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ABSTRACT 

This paper presents the measured spectra and identified pitch of thirteen tubular tower bells, which are made of thick-
wall brass cylinders.  Results show that bell’s natural frequencies that dominating its pitch and timbre are well pre-
dicted by Flugge’s formula for thin-wall cylinders.  The spectra of tubular tower bells and thin-wall pipe bells are 
compared and their tonal differences are attributed to the differences in their modal masses and decay times. The 
identified pitches of the strike tones of the tubular tower bells are analysed against the frequency distribution and am-
plitude ratios of the partials in the spectra. The result supports the previous work on the virtual pitches of pipe bells 
and their determination by the “octave rule”.  Using this result, we offer an explanation to the question of why both 
tubular tower bells and pipe bells have similar tonal characteristics of church bells.  

INTRODUCTION  

Tubular tower bells are made of thick-wall brass cylinders, 
and often wieght under hundred of kg. They were known as 
early as 1850, and used as hall clocks and in bell towers in 
the late nineteenth century before being replaced by conven-
tional bells. They were introduced in England by John Har-
rington, who patented his design and stiffening device for 
tuning of the bells [1, 2].  

Shown in Figure 1 are twelve tubular tower bells located in 
Perth’s Swan Bell Tower, and bell #13 in the Acoustical 
Laboratory of the University of Western Australia. The 
thickness-to-mean diameter ratios of these bells are much 
larger than that of the pipe bells used in orchestras. Typically, 
the thickness-to-mean diameter ratio δ  of pipe bells is be-
tween 0.038 and 0.06, while that of tubular tower bells is 
about 0.2. Previous work on tonal quality of pipe bells is 
scarce. The authors have not found any literature on the 
acoustics of thick wall tubular tower bells.  

           

             (a) 

 

                     

                                               (b) 

Figure 1 (a) Tubular tower bells located in Perth Swan Bell 
tower.  (b) the 13th tubular tower bell at the University of 
Western Australia. 

Previous work on pipe bells by Hueber [3] and Rossing [4] 
reported that the “beam-like” bending vibrations of circular 
cylinders are not harmonic. Rather they produce sound im-
pression from their “nearly harmonious” partials. Hueber’s 
measurement indicated that the fundamental frequency 
(pitch) of the bell’s strike tone was not present physically 
rather it is formed psychologically. The ratio of the fourth 
and third natural frequencies of the bending modes shows 
similar characteristics of a church bell sound if it is at an 
interval of one-sixth and if the mean radius to length ratio ε  
of the pipe bell is less than 0.019.  The ratio for the tubular 
tower bells under test is between 0.0162  and 0.0256 . 
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Fletcher and Rossing [5] described the application of 
Flugge’s formula to pipe bells and discussed the model of the 
virtual pitch. 

The questions for understanding the acoustical properties of 
tubular tower bells are: (1) whether the thick wall feature of 
the bells requires a specific attention of using the three-
dimensional modeling for determining the natural frequencies 
of the bells? (2) how tonal quality of thick-wall bells differ 
from that of thin-wall pipe bells and why? (3) if the strike 
tones of tubular tower bells are also characterized by virtual 
pitches? and (4) why both tubular tower bells and pipe bells 
have similar tonal characteristics to church bells? 

The answers to those questions not only improve the under-
standing of bell acoustics but also have application for effec-
tive tuning of the bells and selection of appropriate location 
for suspending the bells. 

In this paper, we compare the measured natural frequencies 
of thirteen tubular tower bells with the predicted values using 
Flugge’s approximate formula [6, 7]. We find that the natural 
frequencies that dominating the sound impressions of the 
thick-wall tubular tower bells belong to the “beam-like” 
bending modes of the cylinders and can be predicted by 
Flugge’s formula with adequate accuracy.  As a result, the 
three-dimensional modeling of the bells becomes unneces-
sary. 

