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ABSTRACT

This paper presents the measured spectra andfieemqtitch of thirteen tubular tower bells, whiclkeanade of thick-
wall brass cylinders. Results show that bell’suredtfrequencies that dominating its pitch and tienbre well pre-
dicted by Flugge’s formula for thin-wall cylindersThe spectra of tubular tower bells and thin-vafle bells are
compared and their tonal differences are attribitethe differences in their modal masses and déoags. The
identified pitches of the strike tones of the tasubwer bells are analysed against the frequerstsitiition and am-
plitude ratios of the partials in the spectra. Tésult supports the previous work on the virtuéthms of pipe bells
and their determination by the “octave rule”. Ugthis result, we offer an explanation to the geesbf why both
tubular tower bells and pipe bells have similariarharacteristics of church bells.

INTRODUCTION

Tubular tower bells are made of thick-wall brasinders,
and often wieght under hundred of kg. They werewkmas
early as 1850, and used as hall clocks and intbedrs in
the late nineteenth century before being replagedanven-
tional bells. They were introduced in England byrdiar-
rington, who patented his design and stiffeningickevor
tuning of the bells [1, 2].

Shown in Figure 1 are twelve tubular tower bellsated in
Perth’'s Swan Bell Tower, and bell #13 in the Acmadt
Laboratory of the University of Western Australi@he
thickness-to-mean diameter ratios of these beks rauch
larger than that of the pipe bells used in orclasstfypically,
the thickness-to-mean diameter ratioof pipe bells is be-
tween 0.038 and 0.06, while that of tubular towelshis
about 0.2. Previous work on tonal quality of pipeld is
scarce. The authors have not found any literaturethe
acoustics of thick wall tubular tower bells.
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Figure 1 (a) Tubular tower bells located in Perth Swan Bell
tower. (b) the 18 tubular tower bell at the University of
Western Australia.

Previous work on pipe bells by Hueber [3] and Rugg$4]
reported that the “beam-like” bending vibrationsoafcular
cylinders are not harmonic. Rather they producenddm-
pression from their “nearly harmonious” partialsudber’s
measurement indicated that the fundamental frequenc
(pitch) of the bell's strike tone was not presehygcally
rather it is formed psychologically. The ratio dfetfourth
and third natural frequencies of the bending mostesws
similar characteristics of a church bell soundtifsi at an
interval of one-sixth and if the mean radius tagbnratio £
of the pipe bell is less tha®.019. The ratio for the tubular

tower bells under test is betwedh0162 and 0.0256 .
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Fletcher and Rossing [5] described the applicatmn
Flugge’s formula to pipe bells and discussed thdehof the
virtual pitch.

The questions for understanding the acoustical eotigs of
tubular tower bells are: (1) whether the thick wakture of
the bells requires a specific attention of using three-
dimensional modeling for determining the naturabfrencies
of the bells? (2) how tonal quality of thick-walklks differ

from that of thin-wall pipe bells and why? (3) Het strike
tones of tubular tower bells are also charactertzgedirtual

pitches? and (4) why both tubular tower bells aipe pells
have similar tonal characteristics to church bells?

The answers to those questions not only improveuttder-
standing of bell acoustics but also have applicatw effec-
tive tuning of the bells and selection of approjgritocation
for suspending the bells.

In this paper, we compare the measured naturatidmzies
of thirteen tubular tower bells with the predictedues using
Flugge’s approximate formula [6, 7]. We find thia¢ thatural
frequencies that dominating the sound impressidnshe
thick-wall tubular tower bells belong to the “bedike”
bending modes of the cylinders and can be predibied
Flugge’s formula with adequate accuracy. As alteshe
three-dimensional modeling of the bells becomeseoes-
sary.

The measured frequency response functions (defiyethe
ratio of acceleration at one end of bell and impaxte at the
other end) of the pipe bells and tubular towershalle then
compared. The analysis of their differences shedeslights
on the understanding of the bell's tonal qualityerms of the
bells physical properties such as its modal masisraodal
quality factors. The paper also briefly discusdes éxperi-
mental determination of the pitch of bell's stritanes. The
result confirms that the previous finding of thectave rule”
in determining the virtual pitch of the pipe bediso applies
to tubular tower bells.

