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ABSTRACT

The combination of a binaural beamformer with an auditory model-based localizer and post-processor is presented. The
intention of the design was to maintain a high degree of quality and listening ease while enhancing speech intelligibility.
Therefore, a binaural and fixed minimum variance distortionless response beamformer was employed to establish a
medium directivity at low self noise and high binaural naturalness. By applying models of binaural interaction at the
two-channel output, sound sources are localized and separated. The process of binaural interaction was extended by an
auditory model of across frequency interaction in the localizer and a model of modulation perception in the post-processor.
To adapt the post-processor to the scene and to keep the introduced distortion at a low level, the parametric output of
the localizer was used to steer the aperture of a spatial filter during post-processing. For that reason, Bayes theorem
was applied to calculate the a posteriori probability of the target source in a complex acoustic scene and to use this
probability for the formulation of a data-driven filter. The localizer and post-processor were assessed in a range of
acoustic arrangements using an objective intelligibility and quality measure for nonlinearly processed speech. The results
show a significant improvement in situations with one interferer and no decline of intelligibility and quality in more
complex situations.

INTRODUCTION

There are generally two approaches in speech enhancement.
One is realized through linear methods, the other through non-
linear methods of sound scene segmentation. Linear methods
are theoretically capable to fully reconstruct the desired speech.
This however requires an impractical amount of processing
time and impractical design solutions. Nevertheless, many suc-
cessful linear approaches in speech enhancement exist with
a lower separation power. Well known is the beamformer so-
lution that combines a microphone array and a spatial filter.
There are different beamforming methods that realize a compro-
mise between target gain and self noise. The minimum variance
distortionless response (MVDR) beamforming method allows
for an adjustment of this compromise with a stabilization con-
stant. The resulting gain of an MVDR beamformer is generally
limited by the physical dimensions of the array as well as the
required minimal processing robustness and the acoustical field
for which it was optimized.
A non-linear method of speech enhancement can approximate
an optimal filter with much less computational effort. It is often
realized in a mask-based manner that acts in a time-frequency
domain representation of the input signal. In spite of that, these
non-linear mask-based approaches are difficult to handle. As
such, they introduce signal distortion and their processing is
subject to many design parameters. Moreover, the impact of
non-linear signal distortion on speech intelligibility is difficult
to evaluate. Subjective tests are laborious and most instrumen-
tal measures fail in the prediction of speech intelligibility for
speech enhancement algorithms [1].
There are many local selection methods, i.e., whether a time-
frequency bin belongs to the interferer or to the target source,
for the generation of masks. The field of computational audi-
tory scene analysis (CASA) developed algorithms of binaural
interaction that have shown the ability to realize a benefit in
speech intelligibility [2]. These approaches generally feature a

robust processing in a wide range of acoustical situations, but
also need a difficult and laborious parameter adjustment.
Localization algorithms can be used to detect the acoustic scene
and to steer the post-processor. A range of auditory inspired lo-
calization algorithms have proven to imitate much of the human
localization performance [3, 4]. Furthermore, they can operate
in parallel to the online speech processing and can continuously
update a data-driven post-processing filter.
In here, we combined a robust low directivity MVDR beam-
former, which is implemented in a pair of spectacles, with the
auditory model-based localization algorithm of Albani et al. [4]
and the model-based post-processor of Kollmeier and Koch [5].
Both algorithms have each shown to be effective and robust
realizations. In particular the combination of a two-channel
beamformer and a binaural mask-based algorithm is consid-
ered to achieve a substantial improvement over single methods
of speech enhancement [5]. Mainly because the pre- and post-
processor add to a higher SNR gain in a complementary manner.
I.e., the post-processor is put into its efficient SNR working
range and the common front-back discrimination ambiguity is
alleviated by the superposition of the directional pattern of the
beamformer. Moreover, since the gains add, the requirements of
speech intelligibility enhancement are lower for each processor,
which is generally for the benefit of a lower target distortion
and a natural listening experience.
In the following section we describe the algorithmic approach
of the three constitutive parts. Thereafter the combined process-
ing scheme is assessed with the three level intelligibility and
quality index of Kates and Arehart [6]. These measures showed
a fair degree of accuracy and were adapted to binaural listening.
We conclude this contribution with a summary and an outlook.