The measured frequency response functions (defined by the 
ratio of acceleration at one end of bell and impact force at the 
other end) of the pipe bells and tubular tower bells are then 
compared. The analysis of their differences shed some lights 
on the understanding of the bell’s tonal quality in terms of the 
bells physical properties such as its modal mass and modal 
quality factors. The paper also briefly discusses the experi-
mental determination of the pitch of bell’s strike tones. The 
result confirms that the previous finding of the “octave rule” 
in determining the virtual pitch of the pipe bells also applies 
to tubular tower bells.  

 

NATURAL FREQUENCIES 

The dimensions of the thirteen tubular tower bells are listed 
in Table A1 of the appendix. Each bell is suspended by a 
nylon rope through two holes on the central plane of the bell, 
at approximately 10cm  from the top end. The natural fre-
quencies of each bell were obtained by measuring the accel-
eration response at the top end of the bell to an impact force 
at the bottom end. The acceleration frequency response func-
tion of the thirteenth bell is shown in Figure 2.  Measurement 
of distributed vibration of the bells at the peak frequencies of 
the frequency response function demonstrated that all the 
peak frequencies in the frequency range of investigation cor-
respond to the bending modes with peripheral modal number 
of 1n = . The measured natural frequencies of the thirteen 
bells are listed in Table A2.  

As the third peak was the first observable partial of the bell in 
the A-weighted sound pressure response (see Figure 3), the 

measured peak frequencies 1,3f  with respect to the length L , 

outer diameter oD  and wall thickness t  of the thirteen bells 

are compared with the predicted values using Flugge’s for-
mula [6, 7] (see Figure 4). The natural frequencies of the 
remaining bells are presented in terms of the frequency ratios 
with respect to the third natural frequency (see Figure 5).  
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Figure 2 Acceleration frequency response of the 13th bell 
(measured at the top end of the bell) to an impact force at the 
bottom end. 
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Figure 3 Sound pressure frequency response of the 13th bell 
(measured at 1.5m away from the bell) to an impact force at 
the bottom end. 
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Figure 4 Measured and predicted frequencies of the third 

natural frequency, 1,3f ,  of  tubular tower bells. 

From Figure 4, we observe that: 

(1) The measured 1,3f  of the thirteen thick-wall tubu-

lar tower bells agree very well with Flugge’s for-
mula prediction. 

(2) Theoretical curves from Flugge’s formula allow the 

design of frequency intervals between 1,3f  of dif-

ferent bells based on their parameters (t , oD and 

L ).  
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(3) As expected, the decrease of the bell’s wall thick-
ness increases the natural frequency. 

Figure 5 shows the measured and predicted frequency ratios 

(with respect to 1,3f ) of each bell as functions of the bell 

parameters. Although an excellent agreement was observed 
between predicted and measured frequency ratios for the 

1, 2m =  modes, we didn’t include them in the figure as they 
are located in the lower frequency range and contribute little 
to the bell’s sound impression because of A-weighted feature 
of human hearing. We then concentrated on the ratios of the 

4m ≥  modes of all the bells. The predicted frequency ratios 
in Figure 5 are for one wall thickness ( 17t mm= ) as the first 
twelve bells all have the same thicknesses. Three predicted 
ratios are presented for one bell mode and they correspond to 
three different outer diameters. The solid curves represent 

83oD mm= , dotted curves 77oD mm= , and dash-dotted 

curves 90oD mm= . The bell number is associated with the 

frequency ratios through the corresponding bell length in 
Figure 5 and length/bell number relation in Table A1. 
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Figure 5 Natural frequency ratios of the bending modes 

( 4m ≥ ) of tubular tower bells with respect to 1,3f . Parame-

ters used for prediction are 17t mm= , solid curves: 

83oD mm= , dotted curves: 77oD mm= , and dash-dotted 

curves: 90oD mm= . The measured frequency ratios (sym-

bols) for each bell are noted by its length, and the corre-
sponding bell number is found in Table A1. 