NATURAL FREQUENCIES

The dimensions of the thirteen tubular tower batis listed
in Table Al of the appendix. Each bell is suspenbgda
nylon rope through two holes on the central plaine bell,
at approximatelylOcm from the top end. The natural fre-
quencies of each bell were obtained by measuriagttel-
eration response at the top end of the bell toxgract force
at the bottom end. The acceleration frequency respfunc-
tion of the thirteenth bell is shown in Figure Rleasurement
of distributed vibration of the bells at the peaéguencies of
the frequency response function demonstrated thathe
peak frequencies in the frequency range of invastg cor-
respond to the bending modes with peripheral modaiber

of n=1. The measured natural frequencies of the thirteen

bells are listed in Table A2.

As the third peak was the first observable padfahe bell in
the A-weighted sound pressure response (see FRurthe
measured peak frequencids, with respect to the length,

outer diameterD and wall thickness of the thirteen bells

are compared with the predicted values using Flsgfye-
mula [6, 7] (see Figure 4). The natural frequen@éshe
remaining bells are presented in terms of the ®eqy ratios
with respect to the third natural frequency (segufé 5).
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Figure 2 Acceleration frequency response of the" 1gll
(measured at the top end of the bell) to an imfiace at the
bottom end.
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Figure 3 Sound pressure frequency response of tiehEs
(measured at 1.5m away from the bell) to an imparce at
the bottom end.
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Figure 4 Measured and predicted frequencies of the third

natural frequency f, 5, of tubular tower bells.

From Figure 4, we observe that:
(1) The measured, 5 of the thirteen thick-wall tubu-

lar tower bells agree very well with Flugge’s for-
mula prediction.
(2) Theoretical curves from Flugge’s formula allow the

design of frequency intervals betwedp, of dif-

ferent bells based on their parametets D, and
L).

ICA 2010
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(3) As expected, the decrease of the bell's wall thick-
ness increases the natural frequency.

Figure 5 shows the measured and predicted frequertings
(with respect tof, ;) of each bell as functions of the bell

parameters. Although an excellent agreement waerosd
between predicted and measured frequency ratiosthier
m=1,2 modes, we didn't include them in the figure ag/the
are located in the lower frequency range and dmurtii little
to the bell’'s sound impression because of A-weigjfiéature
of human hearing. We then concentrated on thesratidhe
m = 4 modes of all the bells. The predicted frequentipsa
in Figure 5 are for one wall thickness£ 17mm) as the first
twelve bells all have the same thicknesses. Thredigied
ratios are presented for one bell mode and theyspond to
three different outer diameters. The solid curvegresent

D, =83mm, dotted curvesD, =77mm, and dash-dotted

curvesD, = 96nm. The bell number is associated with the

frequency ratios through the corresponding beligtienin
Figure 5 and length/bell number relation in Table A

1 15 2
Bell Length (m)

Figure 5 Natural frequency ratios of the bending modes
(m=4) of tubular tower bells with respect tf ,. Parame-

ters used for prediction aré =17mm , solid curves:
D, =83mm, dotted curvesD, = 7#m, and dash-dotted

curves: D, = 9@nm. The measured frequency ratios (sym-

bols) for each bell are noted by its length, ane torre-
sponding bell number is found in Table Al.

The frequency ratios in Figure 5 provide the follogvobser-
vations:

(1) The measured and predicted frequency ratios agree
very well for the first seven bell modem(< 7);
Frequency ratios of modes of the thick-wall bells
begin to depart from the predicted value of
Flugge’s formula wherm =8. This discrepancy
increases with the increase of the half-wave num-
ber M of the bending modes. Such a discrepancy
indicates that the modal structure in the radial di
rection (along the thickness direction) of the bell
may start to play important roles in determining th
natural frequencies of the tubular tower bell when
m= 8.

The frequency ratios decrease gradually as the bell
length decreases. The rate of decrease increases
with m.

