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ABSTRACT 

Multibubble effects on cavitation inception are studied in detail to show that bubble-bubble interaction can change 
the inception process of cavitation in a variety of ways. In an effort to develop a high-power pulsed neutron source 
which uses a giant proton accelerator and liquid mercury, we have attempted to use microbubbles to reduce cavitation 
damage of the mercury vessels caused by proton-induced intense pressure waves. From an off-line experiment, we 
found that cavitation of liquid mercury is suppressed by injecting a sufficient amount of gas microbubbles into mer-
cury. This observation was the starting point of our multibubble study on cavitation inception. Using a simple mul-
tibubble model in which Rayleigh−Plesset type equations are coupled through the bubble-emitted pressure waves, we 
first showed that microbubbles can in certain cases suppress explosive growth of cavitation bubbles under negative 
pressure, implying a significant effect of injected microbubbles on cavitation inception. We then performed a more 
detailed numerical study on cavitation in multibubble cases and found that several different patterns of bubble dy-
namics, such as competitive growth and interrupted expansion, are possible in the early stage of cavitation. From this 
detailed study we also found that the instantaneous unstable equilibrium radii of growing bubbles play an essential 
role in these processes. These findings unveil the complex nature of interacting bubbles under negative pressure. 

INTRODUCTION 

The J-PARC (Japan Proton Accelerator Research Complex) 
project [1] is a R&D project on the development and use of a 
MW-class proton accelerator promoted by The Japan Atomic 
Energy Agency and the High Energy Accelerator Research 
Organization. One of the aims of this project is to provide a 
high-power spallation neutron source to be used in materials 
and life sciences. In the neutron source being developed, 
liquid mercury flowing inside a metal target vessel is bom-
barded by high-intensity proton beams to produce high neu-
tron fluxes. The accelerated proton beams have a maximum 
energy of 3 GeV and are repeatedly injected into the mercury 
at a repetition rate of 25 Hz. 

In the development of the neutron source, cavitation in liquid 
mercury and the resulting damage are now significant prob-
lems. From several different experiments [2−6], it was sug-
gested that high-intensity pressure waves produced in liquid 
mercury by the enormous energy of proton beams cause cavi-
tation of mercury and it will significantly reduce the lifetime 
of the target vessel by causing cavitation damage. Given 
these findings, we and collaborators are now performing 
various investigations to overcome this critical issue [7−13]. 
Our present aim is to propose a technique to reduce the cavi-
tation damage or suppress the cavitation itself. 

One of the promising techniques to reduce cavitation damage 
is microbubble injection. From several numerical studies [8, 
12], it was suggested that microbubbles in mercury can sig-
nificantly decrease the amplitude of pressure waves and may 
reduce cavitation damage. Recently, this numerical prediction 
was confirmed experimentally from a water study [13]. Re-

cent studies also suggested that microbubbles can suppress 
cavitation inception. In Refs. [7, 11], we showed numerically 
and theoretically that the pressure waves emitted by injected 
microbubbles decrease the amplitude of negative pressure in 
liquid, which is the trigger of cavitation, and hence cavitation 
inception is suppressed if the size and number density of 
bubbles are appropriate. In Ref. [9], we confirmed experi-
mentally the validity of this theoretical prediction. 

 
Fig. 1. Bubble-bubble interaction through pressure waves. 
When the pressure of a liquid is changed by a propagating 

pressure wave, bubbles immersed in the liquid begin volume 
oscillation and emit pressure waves. Bubble-bubble interac-
tion through the bubble-emitted pressure waves leads to a 

variety of phenomena. 

