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ABSTRACT 

Critical issues in the development of high-resolution 3-D sonar systems are the cost of hardware associated with the 
large number of sensors composing the planar array and the computational burden of processing in real-time the sig-
nals gathered. In this paper, such problems are overcome by the optimized synthesis of an aperiodic sparse array and 
the efficient processing of the acquired signals carried out in the frequency domain and based on Chirp Zeta Trans-
form (CZT) beamforming. On the one hand, the synthesized sparse array enables the device to operate at frequencies 
yielding an acceptable side-lobe level and a good tradeoff between the sector of view and the resolution. On the other 
hand, the CZT beamforming, specifically devised to cope with the requirements of volumetric sonar imaging, allows 
the processing of wideband signals collected by a planar array and generated by a scene encompassing both near-field 
and far-field regions. The combination of a very limited number of sensors with the CZT beamforming generates a 
computational load that is two orders of magnitude lower than that of the delay-and-sum beamforming and one order 
of magnitude lower than that of the traditional frequency-domain implementation. The reduction of the number of 
sensors and the computational load produces, in turn, a noticeable reduction of the hardware cost. 

I. INTRODUCTION  

Despite the introduction of commercial equipment, develop-
ment of underwater systems capable of generating a real-time 
three-dimensional (3-D) acoustic video of an investigated 
environment [1,2] is still a challenge, mainly due to the cost 
of the planar array required and the computational load asso-
ciated with the digital beamforming technique [1]. Moreover, 
3-D imaging systems should be able to work in the near-field 
region, imposing a focused beamforming approach [1–3], and 
this causes additional difficulties, especially when beamform-
ing is implemented in the frequency domain.  
The computational burden and hardware requirements of 
digital beamforming implemented in the time-domain can be 
mitigated either by using one of the approximate implementa-
tions [4–6] proposed in recent years or by adopting a sparse 
planar array of sensors [7]. A solution based on the adoption 
of a sparse array makes it possible to strictly contain both the 
cost of the system front-end and the cost of the architecture to 
support the computational burden of processing the acquired 
signals.  

Beamforming implementation in the frequency domain repre-
sents an attractive solution, which has been extensively 
investigated [3, 8, 9] in an attempt to exploit the computa-
tional advantages of the fast Fourier transform (FFT). In [9], 
Maranda thoroughly described and compared some fre-
quency-domain beamforming methods with reference to one-
dimensional (1-D) array and far-field condition. He divided 
these into exact and approximate methods. 

Traditionally, “direct method” (DM) beamforming is the 
most widely applied exact method, and its extension to planar 
arrays and near-field conditions has been introduced and 
extensively investigated [10, 11]. 

Although less recognized, Chirp Zeta Transform (CZT) 
beamforming [9] is a flexible frequency-domain method that 
can process wideband signals without any error, with a com-
putational load equal to or lower than that of approximated 
FFT classical beamforming. 

The aim of this paper is the preliminary design of a high-
resolution 3-D sonar system, working in real-time, with a 
reduced cost. To do that, the combination of two methods is 
proposed: the first method is devoted to the synthesis of a 
sparse planar array, whereas the second one performs the 
near-field beamforming with a very limited computational 
load. One of the most promising approaches to reducing the 
number of array elements (for both linear and planar arrays) 
is based on the concept of aperiodic arrays. Typically, a fully 
sampled array is thinned by removing a fraction of the origi-
nal set of elements, thus obtaining a sparse array. The thin-
ning should be an optimization operation aimed at reducing 
the number of elements, while maintaining adequate beam 
pattern properties for the desired application. The authors 
devised an array synthesis method that is based on the simu-
lated annealing stochastic optimisation [7]. The purpose of 
the method is to minimize the number of elements of a planar 
array able to generate a beam pattern that fulfils some a pri-
ori fixed constraints by acting on the positions and weights of 
the sensors. Notwithstanding the strong reduction of the sen-
sor number, the processing by a delay-and-sum (D&S) beam-
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forming can result still demanding. To overcome this prob-
lem, a beamforming implementation based on CZT is pro-
posed. The authors devised a spatial processing method for 
wideband 3-D imaging, based on CZT beamforming, that is 
specifically tailored to image a volume of space encompass-
ing the near-field and far-field regions [12].  