)

®3)
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The most relevant discussion concerning the efééawall
thickness on the natural frequencies of hollowrzidirs was
found in Guicking and Boisch [8] and Gazis’ [9, 1Mprk.
Guicking and Boisch [8] indicated that wheén> 0.125 the
effect of shear deformation and rotational ineftéeve to be
included in the calculation of the cylinder's natufrequen-
cies. When both the peripheral mode numheend axial
mode numberM are small, the thin-wall Flugge-like fre-
quency formula is a relevant approximation of thickled
cylinders, whilst for largen , the equivalent plate frequencies
are useful approximations. In the transition rawodethese
two cases, the natural frequencies obtained aredbas the
assumptions that the influence of shear deformati@hrota-
tional inertia is roughly equal for both cylindemsd plates.
Guicking and Boisch used experimental results ppett the
claimed accuracy of predictions. However, the twiinders
used in their experiments hadl of 0.042t and 0.1091,
which failed to satisfy the condition of their cemo for the
cylinders with & = 0.125, where the effect of shear deforma-
tion and rotational inertia are not negligible.

Gazis [9, 10] investigated three-dimensional prepiag
waves in hollow circular cylinders of infinite leting His
solution holds for all thickness/diameter ratioheTcompari-
son of his dispersion curves (phase velocities fametion of
frequency) with those based on a Timoshenko shelbriy
[11] demonstrated a very close agreement for thveedo
(flexural andn =1) propagating mode even for relatively
thick shells (e.g.0 =0.125). We haven't found any com-
parison of Gazis' result with experimental data Failow
cylinders with ¢ > 0.125 or with Flugge’s thin shell result.

The results in Figure 5 add the following contribos to the
previous work on the vibration of thick wall hollogircular
cylinders:

(1) Experimental evidence showing that Flugge’s thin
shell result cannot accurately predict the natural
frequencies of higher order modes= 8 for cyl-
inders withJ as large as 0.2.

(2) For bells with & less than0.0256, the radiated
sound in the frequency range where bell’s pitch
and tonal quality are determined is dominated by
the beam-like bending modes with=1. Modal
features in the radial direction of the bell still
have insignificant contribution to the natural fre-
guencies in this frequency range.

FREQUENCY RESPONSE FUNCTIONS

If a tubular tower bell and a pipe bell produce shene pitch,
what is the difference in their tonal qualities? Ateempted
to answer this question by comparing the measuweelera-
tion frequency responses (with respect to a umdef@xcita-
tion) of a tubular tower bell (Bell 13) and a pipell (shown
in Figure 6) from School of Music, UWA. Both befisoduce

the same pitch of,. The dimensions of brass pipe bell are

t=2.5mm, D, =39mm and L =1.44m . Figure 7 shows

that the first 7 peak frequencies (bel2kiHz ) of the pipe bell
are similar to those of the tubular tower bellaléo shows
that the frequencies of the eighth - tenth modethefpipe
bell are respectively higher than that of the tabtbwer bell.
Such frequency differences of the higher order rapde-
gether with the difference in the relative peakelsvand mo-
dal decay times, contribute to the timbre diffeen€the two
bells.
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Figure 6 Pipe bell used for a comparison study with tubular
tower bell #13.
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Figure 7 Acceleration frequency response functions of the
tubular tower bell #13 and the pipe bell.

The natural frequencies of the two bells were mtedi using
Flugge’s approximate formula. In Figure 8, the [t and
measured natural frequencies of the two bells lglestrow
the gradual departure between the natural freqasrafi the
same mode as mode number increases.
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Figure 8 Measured and predicted natural frequencies of the
tubular tower bell #13 and the pipe bell of the sapitch
(E))-

Significant differences in the levels of the belfrequency
responses are observed in Figure 7. The peak lefeise
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pipe bell are up t®20dB higher than the tubular tower bell’s.
This indicates that the pipe bell's vibration armlrsd are
much more sensitive to the same excitation forem tfhose
of the tubular tower bell. Tubular tower bells #fere re-
quire greater excitation impact force to produce sound
levels similar to that of pipe bells.