To more deeply understand the mechanism of cavitation sup-
pression by microbubbles, and also to gain a deeper insight 
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into the inception process of cavitation, we perform a detailed 
numerical study on cavitation inception [14]. As in our previ-
ous study, we focus our attention on acoustic interaction of 
bubbles. The coupling of bubbles through pressure waves, a 
kind of bubble-bubble interaction (Fig. 1), is known to lead to 
a variety of phenomena that single bubbles can never exhibit, 
such as attraction and repulsion of pulsating bubbles [15−20], 
the appearance of “transition frequencies” [20, 21], avoided 
crossings of resonance frequencies [22], and filamentary 
structure formation in a strong sound field [23, 24] (see, e.g., 
Refs. [25−31] for more about the effects of bubble-bubble 
interaction). In this paper, we consider cavitation inception in 
a system where a number of cavitation nuclei (assumed to be 
gas microbubbles) exist and may interact with each other. 
The theoretical model used is the coupled Rayleigh−Plesset 
equations which describe the radial motion of bubbles inter-
acting through pressure waves. The liquid is assumed to be 
water, a liquid much more familiar than mercury. Taking 
bubble-bubble interaction into account, we examine in detail 
the dynamics of cavitation nuclei under negative pressure. 
First we show that the suppression of cavitation inception 
reported in Ref. [7] can occur in water as well if the size and 
inter-bubble distance are properly set. Then, we examine 
several details of the numerical result. Particular attention is 
focused on the effective cavitation pressure (dynamic Blake 
threshold) of the interacting bubbles and the transition region 
in parameter space where the bubble’s behaviour drastically 
changes as the inter-bubble distance changes. In the present 
investigation we found that the inception process of cavita-
tion in multi-nuclei cases can be much more complex than in 
single-nuclei cases and that a variety of patterns of inception 
are possible. 
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Fig. 2. Lp − R  curve for  μm,  Pa, and 0 2R = 0vp = 1κ = . 

The liquid pressure Lp  is normalized by the atmospheric 
pressure . 0P Cp  and CR  are the threshold pressure and criti-

cal radius, respectively. 
 

BRIEF REVIEW OF SINGLE-BUBBLE 
CAVITATION 

One of the well-known notions of cavitation in single-bubble 
cases under quasistatic conditions is the Blake threshold 
[32−34]. For liquid pressures below a threshold value, a gas 
microbubble (cavitation nucleus) does not have an equilib-
rium radius and thus undergoes unbounded expansion, which 
implies the occurrence of cavitation. The threshold liquid 
pressure is called the Blake threshold pressure and the bubble 
radius at the threshold is called the Blake critical radius. 
These critical values are obtained by solving the pressure 
balance equation at the bubble surface, 

  2
L bp p
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where Lp  is the liquid pressure, bp  is the internal pressure 
of the bubble given by 
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σ  is the surface tension, R  is the bubble radius at Lp , 

0 0.1013P =  MPa is the atmospheric pressure, 0R  the ambi-
ent radius of the bubble, vp  the vapour pressure, and κ  the 
polytropic exponent of the gas inside the bubble. Equation (1) 
describes the balance between Lp  and bp  through the sur-
face tension force 2 / Rσ . An example of the Lp − R  curve 
given by Eq. (1) with R0 2=  μm is shown in Fig. 2. Here, 
we neglected the vapour pressure for simplicity and 1κ = , 
that is, the bubble interior is isothermal. This result reveals 
that for Lp  below a threshold value Cp , no bubble radius 
exists that satisfies Eq. (1). The threshold pressure is 
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and the corresponding critical radius is 
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For C Lp p p< < , Eq. (1) has two roots corresponding to 
equilibrium radii [32−36]. The smaller root represents the 
stable equilibrium radius, at which the bubble can be station-
ary. On the other hand, the larger root represents the unstable 
equilibrium radius, where a small deviation in bubble radius 
results in rapid shrink or explosive expansion. As shown 
below, the unstable equilibrium radius plays an important 
role in our study. 

In dynamic cases where the liquid pressure varies rapidly, the 
above scenario is only a rough description. Detailed theoreti-
cal and numerical investigations of single-bubble cavitation 
have revealed several dynamic effects. Researchers have 
found, for example, that even if min[ ( )]L Cp t p> , the instan-
taneous bubble radius can in certain conditions be greater 
than the unstable equilibrium radius in the transient period, 
resulting in the inception of cavitation [33−38]. This observa-
tion says that the effective threshold pressure can be different 
from that in the quasistatic case. 