The frequency ratios in Figure 5 provide the following obser-
vations: 

(1) The measured and predicted frequency ratios agree 
very well for the first seven bell modes ( 7m ≤ ); 

(2) Frequency ratios of modes of the thick-wall bells 
begin to depart from the predicted value of 
Flugge’s formula when 8m = . This discrepancy 
increases with the increase of the half-wave num-
ber m  of the bending modes. Such a discrepancy 
indicates that the modal structure in the radial di-
rection (along the thickness direction) of the bell 
may start to play important roles in determining the 
natural frequencies of the tubular tower bell when 

8m ≥ . 
(3) The frequency ratios decrease gradually as the bell 

length decreases. The rate of decrease increases 
with m . 

The most relevant discussion concerning the effect of wall 
thickness on the natural frequencies of hollow cylinders was 
found in Guicking and Boisch [8] and Gazis’ [9, 10] work. 
Guicking and Boisch [8] indicated that when 0.125δ ≥  the 
effect of shear deformation and rotational inertia have to be 
included in the calculation of the cylinder’s natural frequen-
cies. When both the peripheral mode number n  and axial 
mode number m  are small, the thin-wall Flugge-like fre-
quency formula is a relevant approximation of thick-walled 
cylinders, whilst for large n , the equivalent plate frequencies 
are useful approximations. In the transition range of these 
two cases, the natural frequencies obtained are based on the 
assumptions that the influence of shear deformation and rota-
tional inertia is roughly equal for both cylinders and plates. 
Guicking and Boisch used experimental results to support the 
claimed accuracy of predictions. However, the two cylinders 
used in their experiments had δ  of 0.0425 and 0.1091, 
which failed to satisfy the condition of their concern for the 
cylinders with 0.125δ ≥ , where the effect of shear deforma-
tion and rotational inertia are not negligible. 

Gazis [9, 10] investigated three-dimensional propagating 
waves in hollow circular cylinders of infinite length. His 
solution holds for all thickness/diameter ratios. The compari-
son of his dispersion curves (phase velocities as a function of 
frequency) with those based on a Timoshenko shell theory 
[11] demonstrated a very close agreement for the lowest 
(flexural and 1n = ) propagating mode even for relatively 
thick shells (e.g. 0.125δ = ). We haven’t found any com-
parison of Gazis’ result with experimental data for hollow 
cylinders with 0.125δ ≥  or with Flugge’s thin shell result.  

The results in Figure 5 add the following contributions to the 
previous work on the vibration of thick wall hollow circular 
cylinders: 

(1) Experimental evidence showing that Flugge’s thin 
shell result cannot accurately predict the natural 
frequencies of higher order modes 8m ≥  for cyl-
inders with δ  as large as 0.2. 

(2) For bells with ε  less than 0.0256, the radiated 
sound in the frequency range where bell’s pitch 
and tonal quality are determined is dominated by 
the beam-like bending modes with 1n = . Modal 
features in the radial direction of the bell still 
have insignificant contribution to the natural fre-
quencies in this frequency range. 

 

FREQUENCY RESPONSE FUNCTIONS 

If a tubular tower bell and a pipe bell produce the same pitch, 
what is the difference in their tonal qualities? We attempted 
to answer this question by comparing the measured accelera-
tion frequency responses (with respect to a unit force excita-
tion) of a tubular tower bell (Bell 13) and a pipe bell (shown 
in Figure 6) from School of Music, UWA. Both bells produce 

the same pitch of 4E . The dimensions of brass pipe bell are 

2.5t mm= , 39oD mm=  and 1.44L m= . Figure 7 shows 

that the first 7 peak frequencies (below2kHz ) of the pipe bell 
are similar to those of the tubular tower bell. It also shows 
that the frequencies of the eighth - tenth modes of the pipe 
bell are respectively higher than that of the tubular tower bell. 
Such frequency differences of the higher order modes, to-
gether with the difference in the relative peak levels and mo-
dal decay times, contribute to the timbre difference of the two 
bells.  
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Figure 6 Pipe bell used for a comparison study with tubular 
tower bell #13. 
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Figure 7 Acceleration frequency response functions of the 
tubular tower bell #13 and the pipe bell.  