This paper is organized as follows. Section II introduces the 
sparse array concept and describes its optimization in the 
specific case addressed. The CZT formulation for a planar 
array and near-field conditions is presented in Section III. 
The concepts for the evaluation of computational load of 
different beamforming implementations in relation to the 
generation of a volumetric image are introduced in Section 
IV. In Section V, the synthesized sparse array is described 
and the computational load of the CZT beamforming is as-
sessed and compared with those of traditional beamforming 
implementations. Finally, the conclusions are drawn in Sec-
tion VI. 

  
 
II. DESIGNING A SPARSE PLANAR ARRAY   

As a starting point, a receiving array composed of 100×100 
transducers is hypothesized and, according to a recognized 
technological constraint in sonar manufacture, an inter-
element space d = 2.5 mm is allowed. Thus, the resulting 
spatial aperture is a square with a side of about 25 cm.  

On the basis of other similar projects [13-16], a  frequency 
value around 0.5 - 1 MHz seems to be well suited to this kind 
of sonar. Here it is tentatively assumed that the system works 
at 600 kHz. The maximum range that one can expect is of 
several tens of meters [17].  

The angular resolution attainable by the depicted system 
(measured at –3 dB, in the broadside direction), without the 
application of any window to abate the level of the side lobes 
[1,17], is 0.50°. (However, it is important to remember that 
the reduction of the side lobe level, the highest of these being 
–13 dB, is always accompanied by a worsening of the angu-
lar resolution.) The corresponding lateral resolution at a dis-
tance of 1 m from the array is 9 mm. The range resolution 
can be evaluated by defining the type and the bandwidth of 
the insonifying pulses [17]. Assuming a transmission of sim-
ple burst pulses with a 25% fractional bandwidth, one obtains 
a range resolution of 5 mm.  

However, the λ/2-condition has not been respected as the 
actual inter-element spacing, d, is equal to λ. Consequently, 
the related beam pattern (i.e., the spatial responses of the 
array at the fixed frequency) shows several grating lobes. To 
avoid any ambiguity effect, it is necessary to limit both the 
insonification and steering operations to a limited angular 
sector [1]. Specifically, the maximum steering angle (both in 
azimuth and elevation) to avoid ambiguities is: 

( )d2arcsin minmax λ±=θ . Considering the minimum wave-
length contained in the  hypothesized band, the allowed field 
of view will be 52°×52° at 600 kHz (roughly corresponding 
to the field of view of the lens of a 35-mm optical camera 
with focal lengths of 35 mm).  

Undoubtedly, the above-mentioned features characterize a 
very high performance 3-D sonar. However, the cost and the 
complexity associated with a 100×100 receiving array are 
absolutely prohibitive, thus imposing a reduction in the num-
ber of transducers. 

One of the most promising approaches to reducing the num-
ber of array elements (for both linear and planar arrays) is 

based on the concept of aperiodic arrays [18-20]. Typically, a 
fully sampled array (i.e., a dense array that respects the λ/2-
condition) is thinned by removing a fraction of the original 
set of elements, thus obtaining a sparse array. Aliasing effects 
(i.e., the grating lobes) are avoided because there are no peri-
odicities at the positions of the sparse array elements. The 
main drawback of the thinning operation is the often unac-
ceptably high level of the side lobes present in the beam pat-
tern. Therefore, the thinning should be an optimization opera-
tion aimed at reducing the number of elements, while main-
taining adequate beam pattern properties for the desired ap-
plication.  

However, in the case treated here the dense 100×100 array 
does not respect the λ/2-condition, due to technological con-
straints, and some grating lobes are present in the beam pat-
tern of such an array. If a portion of the initial array elements 
is removed to create an aperiodic sparse array, the side lobes 
increase and the grating lobes keep their position in the beam 
pattern. Consequently, to avoid any ambiguity effect, the 
limitation of the field of view is still mandatory, and the aim 
of the thinning operation is to reduce the number of array 
elements while maintaining an acceptable level for the side 
lobes.  

As the distribution and the height of the side lobes depend on 
the positions of the sparse-array elements and on the weight 
coefficients assigned to such elements, the optimization prob-
lem can be approached from different points of view. To 
optimize both positions and weights is the most ambitious 
and effective procedure for sparse-array synthesis. Here, the 
array synthesis technique is proposed that is based on a sto-
chastic algorithm known as simulated annealing.  