To gain a qualitative understanding of the diffeeiin the
peak levels, we approximate the bell’'s responsmeh natu-
ral frequency only by using the resonant mode epoading
the natural frequency, and ignoring the contributid other
modes. As a result the level difference between(ihm)
modes of the tubular tower bell and the pipe hislisimpli-
fied as:

P T
Ql M 1
ALy, = 20log,, ("—27), (1)
1m " 1m
where Qfm and Mfm are the quality factor and mass of the

(1, m) pipe bell mode, an@im and MIm are those of the

tubular tower bell mode. If the bells are both madethe
same material the modal mass ratio in Equatione(fjals
their volume ratio. In this case,

T
m

M
20 |ogloM—1F;: 20log, (15.6F 24B , (2)

im

which indicates that The large modal mass diffeeeoicthe
two bells is the dominant source for the consideraliffer-
ence between the peak levels of the bells.

The measured decay times of eight modes (startiom f
mode(l, 3)) of the two bells are shown in Figure 9. Distinct
differences between the modal decay times of the hells
are observed:

(1) The decay times ofl, 4) and (1,5) modes of the
pipe bell are approximately twice as long as those
of the tubular tower bell;

(2) The decay times of(1,7), (1,8), (1,9) and
(1,20) modes of the pipe bell are less than one-
half of those of the tubular bell;

(3) The decay times ofl, 3) and (1,6) modes of the
pipe bell are similar to that of the tubular bell.

Using the measured modal decay times (Figure 9)thad
estimated modal mass ratio, the peak level diffegerof the
modes (1, 3) to (1,10) are predicted using Equation (2) and
presented in Figure 10 together with the measueeadt pevel
difference for comparison. The comparison shows Homa-
tion (2) can at least qualitatively explain the lpéavel dif-
ference between frequency responses of the tws.bEle
discrepancy between the measured and predicted |peak
differences in Figure 10 may be due to the assamgtiat
the effect of other non-resonant modes on the pesfonse
is negligible. Nonetheless, Equation (2) demomss$rahat
the significantly larger modal mass is the mainseaaf the
reduced sensitivity of the tubular tower bell’s rétion and
sound.

ICA 2010
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Figure 9 Measured modal decay times (starting from
mode(1, 3)) of the tubular tower bell #13 and the pipe bell.

Figure 7 also shows that the peak response ofrthe7
modes of the pipe bell decreases significantly,Istltihat of
the tubular bell does not. This evidence and tlo¢ tfzat the
higher order modes ri> 7) of the pipe bells have very
small modal decay time as shown in Figure 9 indithat the
sound impression of the pipe bell is mainly dorredaby the
(1, 3)- (1, 7) modes. However the sound quality of the tubu-
lar tower bell is contributed by all the modes utihg the
higher frequency modes witm > 7. The different proper-
ties of the relative peak levels and modal deaay thetween
the two bells explains why the subjective impressid the
pipe bell's pitch is easier to identify; its soubeing clearer
and more pleasant when compared with the tonalitg
tubular tower bells.
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Figure 10 Level differences between the peak frequency
responses of the tubular tower bell #13 and the pédl.

PITCH DETERMINATION

The perceived pitch of the tubular tower bell'sik&trtone
(bell sound after an impact excitation) correspotuls fre-
quency which is not present in the bell's soundcspen.
Such frequency was determined by the authors arsicrans
producing a viola tone matching the bell tone asely as
possible, then measuring the fundamental frequeriche
recorded viola sound, which was used as the physieas-
ure of the bell’s pitch.

The viola was used to reproduce the sound of this be-
cause it covers adequately lower frequency rangerevthe

ICA 2010
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bell's pitch may be located. Two violin players kvirained
ears assisted with the viola sound production. fJitehes of
all the 13 tubular bells were determined and listedier

f, in Table 1.

Viola

Table 1 Bell pitch (HZ) identified subjectively using a
viola and by prediction.

Bell Number | £, (Hz) S, (Hz2)
1 270 271.5
2 305 305.5
3 343 344.0
4 359 363.0
5 408 408.0
6 459 454.5
7 519 514.0
8 551 538.5
9 590 584.0
10 611 621.0
11 701 690.5
12 788 771.5
13 341 342.0

To correlate the pitch,;,, to the frequencies of the partials

in the centre of the audible range, we adoptedridngdeigh’s
empirical ‘octave rule’ [13] for the strike note ciiurch bells
and proposed that the pitch of the strike notaibfilar tower
bells is one octave below that of the fourth pértia

for=f1q/2. 3)

Such hypothesis agrees with Hueber’'s experimentak \won
pipe bells [4].

