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ABSTRACT 

The problem of ultraacoustic wave propagation in piezoceramic cylinders remain an interesting one since such mate-

rials are widely used in acoustoelectronics and ultrasonic nondestructive evaluation. In the current paper we study the 

wave propagation in piezoceramic multilayered cylindrical waveguides with noncircular cross-section. Infinite trans-

versely isotropic cylinders considered here have circular or hollow cross-sections with sector cut of any angular 

measure arbitrary boundary conditions on surfaces. The method is based on exact analytical integration of wave equa-

tions of linear electroelastic medium by using wave potentials. Dispersion functions are obtained from boundary con-

ditions in an analytical form of functional determinants and numerical analysis is carried out to illustrate the ap-

proach. The effect of various mechanical parameters is studied and the potential applications are discussed. Results 

are compared with those published earlier in order to check up the accuracy of the proposed approach, which is found 

to be very accurate and efficient. 

INTRODUCTION 
 

Piezocomposite materials are widely used as sensors and 

actuators in smart structures. In recent years new technologi-

cal requirements initiated active theoretical studies on ul-

traacoustic wave propagation in multilayered piezoelectric 

structures, which, as appeared, often have characteristics 

different from those of homogeneous waveguides [1, 2]. Mul-

tilayered piezoelectric cylinders have also been intensively 

investigated in order to improve the efficiency of cylindrical 

devices and to expand their applications. 

 

The problem has been studied from different angles. Some 

authors focused on analytical methods for wave propagation 

in two-layer cylindrical waveguides consisting of piezoelec-

tric and metallic layers [3], while other studied multilayered 

cylinders with piezoelectric layers of different polarization 

[4, 5] or both static and dynamic behavior of laminated com-

posite cylindrical shells with piezoelectric layers [6]. A large 

amount of works was devoted to surface waves in piezoelec-

tric cylinders [7–10]. Many techniques involve Hamilton’s 

principle, for example, the problem of wave propagation in 

the piezoelectric layered section-varying bar based on the 

matrix formulation of the principle [11], analytical–numerical 

study on the characteristics of elastic waves in functionally 

graded piezoelectric cylinders [12] and the free-vibration 

problem of multilayered shells including piezoelectric layers 

[13]. Other works in this direction concern radial vibrations 

of thin two-layer piezo/metal ring [14], wave propagation in 

the two-layer cylindrical shells using shell bending model 

under Love's shear-rigidity assumption [15] and end reflec-

tion phenomenon in semi-infinitely layered piezoelectric 

cylinders [16]. 

 

Waveguides studied in the above references have classical 

circular and hollow cross-sections. In this paper we focus on 

non-axisymmetric waves propagation in multilayered piezo-

electric cylinders of sector cross-section. A theoretical analy-

sis is performed using the exact equations of piezoelectricity 

in quasistatic approximation. The symmetry of polarized 

piezoceramic allows us to obtain precise solutions of the 

problem. Since the direction of polarization is longitudinal 

and the material tensors have the symmetry of class 6mm, the 

method could be applied to other transversely isotropic mate-

rials. Numerical results are provided for the cylinders made 

of two piezoelectric layers, although the method is not lim-

ited only to this case and also could be applied for 

waveguides with any number of layers (including metallic 

ones). Results for multilayered cylinders are compared with 

data obtained for single-layered waveguides and good agree-

ment is found. 

 

GOVERNING EQUATIONS AND BOUNDARY 
CONDITIONS 
 

We consider hollow multilayered cylinders of sectorial cross-

section. Fig. 1 illustrate the two-layer hollow cylinder; inner 

radius is denoted by 0R , thicknesses of inner and outer lay-

ers are denoted by 1h  and 2h , respectively, and angular 

measure of the waveguide is 2α . Since in general case the 

waveguide may consist of piezoelectric and non-piezoelectric 

layers we need to describe the constitutive relationships for 

both of them. In the following expressions the superscripts 

‘‘P’’ and ‘‘E’’ denote the quantities for piezoelectric and 

elastic layers, respectively. The constitutive relationships for 

piezoceramic material of class 6mm are 
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Figure 1. Cross-section of a two-layer hollow sector cylinder 
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And the constitutive relationships for transversely isotropic 

elastic material are 
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where αβσ , Sαβ  are the components of stress and strain, 

respectively, and Eα , Dα  are the components of electric 

field intensity and electrical displacement in piezoelectric 

layer. The equations of motion are of the form 

 

, 0ij j iuσ ρ− =�� ,    (3) 

 

where uα  are the components of displacement and ρ  is the 

material density. 