The purpose of the method is to minimize the number of 
elements of a planar array able to generate a beam pattern 
(BP) that fulfils some a priori fixed constraints by acting on 
the positions and weights of the sensors. The use of simulated 
annealing to synthesize a 2-D sparse array requires the choice 
of an energy function, f(X,W), that depends on the vector of 
the element positions, X, and on the vector of the weights, 
W. Once a desired normalized BP is fixed, the energy func-
tion must be able to penalize array configurations that both 
yield a great difference between the current BP and the de-
sired one and are composed of a large number of active ele-
ments. To this end, one can choose: 
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where 0sinsin α−α=u , 0sinsin β−β=v , the pairs (α, β) 
and (α0, β0) indicate the arrival direction and the scan direc-
tion, respectively, S is the set of values of (u, v) satisfying the 
relation p(u, v)/Q > p

d
(u, v), Q is the sum of all the sensor 

weights, p(u, v) is the current BP,  p
d
(u, v) is the desired BP, 

M is the number of current active elements, and k
1
 and k

2 are 
two constants denoting the relative importance assigned to 
the discrepancy between the actual BP and the desired one 
and to the number of array elements. The method, by exploit-
ing the simulating annealing minimization scheme, provides 
a final configuration that is valid for each possible steering 
direction. 

The thinning of the 100×100 array was carried out assuming, 
for a while, a λ/2 spacing. First of all, the array is inscribed 
inside a circle, thus giving 7854 active elements. This opera-
tion does not significantly affect the array performance. 
Then, the fully sampled array was optimally thinned and 
weighted by the method proposed in [20] and briefly recalled 
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in the previous paragraph. In order to constrain the side lobe 
peak under a fixed target, equal to –22 dB, the desired beam 
pattern was defined as a constant level of –22 dB for each 
pair (u, v) that was out of a circle of radius 0.02, i.e., u2+v2> 
0.022. The latter condition is imposed to exclude the main 
lobe from the constrained side lobe region. The variables u 
and v are defined as 0sinsin α−α  and , respec-
tively, where the pairs (α, β) and (α

0sinsin β−β

0, β0) indicate the arrival 
direction and the steering direction, respectively. The adop-
tion of the u-v space is very useful as it makes it possible to 
synthesize an array configuration that produces a beam pat-
tern showing a desired profile for whatever steering direction. 
The variables u and v can only assume real values between -2 
and 2, for any combination of the arrival and steering direc-
tions. However, according to [20], thanks to some symmetry-
related properties of the beam pattern, the domain of the 
beam pattern can be restricted to u ∈ [-1,1], v ∈ [0,1], during 
the optimization stage and to assess the obtained results 
without any loss of information. Finally, to further reduce the 
computational burden, the symmetry of the sparse array lay-
out around the x- and y-axes (thus acting only on a quarter of 
the array elements) has been imposed.  
 
 
III. DEVISING AN EFFICIENT BEAMFORMING 
ALGORITHM  

Let us describe the CZT beamforming assuming to work with 
a dense planar array. A sparse array (synthesized starting 
from a dense planar array) can been seen as a dense array 
where the weight coefficient assigned to some elements have 
a value equal to zero.  

Thus, let us consider a planar array placed on the plane xy, 
composed of M×N sensors. The sensor, identified by the 
indices (m, n), is placed at position (xm, yn) and generates the 
signal sm,n(t). The steering direction is identified by the azi-
muth and elevation angles (θa, θe) which, in contrast to the 
conventional formalism [2, 21], are defined as shown in Fig. 
1. The choice of such angles is useful for easily extending the 
CZT beamforming to a planar array. According to such a 
notation, the unit vector of the steering direction, , can be 
expressed as: 

û

⎥⎦
⎤

⎢⎣
⎡= eaea θsin-θcos ,sinθ ,θsinˆ 22u  (2) 

where θa is the angle between the vector  and its projection 
on the plane yz, and θ

û
e is the angle between the vector  and 

its projection on the plane xz. 
û

 
Figure 1. Notation and geometry for a planar array 

According to D&S beamforming [1], if the far-field condition 
is still valid, the beam signal, b(t, θa,θe), steered in the direc-
tion (θa, θe), can be expressed as follows: 
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where wm,n is the apodizing weight assigned to the (m,n) sen-
sor. The extension of the CZT beamforming to an equispaced 
planar array working in far-field conditions has been intro-
duced and discussed in [12, 22]. 