ALGORITHM

The overall processing scheme is sketched in Figure 1. The
combined processing scheme is realized in a sequential order
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and is entirely performed in the digital frequency domain. The
overall output demand is to enhance the signal in the frontal
line of sight and to attenuate noise from all other directions.
The two combined methods use different constraints to perform
this task. The MVDR beamforming algorithm does not allow
target distortion, while the binaural post-processor intrinsically
performs target distortion and has therefore to be implemented
with great care. A dichotic signal is maintained throughout the
processing and presented to the ears. The following divisions
give a synopsis of the applied MVDR beamforming method,
the localizer and the post-processor.

Figure 1: Combined processing scheme of a binaural MVDR
beamformer, realized in the arms of a pair of spectacles, and an
auditory model based localizer and post-processor.

Binaural Beamformer

The technique of MVDR beamforming facilitates maximal di-
rectivity gain for a given array configuration and assumptions
of the noise field. The optimal filters are calculated in an opti-
mization routine that maximizes the array’s gain with the filters
F(k) as parameter. The method generally suffers from a large
noise sensitivity. The optimization procedure was therefore sup-
plemented to achieve a maximum gain at a predefined noise
sensitivity [7, 8]. The array of microphones is alined in an end-
fire configuration along the z-axis and resides in the arms of a
pair of spectacles. The optimal filters are then calculated as fol-
lows: First, the propagation delay vector W(k,θ ,φ) for θ = 0,
φ = 0 for a plane wave can be formalized as:

W(k) = [e jkz1 e jkz2 . . . e jkzN ]T, (1)

for omnidirectional transducers at positions z1 . . . ,zN (k is the
wavenumber and j =

√
−1). When multiplying the propagation

delay vector with the filter vector and summing them, the array
frequency response to a plane wave from the target direction
reads:

ΓT(k) = FT(k)W(k). (2)

The array directivity factor, i.e., the averaged squared arrays tar-
get response |ΓT(k,θ ,φ)|2 divided by the average squared array
response of sound incident from all directions |Γ(k,θ ,φ)|2, is
employed as an objective function in the optimization process
[8]. In matrix notation, the directivity factor is consequently
given by:

Q(k) =
maxθ ,φ{FH(k)W∗(k)WH(k)F(k)}

FH(k)ST(k)F(k)
, (3)

where (◦)H is the Hermitian transpose, (◦)∗ is the conjugate-
complex operator and S is the cross-spectral density matrix of
the microphones in the noise field. It is assumed that the noise
field is isotropic and uniform, hence in the endfire configuration
of the microphones the elements of S are given by:

Smn =
sin(k(zm− zn))
(k(zm− zn))

. (4)

The optimization routine of the optimal beamforming method,
which was developed in [9] and adapted to the presented appli-
cation in [8], is defined as:

min
F(k)
{FH(k)S(k)TF(k)}, (5)

while adhering to ΓT(k) = 1 and a predefined maximal allowed
noise sensitivity FH(k)F(k) < Ψmax. Following [8], the solution
to the problem is:

FT
opt,β (k) =

WH(k)(S(k)+β (k)I)−1

WH(k)(S(k)+β (k)I)−1W(k)
. (6)

In this formula (◦)−1 indicates the inverse of a matrix, I the
identity matrix and β (k) is a stabilizing factor that determines
the level of the sensor noise that is adapted during the optimiza-
tion.
The filters were calculated for an array with 4 omnidirectional
transducers at a length of 72 mm. Subjective listing tests yielded
an advantage in SNR for normal hearing subjects of 7.5 dB
and for hearing impaired subjects of 6.2 dB [8]. This notable
enhancement of speech intelligibility attracted commercial at-
tention and the development was further adapted for a casing
of the entire processing of the highly directive hearing aid in
the arms of a pair of spectacles. For daily use three programs of
different directivity (omnidirectional, low and high directivity)
were calculated. The filters are applied in a weighted overlap-
add design in 31 subbands. A measurement of the directivity
index (DI(k) = 10log10(Q(k))) of the hearing glasses worn by
an artificial head showed an averaged gain in SNR of 7.2 dB
in the high directivity mode and 4.4 dB for the low directivity
mode [7]. The directivity index as a function of frequency for
each program-mode and an artificial head are shown in Figure
2. The different modes show a similar progress of the direc-
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Figure 2: Directivity index in 1/3 octave-bands of three pro-
grams of the beamformer output and an artificial head at one
ear.