 

For piezoelectric layers the governing equations of the prob-

lem are completed by Gauss's law in the absence of free elec-

tric charge density 

 

, 0i iD = .    (4) 

 

In the quasistatic approximation the electric field intensity 

can be described as the gradient of a scalar electric poten-

tial E gradϕ= − , or in cylindrical coordinate system 
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On the boundary of two piezoelectric layers the conditions of 

mechanical contact 
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and the conditions of electrical contact 
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are satisfied. 

If the q -th layer is piezoelectric and ( 1)q + -th is conduct-

ing, then the conditions of mechanical contact (6) and the 

following condition: 

 

( )
( ) 0

q

qϕ Γ = ;    (8) 

 

are satisfied at the interface. On the inner and outer cylindri-

cal surfaces several types of boundary conditions can be cho-

sen. In this paper we consider the traction-free boundary 

condition, which for cylindrical surfaces has the following 

form 

 

( ) ( ) ( ) 0rr r rzθσ σ σΓ Γ Γ= = = ;    (9) 

 

and the close circuit condition for piezoelectric layers 

 

( ) 0ϕ Γ = .  (10) 

 

ANALYTICAL SOLUTION OF THE PROBLEM 
 

Ultrasonic harmonic waves along the axial direction of a 

cylinder are represented through amplitude functions of 

cross-section coordinates and exponential dependence on 

axial coordinate and time 
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where ω  is the angular frequency of waves and k  is the 

wavenumber. 

 

After a series of transformations similar to described in [17] 

amplitude components 
(0)
ijσ , 

(0)
iu , 

(0)
iD  and 

(0)ϕ  are 

finally expressed through infinite series with unknown ampli-

tude coefficients njA , Bessel functions of the first and sec-

ond kind of radial coordinate and sine/cosine functions of 

angular coordinate 
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where 
(1) ( ) ( )n nF r J r≡ , 

(2) ( ) ( )n nF r Y r≡ . 

 

Substituting from Eqs. (12) to the boundary conditions results 

in the system of linear algebraic equations in the unknown 

wavenumber k  and angular frequency Ω  for each value of 

0,n = ∞  and the dispersion equation of the problem is a 

non-trivial solution of this system. For the two-layer sector 

cylinder with both piezoelectric layers it is obtained in the 

form of the sixteenth order determinant being equal to zero 
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NUMERICAL RESULTS 
 

A few numerical examples for the two-layer piezoelectric 

cylinder are given below. -5PZT A  and 3BaTiO  ceramic 

with axial polarization were chosen as the material of inner 

and outer layers, respectively, since they have quite different 

material parameters. Elastic characteristics for these materials 

and aluminium (numerical analysis was also carried out for 

the piezo/metal layered cylinders with sector cross-section) 

were taken from [15, 18, 19].  

 

Figs. 2 and 3 illustrate the first and second modes of the spec-

trum with 0n =  for the cylinder of angular measure 

4α π=  and different thicknesses of the layers. Curves for 

the single-layered cylinders made of -5PZT A  and 3BaTiO  

are illustrated in Figs. 2 and 3 by the black lines. It is easily 

seen that the configuration of layers have substantial effects 

on dispersion behavior of the waveguide and the increase of 

the layer’s thickness leads to the position of the curves more 

similar to the case of a single-layered cylinder made of the 

same material. 

 

 

Figure 2. First modes for the two-layer 4α π=  cylinders 

 

 

 

Figure 3. Second modes for the two-layer 4α π=  

cylinders 

 

The first and second modes are linked in the imaginary part 

of the spectrum forming a loop, which in common for such 

waveguides. For each ratio of thicknesses this loop is situated 

between the loops for single-layered -5PZT A  (blue lines) 

and 3BaTiO  (green lines) cylinders shown in Fig. 4. Other 

results for the waveguides with different angular measure and 

inner radius show that the structure of wave spectrums 

strongly depends on geometric and material parameters of the 

layered structure. 
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Figure 4. Two lowest modes in the single-layered 4α π=  

cylinders 

 

CONCLUSIONS 
 

In this paper the analytical method for studying ultrasonic 

wave propagation in laminated piezoelectric cylinders of 

sector cross-section have been presented. Frequency equa-

tions of the problem for the cylinder with N  piezoelectric  

and M  non-piezoelectric layers have the form of functional 

determinant of 8 6N M+  order. Dispersion curves of the 

lowest modes for different waveguides are obtained and com-

pared with the curves for single-layered cylinders showing 

good agreement. Numerical results allow us to understand 

better the influence of geometrical parameters and laminate 

configuration on the wave propagation in multilayered cylin-

drical structures. 
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