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ABSTRACT 

Inverse problems in musical acoustics have a long history.  Essentially they involve deducing something about the 
structure of the instrument simply by examining its sound.  Can you tell the metal from which a flute is made from its 
sound? Can you hear the shape of a drum?  Can you hear the shape of a wooden beam?  What makes a Stradivarius 
violin sound special?  This paper will examine some of these problems to find those which are, at least to some de-
gree, answerable.  Among the questions considered in addition to those above are hearing the diameter of a metal rod, 
discovering the diameter of an organ pipe, and deducing the shape of a bent rod.  While many of these problems are 
only of ‘academic’ interest, since direct measurements can usually be made, others such as that concerning the violin 
can often be approached only in an inverse manner.  The answers to such inverse problems – even partial answers – 
can be of practical importance in helping to understand and improve the sound and ease of performance of musical 
instruments. 

INTRODUCTION 

The design of most musical instruments has evolved over 
long periods of time with contributions from many makers.  
A few exceptions are the silver flute of Theobald Boehm [1], 
the saxophone of Adolphe Sax [1], the new violin octet of 
Carleen Hutchins [2], and the guitar quartet of Graham Cal-
dersmith [3].  With the ‘evolved’ instruments in particular it 
is often found that some are easier to play or sound much 
better than others, and so we are faced with the inverse prob-
lem ‘Why is this so?’  Perhaps the most famous from a musi-
cal viewpoint is the ‘secret of Stradivarius’.  Why are instru-
ments by this famous maker so greatly desired?  We return to 
this and related questions later, but we should start with sim-
pler and more formal problems. 

Perhaps the most famous inverse problem is that posed by 
Mark Kac [4] in 1966: ‘Can you hear the shape of a drum?’  
Here a drum is simply defined to be a plane membrane under 
uniform tension with its edges rigidly clamped, and the in-
formation upon which the inverse problem relies is the set of 
frequencies of all the vibrational modes of the membrane.  If 
the answer to this question turns out to be ‘No’, then this can 
be demonstrated by finding two different drum shapes that 
have the same mode spectrum.  This was accomplished by 
Gordon, Webb and Wolpert [5] in 1992, while Gottlieb and 
McManus [6] demonstrated it for a large class of shapes 
based on triangular elements. So the answer to Kac’s ques-
tion is ‘No’.  Of course one could determine the drum shape 
by using a more sophisticated measurement system, for ex-
ample a small microphone that could be scanned across the 
near-field, but this is almost like ‘looking at’ the drum, which 
is not allowed! 

In this paper we examine some of the inverse problems re-
lated to musical instruments that can indeed be solved, 
though often only partially, and see how such deductions 
from the sound properties of excellent instruments can be 
used to aid the design of modern versions or even new in-
struments. 

STRINGS, RODS AND BARS  

The simplest instruments to examine are those that are impul-
sively excited like Kac’s drum, but recognising that the num-
ber of physical parameters describing the structure must be 
reduced.  The simplest such problem can be stated as `Can 
you hear the diameter of a taut string?’ and this is indeed a 
musically significant question for instruments such as guitars 
and pianos.  If we assume that the ends of the string are sim-
ply pinned and that the string is under tension and ideally 
thin, then its mode frequencies will be in exact harmonic (or 
integer) relation. When the effect of a finite diameter is in-
cluded then the bending stiffness of the string becomes im-
portant.  For a string of length L and radius a, the frequency 
fn of the nth mode is given by 
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where f1 depends on the string tension and 
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with E being the Young’s modulus and  the density of the 
string material [1].  The stiffness of the string thus stretches 
the mode frequencies and, assuming that the length of the 
string is known, the string diameter 2a can be deduced from 
the degree of stretching of the mode frequencies fn provided 
the material of the string, and thus the elastic modulus E, is 
known.  While this may seem a purely technical problem, it 
has important applications in musical instrument acoustics, 
where the tuning of a piano is stretched by about a fifth of a 
semitone over its full compass to match the string inhar-
monicity [7]. 