tivity index. The array offers directivity from approx. 100 Hz
to 5000 Hz in the low directivity mode as well as in the high
directivity mode, and covers the spectrum of speech. In the
omnidirectional mode, only the front microphones of the arrays
are used which are at a prominent position in front of the head
and therefore also result in some directivity.
The hearing glasses in the low directivity mode serve as the
front-end in the here presented combined processing scheme
and deliver a fixed gain in SNR to the subsequent units. The
fixed beamformer is well suited for this task, as it provides a
fixed binaural pattern, which is a prerequisite of the here applied
binaural localizer and post-processor.
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Localization

For acoustical localization purposes often the use of the inde-
pendent component analysis (ICA) and the time delay of arrival
(TDOA) method in combination with microphone arrays are
suggested [10, 11]. These approaches can deliver perfect results,
however the number of sources has to be known beforehand,
large arrays of microphones are required, a free field placement
of the receivers is needed or ambiguous (front-back) confusions
occur due to symmetry. Generally the number of sources is not
known in an acoustical environment and because a hearing aid
is carried on the body, the use of large microphone arrays is not
desirable. Furthermore, due to head and body shadow effects
the free field placement of receivers is not possible. Therefore
the choice for a CASA approach was made. CASA in fact uti-
lizes the head shadow effect and binaural hearing to process
the signal information. We adopted the basic principles from
Albani et al. [4], which is based on neurophysiological studies
of the Barn Owl [12, 13], and extended it with a preselection of
time windows by the Internal Coherence (IC), multiple source
detection in one time window and coincidence detection be-
tween the internal level- and time differences (ILD and ITD)
cues. The details of this algorithm are given in the next section.
The data processing within the algorithm is summarized in Fig-
ure 3. Each process block in this figure will be briefly discussed
step by step hereafter. The first step is to transform the time

Figure 3: Flow chart of localization algorithm structure.

domain data (binaural input) into the frequency domain, by the
use of an overlapping short time Fourier transform (STFT) rep-
resentation [14]. A Hann window is used to probe the time data.
A 50% overlap of the time windows assures the conservation
of the total information, due to the shape of the Hann window.
A fast Fourier transform (FFT) is carried out over each time
window. The result is a collection of time-frequency (TF) bins,
which represent the signal content over a region in time and fre-
quency. In the next step, cross- and auto-spectra are calculated
from these TF-bins:

Φll( f ,n) ≡
〈
|L( f ,n)|2

〉
, (7)

Φrr( f ,n) ≡
〈
|R( f ,n)|2

〉
, (8)

Φlr( f ,n) ≡ 〈L( f ,n)R∗( f ,n)〉 . (9)

Respectively, Φll , Φrr and Φlr are the auto-spectra of the left
and right signals and is the cross-spectrum between them. L
and R are the STFT representations of the left and right ear. f
denotes the frequency bin index, where every bin has a band-
width of 31.25 Hz. n is the number of the time window. The
expectation operator 〈◦〉 denotes the average over time and is
defined as a first order low pass filter given in equation (10)
and characterised by a coefficient γ = exp

(
− 1

τ fs

)
, which is

dependent on a time constant τ and the time window sample

frequency fs [15]:

〈X(n)〉= (1− γ)X(n)+ γX(n−1). (10)

These time averaged cross- and auto-spectra are used to com-
pute the necessary three binaural cues for the localization pro-
cess; Interaural Level Difference (ILD) ∆L, Interaural Time
Difference (ITD) ∆φ and the magnitude squared Interaural Co-
herence (IC) IC:

∆L(n, ERB) =
1

Nb

fend(ERB)

∑
f = fstart (ERB)

10log10

[
Φll( f ,n)
Φrr( f ,n)

]
, (11)

∆φ(n, ERB) =
1

Nb

fend(ERB)

∑
f = fstart (ERB)

arg(Φlr( f ,n))
2π f

, (12)

IC(n, ERB) =

fend(ERB)

∑
f = fstart (ERB)

|Φlr( f ,n)|2

fend(ERB)

∑
f = fstart (ERB)

Φll( f ,n)
fend(ERB)

∑
f = fstart (ERB)

Φrr( f ,n)

. (13)

