, 0.28)
40 (0.33,0.21) (0.1,0.10) (-18.37,6.97) (0.53,0.28)
200 (0.18,0.21) (0.1, 0.10) (-4.09, 6.89) (0.34,0.28)
0 (0.14,0.21) (0.1, 0.10) (-0.38, 6.87) (0.28, 0.28)
CRLB 0.21 0.10 7.13 0.28
Table 4: Similar to Table 3 but for type ‘B’ 5.56 mm calibre bullet.
éb (m.s)®? ¢3 (deg) \?Q (m) \7r (m/s) YG (m)
60.34 (0.14, 0.25) (-0.24, 0.05) (-7.51, 9.20) (-0.06, 0.32)
40 (0.21,0.25) (-0.25, 0.05) (-12.78, 9.24) (0.03, 0.32)
200 (0.04, 0.25) (-0.24, 0.05) (-0.02,9.15) (-0.18, 0.31)
) (-0.00, 0.24) (-0.23, 0.05) (3.32,9.12) (-0.24,0.31)
CRLB 0.25 0.05 9.42 0.32
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