This paper focuses on near-field conditions, where the curva-
ture of the wavefront cannot be neglected, and a focusing 
distance r0 is introduced in the delay term [1, 3, 21], which, in 
turn, becomes much more complex. The D&S beamforming 
expression in Eqn. (3) is modified as follows: 
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The computation of the delay terms given in the last equation 
is very significant; therefore, it is necessary to compute and 
store them a priori. The number of possible combinations 
among m, n, θa, θe and r0 requires a very large memory. To 
simplify such a delay and reduce the memory needs, the 
Fresnel approximation can be applied [1, 3, 21], obtaining the 
following term: 
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The validity region of the Fresnel approximation (i.e., the 
region where approximation errors are negligible) has been 
discussed by Ziomek [21]. 

The beamforming implementation in the frequency domain 
requires, as in the linear-array case, the temporal sampling of 
the signals gathered by the sensors, producing the time series 
sm,n(l) followed by the segmentation into partially overlapped 
blocks of length K and the transformation into their fre-
quency versions, Sm,n(k), by the FFT. If the Fresnel approxi-
mation is adopted, the DFT coefficients B(k, θa, θe, r0) of the 
beam signal b(t, θa, θe, r0) are given by the following expres-
sion: 
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which represents the DM for a near-field, frequency-domain 
beamforming. 

Let us now assume that the planar array placed on the plane 
xy is centered on the coordinate origin and equispaced with 
an intersensor spacing d in both directions. Let us consider 
the computation of a pyramid of beams composed of Mb×Nb 
signals, identified by the indices (p, q). For each of these 
beams, the steering direction is (θa,p, θe,q), where θa,p and θe,q 
are the two angles chosen from a set of Mb azimuth angles 
and a set of Nb elevation angles, respectively. The predefined 
angles are equispaced in the sine domain, ranging from an 
initial to a final angle. After some mathematics, the kth Fou-
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rier coefficient of the beam signal (p, q), focused at a distance 
r0, can be written as follows: 
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The terms Wa, Aa, We, and Ae are defined as follows: 
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θai and θaf are the initial and final steering angles for the azi-
muth respectively, and θei and θef are the initial and final 
steering angles for the elevation respectively. The steering 
angles θa,p and θe,q can be derived from the following rela-
tions: 
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The term vm,n is defined as follows: 
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In fact, when moving from Eqn. (7) to Eqn. (8), a phase term 
linear with fk, which does not depend on the sensor indices, 
has been neglected. This is reasonable as such a term simply 
introduces a known delay in the beam signal that can be eas-
ily fixed a posteriori. 

Eqn. (8) expresses  as a two-dimensional (2-

D) discrete convolution of two M×N matrixes, C(k) and D(k), 
whose elements of indices (f, g) are defined as follows: 

),θ,θ,( 0,, rkB qepa

( ) ( )
( ) ( )

2
1

2
1

11
1,11,1,

22

     
−−−−

−−
−−−−=

g

e

f

a
g

e
f

agfgfgf WWAAkSvkC  (18) 

( )
( ) ( )

2
1

2
1

,

22 −−

=
g

e

f

agf WWkD  (19) 

where f ∈ [1, M] and g ∈ [1, N], thereby allowing FFT meth-
ods to perform the 2-D “fast convolution” [23] effectively. In 
Section IV, an evaluation of the specific computational load 
is presented. Here, it is worth noting that at a single fre-
quency fk, the convolution FFT-based method simultaneously 
computes all the values of the Mb×Nb beams. After all the 
segments of the beams have been computed over the desired 
frequency band, Mb×Nb inverse FFTs are necessary to obtain 
the beam time series. 