A rather different but related approach can be used to deter-
mine the cross-section of a bar with no applied tension.  Here 
the transverse vibration of the bar is essentially by bending at 
low frequencies where the wavelength is large compared to 
the bar thickness, and by shear distortion at higher frequen-
cies where this is no longer true.  For bending vibration of a 
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bar with free ends [1] the mode frequency varies approxi-
mately as  
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where L is the bar length, r is the radius of gyration of the bar 
cross section about the neutral plane, and E the Young’s 
modulus of the bar material.  At higher frequencies where 
shear distortion applies, the mode frequencies are 
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where G  E is the shear modulus of the bar material.  The 
transition between these two series, as shown in Fig. 1, gives 
the ratio r/L between the radius of gyration, which is propor-
tional to the bar thickness, and the bar length.  Extrapolation 
of the curves of best fit for high and low frequencies gives 
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where n* is the extrapolated intercept position.  The exact 
shape of the bar cross section is, however, not revealed. 
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Figure 1.  Transition between bending and shear distortion of 
a bar as revealed by a plot of mode frequencies (dot points). 

A common form of musical percussion instrument is that 
using wooden bars with rectangular cross section, the thick-
ness of which is not uniform but instead reduced near the 
centre of the bar to give nearly harmonic ratios for the first 
few modes.  Common instruments of this class are the ma-
rimba and the xylophone.  The direct design problem is to 
decide the shape of the bar that will give approximately the 
desired tuning  and this can be done either by trial and error 
or by computation [8], while the inverse problem is to deter-
mine the bar thickness gradation from its measured spectrum.  
Since the unperturbed mode shapes of the bar vibration are 
known, it is possible to use perturbation theory to calculate 
the effect of a thickness change on the mode frequencies, 
second-order perturbation theory generally being necessary 
because the changes in thickness are usually large enough to 
significantly perturb the mode shapes. Assuming that the 
material properties, length, and average thickness of the bar 
are known, then the measured frequency shifts of N modes 
can be used to deduce the amplitudes of N orthogonal thick-
ness perturbations and thus the approximate shape of the bar. 

Musical percussion instruments also sometimes use rods bent 
into particular shapes, the common one being the triangle, 
which has three equal sides and one open vertex.  Less well 
known is the pentangle [9] in which the rod is bent into five 
sections with reflection symmetry, the aim being the tuning 
of the first few in-plane modes to nearly harmonic ratios.  

Even a rod with a single sharp bend presents a complex in-
verse problem, since nonlinear interactions between trans-
verse modes at the bend generate harmonics of the normal 
modes [10], but these can be discounted by using only gentle 
excitations.  Because such a singly bent rod is not ‘musical’, 
however, we shall not consider it here. 

Leaving aside the complication of the bar thickness discussed 
before and also the overall length, there are two parameters 
a2/a1 and a3/a1 specifying the relative lengths of the rod seg-
ments of a pentangle and two angles  and , as shown in 
Fig. 2.  This suggests that the frequency ratios of the first five 
modes might be enough to determine the shape to which the 
rod is bent.  Fig. 3 shows a set of sections through such a 4-
dimensional parameter space for the particular ratios a2/a1 = 
2 and a3/a1 = 1.  Taking Mode 2 as reference point, three 
solutions SI, SII and SIII were identified and are shown by the 
black symbols.  In the inverse problem the mode ratios would 
be known and, provided the length ratios were known, two of 
the contour plots could be superimposed to find the angles  
and .  If the length ratios were not known, then this proce-
dure would have to be carried out progressively in the 4-
dimensional space involving these ratios.  Points would be-
come lines in 3 dimensions and then planes in 4 dimensions, 
and the intersections would define the geometry [9].  

 Whether this result is unique or whether more than one 
shape could have the same frequency ratios for these modes, 
as was shown to be the case for the drum, has not yet been 
determined.  The resemblance of a bent bar to the boundary 
of the indistinguishable drums studied by Gottlieb and 
McManus [6] suggests, however, that there may be two 
shapes with many bending points that have identical mode 
frequencies, so that the inverse problem is in general not 
completely solvable, though it may be for a small number of 
bends. 

 

Figure 2.  Parameters defining the shape of a simple  
pentangle, a realistic version actually having curved bends 

and angles very different from those shown [9]. 