To apply the tonotopic decomposition of the human hearing,
these cues are calculated in bands of equivalent rectangular
bandwidths (ERB) [16]. Therefore, there is a summation over
the frequency bins f , which belong within the selected ERB-
band. For normalization purposes it is necessary to divide by the
number of frequency bins used in the specific ERB-band, Nb.
In the next step the IC cue is calculated to determine if there is
sufficient data present in the current time window. When the IC
value is above a certain threshold (between 0 (no coherence) and
1 (total coherence)) the information from that time window will
be used for localization. Next, the ILD and ITD cues from the
time windows that passed this test are calculated and compared
to a map with reference ILD and ITD values per ERB-band.
When, within a margin, a matching value of the map is found,
the corresponding location gets a score point. The reference
maps are built up using Plomp sentences [17] as sources from
all possible directions. The output is a score matrix with the
number of matches with the reference map values per location
for each ERB-band, for both ILD and ITD cues. After that, for
each location the scores of all or a selected range of ERB-bands
are added up and normalized. Locations which have a higher
normalized score than the threshold value will be considered
as sources. This process is actually selecting the most probable
sources per time window, separately based on the ILD and ITD
cue. In this stage both ILD and ITD score vectors contain minor
localization errors. Therefore in the next step a coincidence de-
tection principle [18] is used to detect the concurring locations
between ILD and ITD for each time window, providing a more
robust localization result with a higher confidence interval. This
is realized by minimizing the probability of a fault detection.
The conditional probability of a fault detection by both ILD
and ITD, p(ILD∩ IT D) = p(ILD|IT D) · p(IT D), is generally
smaller than the separate probability of a fault detection, p(ILD)
or p(IT D). As last step a summation of location scores over
time windows is performed to give a certain location stability
in time.
To show the performance of this localization algorithm a hypo-
thetical situation with three speakers and a receiver is assumed.
The three speakers are at 1 m distance of the receiver and have
on average the same sound pressure level. The three speak-
ers are located in front of the receiver at −40◦, 0◦ and 40◦

azimuth and produce different sentences of the Plomp corpus
[17]. Simulations with this situation are performed in three
different environments; Anechoic, cafeteria background noise
with a SNR of 5 dB and in a reverberant rectangular room of
volume 1000 m3 with T60 = 1s, which corresponds to a re-
verberation radius of 1.9 m. The results are given in Figure
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4. From the total amount of time-frames, the algorithm used
37.3%, 31.7% and 27.4% of time-frames for the localization
process in the anechoic condition, the cafeteria noise and the
reverberant environment, respectively.
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Figure 4: Localization performance of 3 speakers in an ane-
choic, cafeteria noise (5 dB SNR) and reverberant (T60 = 1.0 s)
environment.

Mask-based Post-processor

The formation of masks is based on a local selection criterion
that decides whether a certain time-frequency bin belongs to
the target or to the noise. An example of the application based
on a simple local SNR criterion is given in Figure 5. A class of
successful binaural speech enhancement algorithms employs
the deviation of acoustic sources from the mid-line as a se-
lection criterion, i.e., their binaural differences. By defining a
weighting function with a preferential listening direction, bins
that correspond to this direction are weighted with one and bins
that do not correspond to this direction are attenuated with a
value smaller than one. Wittkop et al. [19, 2] give an overview
of these algorithms that capture psychoacoustical principles of
the spatial masking release.
Generally, these algorithms calculate the binaural cues from
the comparison of the left and the right STFT signals. As an
extension to the short-time spectra, the speech enhancement
algorithm of Kollmeier and Koch [5] uses modulation spectra
to analyze binaural disparity. The algorithm has been designed
on the grounds of physiological and psychoacoustical results,
where a decomposition of stimuli into different modulation
frequencies has been found to be independent of center frequen-
cies, i.e. the tonotopic representation of the cochlear frequency
decomposition, as well as the spatial decomposition. Psychoa-
coustically, this particular processing of the auditory system
is also known as co-modulation masking release. For speech
intelligibility this generally means, that if two speakers differ in
their fundamental frequency which modulate their respective
spectra, they are each more intelligible than if their fundamen-
tals collapse. The Kollmeier and Koch speech enhancement
algorithm has been shown to be robust in different acoustic
situations and to improve the SNR over a wide dynamic range
by approximately 2 dB [5, 19].
In here, a variation of this algorithm is applied to the binau-
ral output of the MVDR beamformer. The variation refers to
the weighting function. First, a frequency independent direc-
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Figure 5: Illustration of the masking principle. The spectrogram
of the sentence “We kwamen net te laat terug.” said by male is
shown in the top left panel (red denotes low energy and violet
high energy). The sentence is mixed with noise and the aim is
to filter the sentence by applying a mask (in the spectrotemporal
domain). The noise is recorded in an autobus with an artificial
dummy head. The spectrogram of the noise is shown in the top
right panel. The spectrogram of the speech signal mixed with
the noise is shown in the middle left panel (SNR=-7 dB). The
middle right panel shows the mask. All bins with a SNR above
-7 dB are white and the time-frequency bins with an SNR below
-7 dB are black. The bottom panel shows the spectrogram of the
mixture after multiplication with the mask.