In focused beamforming (independent of the time or fre-
quency implementation), the depth of field (DOF) [1, 24] is 
defined as the range interval around the focusing distance r0 
inside which the performance, evaluated in term of angular 
resolution and amplitude gain, only marginally degrades. The 
extension of the DOF depends on the specific value of r0: the 
smaller the focusing distance r0, the smaller the DOF exten-
sion [24]. Unfortunately, the range extension of the volume 
to be imaged typically exceeds that of the DOF. The problem 
is commonly solved by segmenting the received time signals 
into subsequent blocks that are processed using different 
focusing distances, which increase with time. In other words, 
the volume to be imaged is subdivided into multiple, adjacent 
focal regions. Each focal region is centered on a specific 
focusing distance and is contained inside the DOF corre-
sponding to such a focusing distance. As in our method the 
time signals are already segmented into blocks of length K, 
so it is easy to apply different focusing distances to each 
block. However, in setting the value of K, it is essential that 
the spatial extension corresponding to the K time samples 
does not exceed the shortest of the extensions of the focal 
regions. The general method and the specific solutions de-
scribed above are used to extend the CZT beamforming to the 
planar array case and to allow correct focusing over an ex-
tended near-field volume. The accuracy of computing wide-
band beam signals by the proposed method is equal to that of 
the traditional delay-and-sum (D&S) beamforming, [1, 3] 
except for the errors introduced by the Fresnel approxima-
tion. However, as discussed and quantified in [25] such errors 
are really negligible inside the validity region [21] of the 
approximation. Therefore, the described method represents a 
computationally convenient way to compute beam signals 
that, inside the Fresnel validity region, negligibly differ from 
those computed by D&S beamforming. Below, two original 
solutions devoted to further reducing the computational bur-
den will be briefly introduced: 

(1) It can generally be observed that it is computationally 
convenient to increase the length K of the signal blocks. This 
is in contrast to the need for short blocks close to the array, 
where the DOF extension is more limited. To overcome this 
problem the length of the signal blocks can vary, increasing 
in synchrony with the DOF extension. 

(2) The angular resolution is fixed and so the lateral resolu-
tion worsens with the distance. Instead, the range resolution 
depends on the bandwidth and does not generally vary with 
the distance. However, the generation of a cubic resolution 
cell is often welcome, [1] and the worsening of the range 
resolution with the distance is perfectly acceptable. This 
makes it possible to save many operations by reducing the 
number of frequency bins considered (i.e., the bandwidth) 
with the distance. In other words, Eq. (8) can be computed 
for a number of indexes k that decreases block after block, 
according to the desired range resolution. 
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IV. COMPUTATIONAL LOAD EVALUATION 

The aim of this section is to provide information useful for 
evaluating the minimum number of operations needed to 
compute a whole 3-D image. The following beamforming 
techniques are considered: (1) time-domain D&S beamform-
ing; (2) frequency-domain DM beamforming; and (3) fre-
quency-domain CZT beamforming.  

In this paper, the number of operations considered includes 
both real additions and real multiplications without distinc-
tion. Only the operations that need to be performed strictly 
online have been taken into account, disregarding the opera-
tions that can be performed offline (i.e., before starting the 3-
D image generation), with the result stored in the system 
memory. It is assumed that the dense planar array is square 
and made of N×N elements, the sparse array is made of Ns 
total elements and that the volumetric image is computed 
through a square pyramid of beams (i.e., Mb = Nb). 

With regard to D&S beamforming, according to [3], the 
oversampling of the input signals through an interpolation 
filter is necessary before the signal sum, to precisely imple-
ment the time delays. Here, it is assumed that the desired 
degree of oversampling is achieved by using an interpolation 
FIR filter consisting of H stages. The rate of real operations 
[3] necessary to generate  beams is the following: bN

TD1 = ( ) ( )[ ] sbs fHNNHN 122 +++  (20) 

The computation of delays is considered an offline operation. 

Now, let us consider the frequency-domain implementations. 
After an offline stage comprising all operations that can be 
performed only once for a given parameter configuration, the 
first step consists of computing the DFT coefficients for each 
sensor signal of the sparse array (Ns elements). By exploiting 
the FFT [3], the number of real operations necessary to proc-
ess a real K-length (K being a power of two) time sequence is 
equal to: 

FD1 = ( ) KKK 72log5.2 2 +  (21) 

The second step consists of spatial processing. DM beam-
forming is defined in Eqn. (7), which can be interpreted as a 
complex dot product. If the pair of indices (m,n) is replaced 
by a single index h ranging from 0 to Ns−1, then Eqn. (7) can 
be considered as the dot product between two vectors, each 
of size Ns. The computation of each dot product requires Ns 
complex multiplications and Ns−1 complex additions. There-
fore, the generation of  beams at a single frequency f2

bN k by 
DM beamforming requires the following number of real op-
erations: 

FD2 = ( ) 228 bs NN −  (22) 

If the generation of cubic resolution cells is enabled, only the 
frequency bins fk included in the bandwidth Q should be con-
sidered. 