As briefly reviewed above, a number of useful insights into 
single-bubble cavitation have been published. In reality, how-
ever, not only one but many cavitation nuclei exist and may 
interact with each other. Single-bubble study is thus not suf-
ficient to fully understand cavitation in practical situations. 
As shown in the following sections, bubble-bubble interac-
tion can drastically change the inception processes of cavita-
tion in several ways. 

MODEL EQUATIONS AND SETTINGS 

We assume the cavitation nuclei to be spherical gas micro-
bubbles. The theoretical model used to describe their evolu-
tion is the coupled Rayleigh−Plesset equations, which read 
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where ( )i iR R t=  is the time-dependent radius of bubble i , 
 is the distance between the centres of bubbles i  and ijD j , 

( )Lp t  is the liquid pressure in the far field, N  is the number 
of bubbles, and the overdots denote the time derivative . 
The surrounding liquid is assumed to be water of density 

/d dt

1000ρ =  kg/m3, viscosity  Pa s, and surface 
tension 

3−1.002 10μ = ×
0.0728σ =  N/m. Liquid compressibility is neglected 

since we are not interested in the details of bubble collapse. 
The bubble content is assumed to be an ideal gas, and the 
internal pressure of bubble i  ( ,b ip ) is thus given by 
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where 0iR  and  are the ambient radius and polytropic ex-

ponent, respectively, of bubble i . The vapour pressure and 
mass exchange across the bubble surface are neglected. As-
suming that the bubble content is isothermal,  is set to 
unity. Since translation of bubbles and high-order terms de-
pending on the translational velocity [18, 39, 40] are ne-
glected in this model, we set the inter-bubble distances  to 

be much greater than 

iκ

iκ

ijD

0 0i jR R+ . 

This nonlinear system of equations describes the radial mo-
tion of N  spherical bubbles coupled through the bubble-
emitted pressure waves. In this system, the bubbles’ radial 
motion is driven by both the liquid pressure and the pressures 
from the neighbouring bubbles described by the last term of 
Eq. (5). This term was derived by a formula for the pressure 
wave emitted by a pulsating sphere [7, 17] 

  
2

4

( ) 1j j
j

j j

d R R
p

r dt r
ρ ⎛ ⎞

= + ⎜ ⎟⎜ ⎟
⎝ ⎠

�
O ,    (8) 

where  is the distance measured from the centre of bubble jr
j . 
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Fig. 3. Pressure-time history assumed in the present study. 

The shown history is for  μs. A similar pressure pro-
file observed experimentally can be found in, e.g., Ref. [6]. 

10T =

 

The time history of the far-field liquid pressure is assumed as 
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with 
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where  is a constant negative value and T  is the period 

of the decompression process from  to . This function 
represents a constant negative pressure following a sinusoidal 
decompression and is continuous up to the first time deriva-
tive (see Fig. 3). In the following discussions,  and T  are 

used as control parameters. When one sets , Eq. (9) is 
reduced to a step change like that considered in Refs. [35, 36, 
38, 41]. The initial conditions are 

ngP

0P ngP

ngP

0T →

  0( )i iR t T R= − = ,      (11) 

  ( )iR t T 0= − =� ,      (12) 

that is, the bubbles are initially at equilibrium. 
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Fig. 4. Radius-time curves in single-bubble cases (for 

12 ). The ambient radii of the bubbles are 10D → ∞ 2R =  μm 
and 20 20R =  μm. The dashed line denotes the slope deter-

mined by Eq. (13). 