tionality was applied, which is adopted from the lateral filter
function of Wittkop and Hohmann [20]. Second, the reference
values for the mask generation are data-driven. Therefore the
parametric output of the localizer is used to calculate the a
posteriori probability for the presence of the target source at a
certain azimuthal position. By such means, the filter-function
is constantly updated to the scene and the effects of distortion
are reduced. The concept for source separation was introduced
by Madhu [21, 22]. By way of example, he has shown that
reverberation increases the variation of the binaural cues and
that an a posteriori estimation corresponds to that change and
opens the spatial aperture in mask-based filters.
For the most part, the here applied Kollmeier and Koch speech
processor was implemented according to the algorithmic fea-
tures given in [5]. We therefore restrict this report to the details
of the variation from the initial implementation.
The parametric output of the localizer is first used to calculate
an azimuthal non-symmetric aperture of the filter toward the
target speaker. For that reason, the parametric output of the
localizer is used as the input to an expectation-maximization
(EM) routine in order to approximate the localization through
a mixture of gaussians (MoG). This MoG fit θ̂(n) is then em-
ployed to calculate the angular a posteriori probability of a
target source Pt|θ̂ (n) in a time frame n. The approximation
through a MoG is based on an a priori probability of Pi, the
location θi with θ ∈ [−π,π] and a variance σ2

i of each source i
with Q the total number of sources. The EM algorithm of Feder
and Weinstein (see [23]) is applied to iteratively approximate
the MoG estimation:

θ̂(n) =
Q

∑
i=1

Piexp

(
− (θ(n)−θi)2

2σ2
i

)
. (14)
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Thereafter, the a posteriori probability of the target source Pt|θ̂
is calculated with Bayes theorem:

Pt|θ̂ (n) =
1
σt

Ptexp
(
− (θ̂(n)−θt )2

2σ 2
t

)
∑

Q
i=1

1
σi

Piexp
(
− (θ̂(n)−θi)2

2σ 2
i

) . (15)

In this study, we assume the target source to be in front of the
listener at zero degree. Figure 6 exemplifies three possible MoG
fits of source combinations (dashed line) and the a posteriori
target probability that adapts consequently to the scene. The
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Figure 6: A posteriori probability of a target-source (solid line)
in different arrangements (incident angles and variances) of
sound sources (dashed line), where the target-source resides at
zero degree.

distribution of the target probability is then used to construct a
trapezoidal weighting function, where the reference values of
the pass-range and the stop-range are calculated from Pt|θ̂ = 0.5
and Pt|θ̂ = 0.05, respectively.
Given that we yield the left and right short-time modulation
spectra with Φl(n, fc, fm) and Φr(n, fc, fm), respectively, the
level and phase differences can be calculated with:

∆L(n, fc, fm) = 10log10

∣∣∣∣Φrr(n, fc, fm)
Φll(n, fc, fm)

∣∣∣∣ (16)

and
∆φ(n, fc, fm) = arg(Φlr(n, fc, fm)), (17)

where Φrr(n, fc, fm) as well as Φll(n, fc, fm) are the time aver-
aged auto-spectra of the right and left channel, respectively, and
Φlr is the time-averaged cross-spectra. The time averaging is
realized as in Eq. (10) with τ the time constant of a first order
low pass filter. The binaural reference values ∆Lα and ∆φα with
α ≡ [sccw; pccw; t; pcw;scw] were taken from a look-up table
(sccw and pccw are the stop and pass angle counterclockwise,
t is the target angle and pcw and scw denote the pass and stop
angle clockwise). This database was built up from binaural
recordings of transfer-functions in the horizontal plane at steps
of 1 deg with an artificial head. ∆Lα and ∆φα were calculated
from the convolution of the transfer-functions with a speech
token of 30 s length. A voice activity detection algorithm was
used to exclude pauses in the discourse of three male talkers that
were subsequently summed to a mix. The trapezoidal weight-
ing function is then calculated in analogy with the weighting
function in [20]. A schematic sketch of a weighting function is
given in Fig. 7.