In contrast to DM beamforming, Eqn. (8) allows one to inter-
pret the spatial processing of CZT beamforming as a discrete 
convolution. The following are the steps of the algorithm: 

1) Creation of the matrix C(k) by the complex product of 
each DFT coefficient ( )kS gf 1,1 −−  and the corresponding coef-
ficients, computed offline, as shown in Eqn. (18). 

2) 2-D convolution of the matrix C(k) with the matrix D(k). 
The latter is computed offline. 

3) Complex product of each frequency sample with the corre-
sponding coefficient, 22 q

e
p

a WW −− 22
, computed offline, as 

shown in Eqn. (8). 

With reference to step 2), the matrices C(k) and D(k) have a 
size N×N, while the output matrix should have a size Nb×Nb. 
To prevent wrap-around from contaminating the computation 
of the linear convolution, the matrix D(k) should have a size 
Ln×Ln, where Ln satisfies the relation 1−+≥ bn NNL . To 
fully exploit the FFT advantage, Ln should be a power of two; 
therefore, it is convenient to set Ln equal to the first power of 
two, greater than or equal to . 1−+ bNN

The FFT implementation of such a convolution can be per-
formed according to the following routine: 

• The matrixes C(k) and D(k) are zero-padded to at-
tain a size equal to Ln× Ln; 

• The 2-D FFTs of both the zero-padded matrixes are 
performed; 

• Each coefficient of the first DFT is multiplied by 
the relative coefficient of the second DFT, requir-
ing Ln×Ln complex multiplications; 

• A 2-D IFFT of the result obtained in the previous 
step is performed. 

The zero-padding of the matrix D(k) and its 2-D DFT are 
performed offline. Therefore, the generation of  beams at 
a single frequency f

2
bN

k by CZT beamforming requires the fol-
lowing number of real operations: 

FD3 = [ ] ( )nnnb LLLNN 2
2222 log206 +++ . (23) 

Finally, as in the case of DM beamforming, if the generation 
of cubic resolution cells is enabled, only the frequency bins fk 
included in the bandwidth Q should be considered. 

After spatial processing, the final step for both DM and CZT 
beamforming involves the computation of time samples of 
each beam signal by performing an inverse FFT. If the dy-
namic range resolution is enabled, the number of considered 
frequency bins is equal to ζ, centered around the central fre-
quency of the acoustic pulse. It is convenient to shift these 
bins around f = 0, thus obtaining the equivalent low-pass 
spectrum [3, 23] of each beam signal. This frequency-shift 
operation allows one to reduce the size of the inverse FFT, as 
the latter will be performed on a sequence of length ζ instead 
of K. For each block of beam signal, the number of real op-
erations is equal to: 

FD4 = )(log5 222 ζζ  (24) 

where ζ2 is the first power of two greater than ζ. Working in 
the described way, the final beam signal is characterized by a 
sampling interval that varies as a function of time. Therefore, 
some care is necessary in providing continuity of processing 
across blocks. In particular, a look-up table could be arranged 
to directly link the index of the time samples (of any beam 
signal, for a given setting of the minimum and maximum 
ranges) to the corresponding distance, providing useful in-
formation for the visualization stage. 
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V. RESULTS AND COMPARISONS  

Starting from a receiving array composed of 100×100 trans-
ducers, a sparse array has been synthesized. 