The natural frequencies of the two bells were predicted using 
Flugge’s approximate formula. In Figure 8, the predicted and 
measured natural frequencies of the two bells clearly show 
the gradual departure between the natural frequencies of the 
same mode as mode number increases.  
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Figure 8 Measured and predicted natural frequencies of the 
tubular tower bell #13 and the pipe bell of the same pitch 

( 4E ). 

Significant differences in the levels of the bell’s frequency 
responses are observed in Figure 7. The peak levels of the 

pipe bell are up to 20dB  higher than the tubular tower bell’s. 
This indicates that the pipe bell’s vibration and sound are 
much more sensitive to the same excitation force than those 
of the tubular tower bell. Tubular tower bells therefore re-
quire greater excitation impact force to produce the sound 
levels similar to that of pipe bells.  

To gain a qualitative understanding of the difference in the 
peak levels, we approximate the bell’s response at each natu-
ral frequency only by using the resonant mode corresponding 
the natural frequency, and ignoring the contribution of other 
modes.  As a result the level difference between the (1, )m  
modes of the tubular tower bell and the pipe bells is simpli-
fied as:  

1, 1,

(1, ) 10

1, 1,

20 log ( )

P T

m m

m T P

m m

Q M
L

Q M
∆ ≈ ,  (1) 

where 1,

P

mQ  and 1,

P

mM  are the quality factor and mass of the 

(1, )m  pipe bell mode, and 1,

T

mQ  and 1,

T

mM  are those of the 

tubular tower bell mode. If the bells are both made of the 
same material the modal mass ratio in Equation (1) equals 
their volume ratio. In this case,  

 
1,

10 10

1,

20 log 20 log (15.6) 24( )

T

m

P

m

M
dB

M
= ≈ ,   (2) 

which indicates that The large modal mass difference of the 
two bells is the dominant source for the considerable differ-
ence between the peak levels of the bells. 

The measured decay times of eight modes (starting from 
mode(1, 3)) of the two bells are shown in Figure 9. Distinct 
differences between the modal decay times of the two bells 
are observed:  

(1) The decay times of (1, 4) and (1, 5) modes of the 
pipe bell are approximately twice as long as those 
of the tubular tower bell; 

(2) The decay times of (1, 7) , (1,8) , (1, 9)  and 

(1,10) modes of the pipe bell are less than  one-
half  of those of the tubular bell; 

(3) The decay times of (1, 3) and (1, 6)  modes of the 
pipe bell are similar to that of the tubular bell. 

Using the measured modal decay times (Figure 9) and the 
estimated modal mass ratio, the peak level differences of the 
modes (1, 3) to (1,10) are predicted using Equation (2) and 
presented in Figure 10 together with the measured peak level 
difference for comparison. The comparison shows that Equa-
tion (2) can at least qualitatively explain the peak level dif-
ference between frequency responses of the two bells. The 
discrepancy between the measured and predicted peak level 
differences in Figure 10 may be due to the assumption that 
the effect of other non-resonant modes on the peak response 
is negligible.  Nonetheless, Equation (2) demonstrates that 
the significantly larger modal mass is the main cause of the 
reduced sensitivity of the tubular tower bell’s vibration and 
sound. 
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Figure 9 Measured modal decay times (starting from 
mode(1, 3)) of the tubular tower bell #13 and the pipe bell. 