Since the formalization is equal for the weighting function of
∆L and ∆φ , we only write down ∆L. We further reduce the
notation of the weighting function to the clockwise side in
Equations (18) and (19) and n, the time-index is dropped for
brevity. First, the frequency-dependent reference values are
calculated to establish a frequency-independent spatial filter:

δLpcw( fc, fm)≡ min{|∆Lpcw( fc, fm)− . . .

∆Lt( fc, fm)|},{|∆Lscw( fc, fm)−∆Lt( fc, fm)|}, (18)

Figure 7: Schematic sketch of the mask-based spatial weighting
function. sccw and pccw are the stop and pass angle counter-
clockwise, t is the target angle and pcw and scw denote the pass
and stop angle clockwise of the binaural reference values.

and

δLscw( fc, fm)≡ max{|∆Lpcw( fc, fm)− . . .

∆Lt( fc, fm)|},{|∆Lscw( fc, fm)−∆Lt( fc, fm)|}. (19)

∆L( fc, fm) is corrected for asymmetries in the same way:

δL( fc, fm)≡ ∆L( fc, fm)−∆Lt( fc, fm). (20)

The trapezoidal weighting function takes then the following
form ( fc and fm are dropped for brevity):

Mt,∆L =


ε ; if δL < δLsccw

Λccw ; if δLsccw < δL < δLpccw
1 ; if δLpccw < δL < δLpcw

Λcw ; if δLpcw < δL < δLscw
ε ; if δLsccw < δL

, (21)

herein Λcw is:

Λcw =
(−1+ ε)

|δLscw−δLpcw|
(δL−δLpcw)+1, (22)

and ε is the maximum attenuation.
Mt,∆L(n, fc, fm) and Mt,∆φ (n, fc, fm) are then combined to a
total weighting function for suppressing the interference to a
target:

Mt(n, fc, fm) = (bMt,∆L(n, fc, fm)+ . . .

(1−b)Mt,∆φ (n, fc, fm))e. (23)

where e denotes an expansion exponent. The filtered modulation
spectrum is inversely transformed to the STFT representation
and corrected for the lost phase information as described in [5].
Finally, the left and right output of the MVDR beamformer are
each (Yt,MV DR(n, fc)) weighted with the desired envelope of the
target speaker in the STFT domain:

Yt(n, fc) = Mt(n, fc)Yt,MV DR(n, fc). (24)

In order to keep the processing as clear as possible, no smooth-
ing of the short-time spectra or modulation spectra is applied.

EVALUATION

The combined processing scheme was tested in three setups.
For the assessment of the speech intelligibility and quality, the
appropriately weighted three level version of the Speech Intel-
ligibility Index (SII) of Kates and Arehart [6] was applied. To
include the dominating effect of the binaural advantage, the
head shadow effect, a ‘better ear’ modeling was included in
auditory critical bands for the three level index I3. A ‘mean ear’
modeling in auditory critical bands was calculated for the three
level quality measure Q3. Therefore, the signal-to-distorition
ratio (cf. Eq. (13) in [1]) is calculated in auditory critical bands
and the maximum is taken in bands for the ‘better ear’ effect of
the I3 measure, and the arithmetic mean in bands is calculated
for the ‘mean ear’ for the Q3 measure.
As this contribution is mainly about the improvement of the
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beamformer output, the analysis refers only to this improve-
ment and not to the total improvement. Moreover, the analysis
of the total improvement would be of limited validity, since
the beamformer is optimized for an ideal diffuse noise field.
However, to test the co-modulation masking release processing
of the Kollmeier and Koch algorithm, pure speech samples for
the target and the interferer were applied in the assessment.
Preparatory, pauses in speech were excluded by a voice activity
algorithm and sentences were faded into each other with an
overlap add technique. Given a sufficient time-duration of the
presentation, the short-time SII version, in here it is calculated
in windows of about 30 ms length with an overlap of 50 %, is to
a fair extend capable to predict speech intelligibility and quality
for pure speech-maskers.
Three acoustical scenes at three different SNR levels were an-
alyzed. For the speech material of different talkers, sentences
of the Plomp corpus were used [17], prepared as above men-
tioned and combined to samples of 30 s length. The SNR levels
were calculated at the ear level after the beamforming stage
and comprised -5, 0 and 5 dB. Figure 8 gives the setups and
results, where S stands for target-speaker and N stands for noise-
speaker. The circles denote the initial unprocessed situation at
the three SNRs. The Kollmeier Koch algorithm was adjusted
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Figure 8: Results of the speech intelligibility improvement with
the post-processor and the data-driven filter generation. ◦ denote
original situations and × denotes the processed situations.