 

NUMERICAL INVESTIGATIONS 

Competitive growth of interacting bubbles 

Let us consider the dynamics of two non-identical bubbles 
(bubbles 1 and 2) under negative pressure. An example of a 
single-bubble case (i.e., for ) is shown in Fig. 4. 
Here we set 

12D → ∞

10 2R =  μm,  μm, 20 20R = 1,2 1κ = , 

, and 00.25ngP P= − 10T =  μs, and the corresponding thresh-
old pressures are 1 0.179C 0p P= −  for bubble 1 and 

2 0.007C 0p P= −  for bubble 2. Since  well exceeds the 
threshold pressures, both bubbles undergo explosive expan-
sion. The response of bubble 2 in the decompression process 
is faster than that of bubble 1, because bubble 2 has a much 

ngP
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higher threshold pressure than that of bubble 1. Hence, the 
explosive expansion of bubble 2 begins earlier than that of 
bubble 1. After the transient motion has decayed, the expan-
sion rates of both bubbles converge to an almost constant 
value determined by 

  2( ) .
3
v LdR p p

dt ρ
−

≈      (13) 

These observations are consistent with the well-known be-
haviour of single cavitation bubbles. As mentioned above, the 
threshold pressure in dynamic cases is in general different 
from the value given by the quasistatic theory. The threshold 
pressure of bubble 1 in the present case (  μs) is 
slightly higher (only about 1.7% [14]) than the theoretical 
prediction. The dynamic threshold comes closer to the qua-
sistatic prediction as T  increases. 
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Fig. 5. Radius-time curves for  and four differ-

ent  values. The numbers denote . The 
curves of 

00.25ngP = − P
12D 12 10 20/( )D R R+

2R  for different  values are indistinguishable. 
For , bubble 1 cannot grow significantly 

although 

12D
12 10 2010( )D R R= +

Lp   is well below the threshold pressure of the 
bubble. 

For finite , the dynamics of the bubbles can have a differ-
ent pattern. In Fig. 5 we show the results for  
with four different values of . From the figure, one finds 
that the expansion rate of bubble 1 is decreased as  de-
creases, and the explosive expansion of this bubble is finally 
suppressed for , although the negative 
pressure considered here clearly exceeds its threshold pres-
sure: the expansion ratio of bubble 1, 

12D

00.25ngP P= −

12D

12D

12 10 2010( )D R R= +

1max[ ( )] / 10R t R , in this 
case is only about 2.57. No considerable change occurs in the 
dynamics of bubble 2 in the shown period, because bubble 1 
is too small to cause it. The results presented here prove that 
the suppression phenomenon reported in Refs. [7, 11] is not 
inherent in liquid mercury and can also occur in water, whose 
material properties are greatly different from those of mer-
cury. In what follows, we discuss details of this phenomenon. 

The above numerical result suggests that the effective thresh-
old pressure of bubble 1 in the case of  is 
much lower than that predicted by the quasistatic theory (3) 
and a more intense negative pressure is thus needed to cavi-
tate bubble 1. Figure 6 shows the dynamics of bubble 1 for 

 and four different values of . From 
this, the effective threshold pressure of bubble 1 is deduced 

to be within the range of 

12 10 2010( )D R R= +

12 10 2010( )D R R= + ngP

00.270 0.276P 0P− −∼ , the absolute 
value of which is 1.5 times greater than the theoretical pre-
diction. 

This significant change in threshold pressure is due to the 
positive pressure wave emitted by bubble 2. Bubbles expand-
ing explosively under negative pressure emit positive pres-
sure waves through their radial motion [7, 11]. The positive 
pressure waves reduce the magnitude of the negative pressure 
in the surrounding liquid, leading to the need for a more in-
tense negative (far-field) pressure to cavitate. The positive 
pressure from bubble 2 is estimated by the following simple 
formula [7]: 

  2
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R tp t
D
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which is given using Eqs. (8) and (13) under the assumption 
of 2 0R ≈�� . Since  is negative, ngP 2 ( )p t  is positive. The total 
pressure acting on bubble 1 is thus 
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which is clearly higher than the far-field liquid pressure. 