 

Figure 3.  Contours for the frequencies of the first five 
modes of a pentangle with a2/a1 = 2 and a3/a1 = 1.  SI, SII and 

SIII are close to possible practical design solutions [9]. 
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LLS, GONGS AND CYMBALS 

ls and gongs are much more complex to analyse becau

tion of Chinese two-tone bells, they gener

be deduced from the sound, because the two pairs of a nor-
mally degenerate mode will have slightly different frequen-
cies, giving rise to the beating sound called `warble’.  The 
inverse problem of practical interest again involves the tuning 
of the vibrational modes, since a harmonic relationship, in-
cluding a minor-third ratio 6:5, is the normal objective.  This 
tuning is carried out by identifying the part of the bell profile 
where the walls are thicker than desired and removing mate-
rial from the inside wall using a large lathe.  In this case the 
inverse problem has generally been codified into a set of 
rules relating the excess wall thickness to the mistuning of 
the modes, so that a practical approach can be used. 

Gongs are more difficult because they have many varied 
shapes and are often excited by the striker to the extent that 
the oscillation amplitude is larger than the wall thick

to acoustically dominant nonlinear effects that contribute 
much of the character of sound, particularly for cymbals [11].  
One easily solvable inverse problem, however, relates to the 
geometry of gongs such as the small Chinese Opera gong, in 
which the vibrating section is a shallow spherical shell stiff-
ened by a conical and then cylindrical surrounding section.  
When such a gong is struck vigorously, the sound frequency 
is initially below the small-excitation value and rises towards 
this value as the vibration decays.  For extreme excitation, 
however, the frequency rises again, the fractional extent by 
which the minimum frequency lies below the small-
amplitude frequency by an amount depending upon the ratio 
of shell thickness d to dome height x0 as shown in Fig. 4 [12].  
The ratio x0/d can therefore be deduced from the frequency 
minimum and so from the sound, thus solving an interesting 
inverse problem. 

 

Figure 4.  Calculated vibration frequency  of a shallow 
domed shell as a function of the ratio of amplitude A to dome 
height x0 with the ratio of shell thickness d to dome height x0

as a parameter. The dashed curve is for an everted dome. [12]
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BOWED-STRING INSTRUMENTS 

Musical instruments with bowed strings have a very long 

ment class of modern orchestral music.  

of the most respected instruments in the world were made 
early in this period by the Italian makers Stradivari, Amati, 
Guaneri and their colleagues working in Cremona.  The in-

verse problem in this case asks why these particular instru-
ments are so excellent in sound and playability.  Cynics 
might say it is just a tradition, since many of the instruments 
have been modified and some modern violins are judged 
better in double-blind tests, but certainly many of the violins 
from this period still sound really fine.   

The inverse problem asks what it is that is special about these 
instruments, and various answers have been proposed.  Mod-
ern makes have for more than a century 

recent versions have shaped the thickness of the top plate so 
that the mode shapes and frequencies closely match those of 
some of the classic violins [13].  The results do indeed give a 
sound quality close to those of the ‘great masters’, but there 
are still detectable differences. 

Perhaps the most notorious proposal is that the secret of 
Stradivari resides in the varnish with which he finished his 
instruments.  Certainly varnish

extent and changes the elastic properties of the surface layer, 
but analysis shows there is nothing very special about the 
Stradivari varnish.  It is, of course, necessary to compare 
such iconic instruments with modern instruments which have 
been built so that the mode frequencies of the violin body 
match those of Stradivari as closely as possible.  This is of 
supreme importance, for the distribution of mode frequencies 
and the shapes of those mode patterns have a great influence 
on the radiated sound. 

Another influence is the wood itself, for no two pieces of 
wood are the same, and this can influence mechanical imped-
ance and damping, bo

time was special because it grew during a time of reduced 
temperatures, known as the Maunder Minimum, and indeed 
this could influence the ring spacing and also the pore micro-
structure of the wood, with consequent acoustic effects [15].  
This explanation seems likely, since the elastic anisotropy of 
the wood depends upon its ring structure and the vibrational 
damping, particularly at high frequencies, is influenced by 
the density and pore structure.  These effects can be demon-
strated by making a violin from a non-standard wood species 
– the sound may be quite pleasant but will be ‘different’. 

Some of these inverse questions can be answered, but gener-
ally only in a limited way because of the number of parame-
ters involved. Working backwards from a long-term avera

damping of the wood, while identification of the frequencies 
of the main resonances tells something about the thickness 
shaping of the top-plate.  The high frequencies can also often 
reveal whether the strings are gut or metal. 