by hand to achieve an optimal processing. The parameters of
the algorithm are given in Table 1. As can be seen, the post-

Table 1: Parameters as applied in the simplified implementation
of the Kollmeier Koch speech enhancement algorithm

e b ε τ

2 0.95 0.2 0.2

processing improves both the speech intelligibility and quality
throughout the range of SNRs and conditions. The improvement
in speech intelligibility is the highest in the S0N-90 situation
and almost no improvement is obtained in the two interferer
situation S0N±90, where the sparsity and disjointness require-
ments of different sources in the time-frequency representation
are violated. A smaller but clear decline in speech intelligibility
improvement is also observed from the S0N-90 to the S0N-30
situation, when the binaural cues get less separable to build up a
weighting function. In spite of that, an increase of 20 % speech
intelligibility corresponds to an increase in SNR of approxi-
mately 1 to 2 dB and this marks an important advantage in the
respective situations. Although the algorithm was not adjusted
to yield a maximal quality improvement, no deterioration is
observed in all conditions. This is an important outcome as
listening ease and speech quality prevent fatigue and together
form a requirement for a feasible speech enhancement algo-
rithm.
A further improvement in signal quality might be achieved by
smoothing the short-time spectrograms with a leaky integration
in the cepstral domain [24], which is a technique that is gen-
erally used on binary masks. Together with the enhancement
of the robustness of the Kollmeier Koch algorithm through a
penalty measure of binaural variance (cf. weighting function in

[5]), these technical advances are left to further research. The
primary aim here was the combination of fundamental building
blocks in a clear and straightforward design.

CONCLUSION

In order to achieve a high improvement in speech intelligibility
while maintaining or improving speech quality, a combined
speech enhancement scheme has been presented. It consists of
a low-directivity MVDR beamformer, an auditory model-based
localizer and an auditory model-based speech enhancement al-
gorithm. The MVDR beamformer realizes a gain of 4.4 dB in
a diffuse noise field at low self noise and features externalized
binaural cues. These cues are exploited by the localizer and
the post-processors. The localizer, which applies physiological
principles of across frequency interaction, performs robust in a
wide range of acoustical situations. Its parametric output is used
to estimate a data-driven filter in the post-processing algorithm.
This filter, realized as a time-frequency mask, acts on the total
acoustic scene to enhance the intelligibility of the information
coming from a target-speaker and maintains simultaneously a
natural background and localization cues. Therewith the post-
processor can potentially yield an audiological benefit. The here
applied instrumental measures of speech intelligibility and qual-
ity reported an improvement of about 20 % at low to mid SNR
levels in single-interferer situations. Also when the situations
become more complex, the post-processing algorithm does not
deteriorate speech intelligibility and quality.
The combination of a pre-processor and a post-processor as
applied here is not new, e.g., [25]. The advantage of the here
presented scheme is its robustness and its balance between dis-
tortion and speech intelligibility improvement. In spite of that,
the entire processing chain holds a degree of complexity that
is not easily manageable. We tried to simplify the processing
where possible in this contribution to get a better insight into
the crucial parts of the processing. However for a successful
design, objective measures and standard tests of binaural speech
intelligibility and quality for the nonlinear processors should
be established to perform the difficult algorithmic parameter
adjustment. Once these measures are available, a thorough re-
finement of speech enhancement approaches that are similar to
the here presented work can follow.
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