−0.25

−0.27

−0.29

-10 0 10 20 30
0

10

20

30

40

Time  [μs]

R 1  
[μ

m
]

−0.276

 
Fig. 6. Radius-time curves of bubble 1 for 12D =  
10 2010( )R R+  and four different  values selected around 

the effective threshold pressure of the bubble. The numbers 
in the panel denote . 

ngP

0/ngP P

The observed suppression of explosive expansion, or com-
petitive growth of bubbles, occurs also for other couples of 
bubbles. In Fig. 7 we show the expansion ratios of bubbles, 

0max[ ( )]/j jR t R , for 10 2R =  μm, , and 00.25ngP P= − 20t ≤  

μs as functions of 20R . Here the inter-bubble distance was 
fixed as 12 220D =  μm, which corresponds to 10 2010( )R R+  
in the previous example. From this figure one finds that the 
explosive expansion of bubble 1 is completely suppressed 
when  μm. This figure also suggests that when 20 17R ≥

20 10R R<  the expansion of bubble 2 can be suppressed by 
bubble 1, and that for 20 10R R>  the expansion ratio of bubble 
2 decreases monotonically as 20R  increases. The latter is due 
to the fact that the expansion rate of bubble 2 has an almost 
constant value determined by Eq. (13) although 20R  changes, 
and hence a larger 20R  gives a smaller expansion ratio. The 
above results prove that the suppression of explosive expan-
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sion can occur if the bubbles’ ambient radii and inter-bubble 
distance are appropriately set. 

0 10 20 30 40
0

10

20

30

40

R20  [μm]

m
ax

(R
j) 

/ R
j0 Bubble 1

Bubble 2

 

Fig. 7. Expansion ratios of the bubbles as functions of 20R . 
Shown are for  μm, , and  μs. 10 2R = 00.25ngP P= − 20t ≤
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Fig. 8. Radius-time curves of bubble 1 for  and 
five different . The numbers denote 12 10 20 . For 

12 10 20

00.25ngP P= −

12D /( )D R R+

10 2012( )D R R= + ∼ 12.1( )R R+ , the bubble collapses 
although Lp  (the lower panel) holds constant at a negative 

value. 

 

Interrupted expansion of an interacting bubble 

Figure 5 implies that a transition of bubble dynamics takes 
place in a parameter range between  and 12 10 2010( )D R R= +

10 2015( )R R+ . Here we clarify what occurs in the transition 
region. In Fig. 8, we show the radius-time curves of bubble 1 
for  μm,  μm, , and five dif-
ferent  values selected from the above-mentioned pa-
rameter range. The other parameters were set as in the above 
examples. As shown previously, decreasing  results in the 
decrease of the expansion rate of bubble 1. In the parameter 
range considered here, however, one more interacting change 

can be found: The expansion of bubble 1 is interrupted at a 
moment. In the results for 

10 2R = 20 20R = 00.25ngP = − P

12D

12D

12 10 20 10 2012( ) 12.1( )D R R R R= + ∼ + , one finds that bubble 1 
first expands considerably, but then turns into collapse al-
though Lp  holds constant at a negative value that exceeds 
the quasistatic threshold pressure. Such behaviour is not al-
lowed for isolated bubbles. This observation suggests that 
bubble-bubble interaction sometimes causes a significant 
change in the lifetime of cavitating bubbles. 
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Fig. 9. Total driving pressure on bubble 1 for 12D =  

10 2012.05( )R R+ . The dashed line denotes the quasistatic 
threshold pressure of bubble 1 ( 1 00.179Cp P= − ). 

 Let us consider the mechanism underlying this observa-
tion. As known from Eq. (14), the total pressure acting on 
bubble 1 increases as time goes on [i.e., as 2 ( )R t  becomes 
greater]. Indeed, the total pressure at bubble 1’s position 
determined numerically by 

  
2
2 2

1
12

(
T L

d R Rp p
D dt
ρ

= +
� )      (16) 

increases for  (see Fig. 9). From this, one may presume 
that the interruption of bubble expansion occurs when the 
total pressure rises above the quasistatic threshold pressure of 
bubble 1. This conjecture is, however, incorrect. In most 
periods, the total pressure is clearly higher than the threshold 
pressure except for a short duration around 

0t >

0t = , and their 
crossing points are far from the time of interruption (Fig. 9). 
The notion of threshold pressure is therefore useless for the 
present purpose. 