The predicted pitches based on Equation (3) arelsked in

Table 1 for comparison. Very close agreement betvibe

measured and predicted pitches was found for althfiteen

tubular tower bells. For the first twelve bellse thitches were
compared with a viola sound in sequence. As a trethd

interval between the pitch being measured and tbequsly

measured pitch, provided some “hint” in the pitetedmina-

tion. It is nearly impossible to tell the pitch afbell (espe-
cially higher bells) without comparison to othebwlar bells

because all the single frequencies were heardadsié the

striking tone. The pitch of the 3bell was determined in
isolation without any need to compare its pitchhwitther

bells. Some difficulty in the pitch determinatiomsvencoun-
tered when the bell was excited at certain locatioFhis

observation will presently be explained in furtdetail.

Walliser's model [16, 17], which is based on Sceolg

experimental work, presents a straight forward metim

determining the residue pitch of complex tones. Wiethod

includes two steps:

(1) To estimate the approximate pitch correspondirtfpéo
frequency difference between neighboring partials;

(2) To determine a subjective subharmonic of the lowest
present partial, so that the pitch of this subhaimo
lies as close as possible to the estimated pitch.

Terhardt [17] modified Walliser's model by pointiogt that
a residue pitch will always be a subharmonic obenishant
partial rather than simply the lowest partial. Hsoaob-
served that the dominant frequency range of pidehtifica-
tion is from 500Hz to 1500Hz. Terhardt's methodaiso
used for the pitch identification of the tubulawer bells.
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The frequencies of the fourth partigl , are located in the

dominant frequency range for all the bells, evemfth, of

the 12" bell is at1543Hz which is near the boundary of the

range. The magnitude of sound pressuref,gf is either

dominating, or is at least at the comparable lewtd that of

higher partials. Furthermore, the decay time ofttélk sound
at this frequency is at least twice as long as tiatigher
partials, which means that the dominant effecthds partial
will not diminish with time when compared with thaft

higher partials. Thus the predicted pitches foséhbells also
correspond with those obtained by Equation (5}this case,

the factor of 2 betweerf, , and the virtual pitch was ob-

tained to produce the subharmonic (the pitch) wiscblos-
est to the estimated pitch from the averaged freqydiffer-

ence usingfy g = fy 4 fig—figand fj, - f 6

The third natural frequency of bells 8 to 11 entbis domi-
nant frequency range. For the twelfth bell, eves second
natural frequency enters the range. In additibe, ligher

partials abovef, ; gradually move outside the range. In

these cases, the information from the frequendgmihce of
those higher partial reduces, which increases diative
loudness of the sound at th& gand 29 for the 12" bell)
natural frequency, producing some confusing impoassin
the pitch determination. However, when played iqussice
with the other bells, the residue pitches are dediimd de-
terminable by Equation (3) with reasonable accuracy

The pitch determination of bell strike tones isubjsct of
psychoacoustics. It is felt that more detailed expent as-
sisted with a synthesized harmonic complex or @ piane
should be conducted in the pitch comparison tels¢. dffect
of the decay rate of each harmonics in the domirfigst
quency range should also be included in the pitterdhina-
tion as strike notes are essentially transientadggmMeverthe-
less, the experimental results of pitch identifiwat and
Equation (3) are used as a guide for bells’ turiafpre bet-
ter understanding of the physical basis of the hpits
achieved.

For ideally tuned church bells, presence of thetiglaof
“tierce”, which is a minor third 6:5) above the prime,
characterizes the sound impression of church bdlte
measured natural frequencies in Table A2 showttietatio

of the fourth and third natural frequencief ¢ : f1,3 ) of the
bending modes has approximately an interval of <k

(fy 40 f;3=5:3). If the pitch of the strike tone of a tubular

tower bell can be determined ébsz f 412, (see Equation
(5)) as demonstrated in this section, then theutaqy ratio
of one-sixth betweerf, , and f; 5, and the frequency rela-

tion betweenf, and f, , give rise to a ratio of a minor third

3/12
(fq: fp =2
Therefore we believe that it is the minor thirdguency in-
terval between the third partial (“tierce”) and thgual pitch
(“prime”) of the bell that gives the tubular towkells the
similar tonal characteristics of church bells.