Figure 7 also shows that the peak response of the 7m >  
modes of the pipe bell decreases significantly, whilst that of 
the tubular bell does not. This evidence and the fact that the 
higher order modes ( 7m > ) of the pipe bells have very 
small modal decay time as shown in Figure 9 indicate that the 
sound impression of the pipe bell is mainly dominated by the 
(1, 3)- (1, 7)  modes. However the sound quality of the tubu-
lar tower bell is contributed by all the modes including the 
higher frequency modes with 7m > . The different proper-
ties of the relative peak levels and modal decay time between 
the two bells explains why the subjective impression of the 
pipe bell’s pitch is easier to identify;  its sound being clearer 
and more pleasant when compared with the tonal quality of 
tubular tower bells. 
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Figure 10 Level differences between the peak frequency 
responses of the tubular tower bell #13 and the pipe bell. 

 

PITCH DETERMINATION 

The perceived pitch of the tubular tower bell’s strike tone 
(bell sound after an impact excitation) corresponds to a fre-
quency which is not present in the bell’s sound spectrum. 
Such frequency was determined by the authors and musicians 
producing a viola tone matching the bell tone as closely as 
possible, then measuring the fundamental frequency of the 
recorded viola sound, which was used as the physical meas-
ure of the bell’s pitch. 

The viola was used to reproduce the sound of the bells be-
cause it covers adequately lower frequency range where the 

bell’s pitch may be located. Two violin players with trained 
ears assisted with the viola sound production. The pitches of 
all the 13 tubular bells were determined and listed under 

Violaf  in Table 1. 

Table 1 Bell pitch (Hz ) identified subjectively using a 
viola and by prediction. 

                            

To correlate the pitch Violaf  to the frequencies of the partials 

in the centre of the audible range, we adopted the Rayleigh’s 
empirical ‘octave rule’ [13] for the strike note of church bells 
and proposed that the pitch of the strike note of tubular tower 
bells is one octave below that of the fourth partial: 

1 1,4 / 2pf f= .   (3) 

Such hypothesis agrees with Hueber’s experimental work on 
pipe bells [4]. 

The predicted pitches based on Equation (3) are also listed in 
Table 1 for comparison. Very close agreement between the 
measured and predicted pitches was found for all the thirteen 
tubular tower bells. For the first twelve bells, the pitches were 
compared with a viola sound in sequence. As a result, the 
interval between the pitch being measured and the previously 
measured pitch, provided some “hint” in the pitch determina-
tion. It is nearly impossible to tell the pitch of a bell (espe-
cially higher bells) without comparison to other tubular bells 
because all the single frequencies were heard instead of the 
striking tone. The pitch of the 13th bell was determined in 
isolation without any need to compare its pitch with other 
bells. Some difficulty in the pitch determination was encoun-
tered when the bell was excited at certain locations. This 
observation will presently be explained in further detail. 

Walliser’s model [16, 17], which is based on Schouten’s 
experimental work, presents a straight forward method in 
determining the residue pitch of complex tones. The method 
includes two steps: 
(1) To estimate the approximate pitch corresponding to the 

frequency difference between neighboring partials; 
(2) To determine a subjective subharmonic of the lowest 

present partial, so that the pitch of this subharmonic 
lies as close as possible to the estimated pitch.  

Terhardt [17] modified Walliser’s model by pointing out that 
a residue pitch will always be a subharmonic of a dominant 
partial rather than simply the lowest partial. He also ob-
served that the dominant frequency range of pitch identifica-
tion is from 500Hz to 1500Hz. Terhardt’s method is also 
used for the pitch identification of the tubular tower bells.  
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The frequencies of the fourth partial 1,4f  are located in the 

dominant frequency range for all the bells, even the 1,4f  of 

the 12th bell is at 1543Hz  which is near the boundary of the 

range. The magnitude of sound pressure at 1,4f  is either 

dominating, or is at least at the comparable level with that of 
higher partials. Furthermore, the decay time of the bell sound 
at this frequency is at least twice as long as that of higher 
partials, which means that the dominant effect of this partial 
will not diminish with time when compared with that of 
higher partials. Thus the predicted pitches for those bells also 
correspond with those obtained by Equation (5). In this case, 

the factor of 2 between 1,4f  and the virtual pitch was ob-

tained to produce the subharmonic (the pitch) which is clos-
est to the estimated pitch from the averaged frequency differ-

ence using 1,5 1,4f f− , 1,6 1,5f f−  and 1,7 1,6f f− .  