To correctly understand the numerical observation, we sug-
gest using the unstable equilibrium radius. As mentioned in 
the previous section, a bubble has an unstable equilibrium 
radius under the condition of C L vp p p< < . We reveal here 
that the unstable equilibrium radius plays an essential role in 
the occurrence of interrupted expansion. Figure 10 shows the 
radius-time curves of bubble 1 for three different  values 
and the corresponding unstable equilibrium radius (called 
hereafter 

12D

1UeR ). Here 1UeR  was determined using Eq. (1) by 
replacing Lp  with 1Tp  (16). Since 1Tp  is time dependent, 

1UeR  in the present case varies in time. For 

12 10 2012.5( )D R R= + , 1R  well exceeds 1UeR  for 
0μs 37μst< < , and hence bubble 1 can expand rapidly as a 
single bubble does. For , 12 10 2012.05( )D R R= + 1R  is slightly 
larger than 1UeR  for 0μs 22μst< <  and bubble 1 expands 
mildly during this period. However, 1R  is exceeded by 1UeR  
at about 22μst = , and then bubble 1 stops expanding and 
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begins collapsing. For , 12 10 2012( )D R R= + 1R  is smaller than 
or almost equal to 1UeR  in most periods. Hence, bubble 1 
cannot expand considerably and behaves as a stable bubble 
under positive absolute pressure. As can be seen in Fig. 10(b), 
the crossing point of 1R  with 1UeR  correlates well with the 
time for bubble 1 to stop accelerating. This observation 
proves that the instantaneous unstable equilibrium radius can 
be used as a probe for the interruption of bubble expansion. 
As we showed in Ref. [14], qualitatively the same results are 
obtained even for smaller . T
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Fig. 10. Radius and unstable equilibrium radius of bubble 1 

for different  values as functions of time. The thick 
curves denote 

12D
1R  and the thin curves with circles denote 1UeR . 

The numbers denote . 12 10 20/( )D R R+

CONCLUDING REMARKS 

We have studied the inception processes of cavitation in mul-
tibubble cases, where multiple cavitation nuclei exist and 
interact with each other. We have shown that bubble-bubble 
interaction changes the dynamics of cavitation bubbles in a 
variety of ways. Performing numerical simulations of the 
dynamics of non-identical bubbles under negative pressure, 
we have demonstrated that the suppression of the explosive 
expansion of small bubbles by bubbles expanding earlier, 
recently found for liquid mercury [7, 11], is possible in water 
as well. To deeply understand the numerical observation, we 
have discussed the effective threshold pressure of interacting 
bubbles. We found that even a bubble can significantly de-
crease (by about 50%) the effective threshold pressure of a 
smaller neighboring bubble. This change of threshold value is 
much more significant than that caused by the dynamic effect 
due to rapid change in the far-field liquid pressure. 

From a detailed analysis of the transition region where the 
dynamics of the suppressed bubble drastically changes as the 

inter-bubble distance changes, we have revealed that the 
explosive expansion of a bubble under negative pressure can 
be interrupted and turn into collapse even though the far-field 
liquid pressure remains well below the bubble’s (quasistatic) 
threshold pressure. Using the notion of unstable equilibrium 
radius, we have found that the interruption of bubble expan-
sion takes place when the instantaneous bubble radius is ex-
ceeded by the instantaneous unstable equilibrium radius de-
termined using the total pressure acting on the bubble. Both 
the suppression and interruption of bubble expansion are 
caused by the pressure wave that a neighboring bubble emits 
when it grows. 

These findings provide a new insight into the inception proc-
ess of cavitation and the effect of bubble-bubble interaction, 
and could be a key to understanding the complex behavior of 
cavitation bubbles in practical situations where a large num-
ber of cavitation nuclei exist and interact with each other. 
The present findings would also be useful in deeply under-
standing bubble dynamics under negative pressure found, e.g., 
in experiments of single-bubble or multibubble sonolumines-
cence. 
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