) between fis and the virtual pitch‘p.

CONCLUSIONS

This paper has provided experimental evidencesuppat
the following conclusions:

6
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(1) Frequencies of the first 8 partials of the thickiwa
tubular tower bells can be accurately predicted us-
ing Flugge’s formula. As those frequencies cover
the dominant frequency range of sound impression,
the pitch and tonal quality of the bells are mainly
determined by the frequencies and amplitude of
those patrtials.

(2) Although they may produce the same pitch, the to-
nal quality of tubular tower bells is different fro
that of pipe bells. Tubular tower bells are less-se
sitive to impact force due to their heavy modal
masses. Therefore greater impact force is required
to produce the same level of the bell’s sound and
vibration. The higher order modes of tubular tower

bells above f, ; have longer decay times than

those of pipe bells. As a result, the pipe bellsnsbo
clearer than tubular tower bells do.

(3) Consistent with the predictions by the “octave 'tule
and Terhardt's model, the pitch of tubular tower
bells are usually one octave lower than the fre-

qguency of the fourth partial.
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APPENDIX

Table A1 Dimensions of tubular tower bells.

BellNo. | 1 2 3 4 5 6 7

L (mm) | 2260 2010 1890 1845 1720 1620 1520
D, (nmi) | 90 83 83 83 83 83 83
(o) | 17 17 17 17 17 17 17
BellNo. |8 9 10 11 12 13

L (mm) | 1470 1360 1320 1240 1170 1830
D, (mm) | 83 77 77 77 77 76
tonm) | 17 17 17 17 17 175

Table A2 Natural frequencies of the 13 tubular tower bells,
where m is the mode numbers along the axial direction.

ICA 2010
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=

Bl B2 B3 B4 B5 B6 B7

(=R oI AR I R o

—

66.0 74.0 84.0 89.0| 101.0| 113.0| 130.0
177.0 | 199.0 | 226.0 | 239.0| 270.0| 304.0| 345.0
338.0 | 380.0| 430.0 | 454.0| 512.0| 572.0| 651.0
543.0 | 611.0 | 688.0 | 726.0| 816.0| 909.0 | 1028.0
787.0 | 884.0 | 991.0 | 1044.0 | 1172.0 | 1296.0 | 1458.0

1058.0 | 1190.0 | 1329.0 | 1399.0 | 1569.0 | 1725.0 | 1931.0
1355.0 | 1524.0 | 1709.0 | 1798.0 | 1975.0 | 2184.0 | 2435.0
1673.0 | 1908.0 | 2088.0 | 2192.0 | 2420.0 | 2670.0 | 2967.0
2007.0 | 2295.0 | 2498.0 | 2620.0 | 2940.0 | 3179.0 | 3588.0
2356.0 | 2698.0 | 2927.0 | 3065.0 | 3434.0 | 3702.0 | 4088.0

=

B8 B9 B10 Bl1 B12 B13

(RN TE=ARLY ISP I S

—

136.0 | 148.0 | 157.0| 178.0| 200.0 80.0

364.0 | 394.0| 419.0 | 472.0] 529.0 220.0

684.0 | 741.0 | 788.0 | 883.0| 986.0 424.0
1077.0 | 1168.0 | 1242.0 | 1381.0 | 1543.0 684.0
1526.0 | 1654.0 | 1765.0 | 1968.0 | 2173.0 988.0
2018.0 | 2188.0 | 2340.0 | 2601.0 | 2863.0 1332.0
2544.0 | 2758.0 | 2956.0 | 3275.0 | 3593.0 1712.0
3100.0 | 3359.0 | 3600.0 | 3973.0 | 4243.0 2116.0
3678.0 | 3986.0 | 3973.0 | 4674.0 2548.0
2996.0
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