The third natural frequency of bells 8 to 11 enters the domi-
nant frequency range.  For the twelfth bell, even the second 
natural frequency enters the range.  In addition, the higher 

partials above 1,5f  gradually move outside the range. In 

these cases, the information from the frequency difference of 
those higher partial reduces, which increases the relative 
loudness of the sound at the 3rd (and 2nd for the 12th bell) 
natural frequency, producing some confusing impressions in 
the pitch determination. However, when played in sequence 
with the other bells, the residue pitches are audible and de-
terminable by Equation (3) with reasonable accuracy. 

The pitch determination of bell strike tones is a subject of 
psychoacoustics. It is felt that more detailed experiment as-
sisted with a synthesized harmonic complex or a pure tone 
should be conducted in the pitch comparison test. The effect 
of the decay rate of each harmonics in the dominant fre-
quency range should also be included in the pitch determina-
tion as strike notes are essentially transient signals. Neverthe-
less, the experimental results of pitch identification and 
Equation (3) are used as a guide for bells’ tuning before bet-
ter understanding of the physical basis of the pitch is 
achieved.   

For ideally tuned church bells, presence of the partial of 
“tierce”, which is a minor third (6 : 5 ) above the prime, 
characterizes the sound impression of church bells. The 
measured natural frequencies in Table A2 show that the ratio 

of the fourth and third natural frequencies (1,4 1,3:f f  ) of the 

bending modes has approximately an interval of one-sixth 

( 1,4 1,3: 5 : 3f f = ). If the pitch of the strike tone of a tubular 

tower bell can be determined as 1,4 / 2pf f= , (see Equation 

(5)) as demonstrated in this section, then the frequency ratio 

of one-sixth between 1,4f  and 1,3f , and the frequency rela-

tion between pf  and 1,4f  give rise to a ratio of a minor third 

(
3/12

1,3 : 2pf f = ) between 1,3f  and the virtual pitch pf . 

Therefore we believe that it is the minor third frequency in-
terval between the third partial (“tierce”) and the virtual pitch 
(“prime”) of the bell that gives the tubular tower bells the 
similar tonal characteristics of church bells. 

CONCLUSIONS 

This paper has provided experimental evidences to support 
the following conclusions: 

(1) Frequencies of the first 8 partials of the thick-wall 
tubular tower bells can be accurately predicted us-
ing Flugge’s formula. As those frequencies cover 
the dominant frequency range of sound impression, 
the pitch and tonal quality of the bells are mainly 
determined by the frequencies and amplitude of 
those partials. 

(2) Although they may produce the same pitch, the to-
nal quality of tubular tower bells is different from 
that of pipe bells. Tubular tower bells are less sen-
sitive to impact force due to their heavy modal 
masses. Therefore greater impact force is required 
to produce the same level of the bell’s sound and 
vibration. The higher order modes of tubular tower 

bells above 1,5f  have longer decay times than 

those of pipe bells. As a result, the pipe bells sound 
clearer than tubular tower bells do. 

(3) Consistent with the predictions by the “octave rule” 
and Terhardt’s model, the pitch of tubular tower 
bells are usually one octave lower than the fre-
quency of the fourth partial.  
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APPENDIX 

Table A1 Dimensions of tubular tower bells. 

 

 

 

 

 

 

 

 

 

Table A2 Natural frequencies of the 13 tubular tower bells, 
where m  is the mode numbers along the axial direction. 
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