One of the best results obtained from the running of the syn-
thesis algorithm was an array of 584 elements, with a current 
taper ratio (i.e., the ratio between the maximum and mini-
mum weight coefficients [20]) of 3.28. Figure 2 shows the 
obtained array layout and the related weight coefficient pro-
file. The resulting beam pattern is shown in Fig. 3. Despite 
the dramatic thinning carried out by the optimization process 
(i.e., 92.5% of the array elements were removed), and the 
very limited current taper ratio, one can observe that the ob-
tained beam pattern perfectly meets the imposed side lobe 
constraint.  
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Figure 2. Optimized design of the aperiodic sparse array.   
(a) Array layout showing the placement of the 584 sensors. 
(b) Weight coefficients associated with the array sensors. 

 

If the frequency at which the synthesized array is used is 
increased until it reaches an inter-element spacing equal to λ 
(i.e., 600 kHz), the side lobes remain under the –22 dB con-
straint, although some grating lobes arise in the beam pattern. 
Consequently, the field of view should be restricted as de-
scribed in the Section II. Moreover, the thinning and weight-
ing operations typically produce an enlargement of the main 
lobe with respect to that of a dense, uniformly weighted ar-

ray. For the optimized array, the angular resolution (meas-
ured at –3 dB, in the broadside direction) becomes 0.64°. 
Therefore, in this case, the resolution loss with respect to the 
dense array case is limited and compatible with the specific 
application envisaged.  

The possibility of generating a sequence of 3-D images in 
real time is assured by the limited number of active elements 
in comparison with those used in a commercial device (i.e., 
584 transducers against 1600 transducers [17]) currently 
performing real-time 3-D underwater imaging with similar 
features. The sparse array allows per se a drastic reduction in 
both cost and processing load. A further reduction of the 
processing load can be obtained applying the proposed CZT 
beamforming.  

 
Figure 3. Beam pattern of the aperiodic sparse array com-
posed of 584 sensors, with the positions and the weights 

shown in Fig. 2. 

 

The equations introduced in the previous section are useful to 
compute the total number of operations needed to generate a 
whole 3-D image as well as to compare the computational 
loads of the three beamforming techniques considered. To 
make such a comparison possible, it is necessary to set some 
of the variables that influence the computational burden. 

The acoustic pulse is assumed to have a center frequency of 
600 kHz and a bandwidth of 150 kHz. The spacing of the 
array grid is 2.5 mm, the sector of view is 52°×52° and is 
covered by 200×200 beams, the extension of the volume to 
be imaged ranges from 1 m to 50 m. Finally, the sampling 
frequency is 1.8 MHz. For the time-domain beamforming, an 
interpolating filter with H = 100 stages is assumed [3]. For 
both the frequency-domain implementations (i.e., DM and 
CZT), the solution described in Section III (i.e., the dynamic 
range resolution) has been assumed enabled in the evaluation 
of the computational burden. 

The count of the on-line real operations necessary to generate 
a whole 3-D image with the three beamforming methods 
when the signals are received by a dense array (100×100 
sensors) and by the synthesized sparse array (584 sensors) is 
shown in Fig. 4. The computational analysis demonstrated 
that the advantage of CZT beamforming with respect to D&S 
time-domain beamforming and DM frequency-domain beam-
forming is significant. For both array layouts, the advantage 
of CZT beamforming with respect to DM and D&S methods 
is of about one order and two orders of magnitude, respec-
tively. In particular, in the sparse array case the number of 
on-line operations is adequately decreased for all the beam-
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forming methods achieving the minimum for the CZT algo-
rithm implementation.  

 

(a) 

 

(b) 
 

Figure 4. Operation count for the three beamforming meth-
ods (i.e., CZT, DM, D&S) necessary to create one 3-D image  
using (a) a dense array with 100×100 elements; (b) the sparse 

array with 584 elements. 
 

VI. CONCLUSIONS 

In this paper, the preliminary design of a high-resolution 3-D 
acoustic imaging system, based on a sparse planar array of 
sensors and Chirp Zeta Transform beamforming, has been 
proposed. The hypothesized sonar system could be realized 
with a limited hardware cost thanks to the reduction of the 
number of sensors and the reasonable computational load 
made possible by the combination of the two devised meth-
ods. In particular, starting form a dense planar array with 
100×100 elements a sparse array composed of about 600 
sensors has been syhnthesized. CZT beamforming implemen-
tation allows one to generate a 3-D image with a computa-
tional advantage with respect to D&S time-domain beam-
forming and DM frequency-domain beamforming which is of 
about one order and two orders of magnitude, respectively.   
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