WIND INSTRUMENTS 

When we consider wind instruments such a

one defining the shape of the
questions asked about influen
the instruments is made: Do tin-rich organ pipes sound better 
than lead-rich pipes?  Is a gold flute better than a silver flute? 
and so on, but the answer is that the material is usually cho-
sen for non-acoustic reasons and, within limits, has little 
effect on the sound [16].  But the geometry is crucial. 

Beginning with the simplest case, can one determine from its 
sound the ratio of diameter to length for a cylindrical organ 
pipe?  The answer is a moderate ‘Yes’ and comes fr
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tions at the air jet or the reed driving the pipe produce all 
harmonics of the fundamental and these are locked into exact 
phase relations [17].  But the relative amplitudes of these 
harmonics depend upon the Q-factors and tuning of the pipe 
resonances and these are largely determined by the ratio of 
pipe diameter to wavelength. As the harmonic frequency 
increases past the value at which the pipe diameter is about 
one half of the wavelength, the Q-factor drops sharply and 
this reduces the amplitudes of higher harmonics, so that a 
narrow pipe sounds bright compared with a wide pipe, and is 
also quieter. This effect is taken into account in the scaling of 
organ pipe ranks [18].  Examination of the relative strengths 
of the harmonics of an open pipe also gives information 
about the geometry of the pipe mouth and adjustment of the 
jet.  If the jet strikes the upper lip nearly symmetrically then 
the even harmonics are weak relative to the odd harmonics 
[19], while the relation between loudness and harmonic de-
velopment gives information about the lip cut-up distance 
and blowing pressure. 

Another interesting feature of the sound that provides some 
inverse solutions is the nature of the initial transient as the 
pipe begins to sound. 

d 
Monthly 73(4), 1–23 (1966) 

5 C. Gordon, D. Webb and
at their natural frequencies, and it is only after about ten cy-
cles of the fundamental that they all become locked together 
in phase and frequency ratio [17].  Observation of this initial 
transient can give further information about the geometry and 
excitation of the pipe. 

Since a woodwind instrument must be able to play all the 
notes in its compass, rather than just a single one, there is no 
such simple inverse p

is small then higher harmonics are not adequately reflected 
from the first open hole and are weak in the sound, giving the 
mellow tone typical of baroque-style instruments.  The sound 
quality, in addition, gives immediate information about the 
general shape of the instrument bore or air column.  This is 
because, ideally, a cylindrical tube, as in a clarinet, has only 
odd resonances, while a conical tube, as in an oboe, has all 
harmonic resonances.  In the first register the sound spectrum 
reflects this differentiation, though not precisely because the 
air jet or reed generates all harmonics and these are then fil-
tered by the bore resonances, but the difference between cy-
lindrical and conical instruments is clear in the lower register. 

THE INSTRUMENT AND THE PLAYER 

As a final inverse problem it is interesting to ask whether one 

and recognise a particular player.  The answer t
question is clearly yes, since players differ greatly

st 14 L. Burckle and H.D. Grissino-Mayer, “Stradivari, vio-
lins, tree rings, and the Maunder Minimum: a hypothe-
sis” Dendrochronologia 21(1), 41–45 (20expertise and this is reflected in the sound of the instrument, 

quite apart from any relation to the work being played.  In 
orchestral instruments such as strings and winds the features 
that distinguish individual players are mainly the attack and 
the vibrato.  The sound of the attack or initial transient is 
closely related to the ‘gesture’ of the player – an arm move-
ment on the case of string instruments and an internal motion 
of tongue and breathing muscles for wind players – while 
vibrato depends on individual neuro-muscular effects. 

Solving this inverse problem is rather like the activities of 
spies and forensic scientists, since there is a great deal of 
coupling between the brain and the muscles involved 

being played.  Despite this, some performers are clearly rec-
ognisable to an experienced listener, though the perception of 
the relevant clues is more a psychological than a physical 
exercise. 

CONCLUSIONS 

Inverse problems relating to musical instruments are difficult 
because ther

obtained, but a great 

Perhaps most important among these answers to inverse 
problems are those referring to specific design properties of 
historical instruments that have been found to have excellent 
playing properties or musical timbre.  Even if the com

investigation. 
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