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ABSTRACT

In building acoustical laboratories, the sound transmission loss of structures is typically measured by placing the structure
in an aperture between two reverberant rooms. It is known that the location of the specimen in the aperture can affect
the results due to the niche - or tunneling - effect. In this paper, a Wave Based Model is used to numerically investigate
the tunneling effect in sound transmission loss determination of single and double walls. The field variables (plate
displacements and sound pressures) are expanded in terms of structural and acoustic wave functions. The model is
validated with experimental results of lightweight single walls. A parametric study for single and double glazing shows
that the position of the wall in the opening can significantly influence sound transmission loss below coincidence. As for
single walls, the sound transmission loss of double walls is minimal when placed in the center of the niche opening and
maximal for the edge positions. The difference, however, is greater for double walls in the mid-frequency range, where
sound transmission is highly dependent on the angle of incidence.

INTRODUCTION

An important issue in sound insulation measurements has been
the reproducibility, consistency and accuracy. Significant dif-
ferences are observed in sound transmission loss (STL) when
measured in different laboratories [1, 2, 3]. Round-robin tests
have shown that room design is important [1], which eventually
led to standard design rules for building acoustical laboratories
[4]. In the low-frequency range, the modal behaviour of the
reverberant rooms and the structure under investigation, which
depends on room dimensions, aperture dimensions and aper-
ture placement, can significantly influence the measured STL
[2]. The fixing of panels and windows may also give important
differences, as the total loss factor of the structure is changed
[3].

Several experimental studies have shown the importance of
the niche effect [1, 5, 6, 7]. In a study on the influence of
the design of transmission rooms on the sound transmission
of glass, the position of the sample in the niche had the most
important influence on STL [7]. Also the size and depth of
the aperture influences STL [1, 3]. All experimental results
show that the niche effect is clearly visible below coincidence,
while the position of the sample in the niche has no significant
influence above the coincidence frequency. Moreover, lowest
STL values are obtained when the panel is located at the center
of the niche. When the panel is located at one of the edges of the
aperture, highest STL values are measured. Most experiments
were carried out with lightweight single walls. Cops et al. [7]
also did measurements on double glazing. The same tendencies
were visible as for single glazing measurements.

When analytically calculating sound transmission loss, the niche
effect is often incorporated by using a maximum angle of inci-
dence. In this way, the shielding of the test element surface from
sound waves that impinge upon the element at near-grazing an-

gles of incidence is taken into account [8]. This gives reasonable
results when applied to single-layered structures. The method
however gives unrealistic results for double-layered partitions,
because the sound transmission loss of double walls is highly
dependent on the angle of incidence [9]. Only recently, theoret-
ical approaches to study the niche effect have been published.
Kim et al. [10] calculated transmission loss for a 1D single
panel placed in a niche in an infinite baffle. Vinokur [11] tried
to give a physical explanation of the niche effect, which he de-
fined as the difference in STL for the center and edge locations
of the specimen. The model, approximately valid for frequen-
cies f < cair/

√
S, with cair the speed of sound in air and S the

aperture area, indicates that the niche effect does not depend on
the specimen parameters but only on the aperture dimensions
and frequency.

This paper gives a theoretical approach of the niche effect
for single and double walls. The two-dimensional structure
is placed in a niche between two 3D rectangular reverberant
rooms. The direct sound transmission loss is calculated by use
of a wave based method. The model takes into account the full
coupling between the room modes, the niche modes, the cavity
modes and the bending wave modes of the plates. This is im-
portant, as the amount of coupling between niche, cavity and
plate modes determines sound transmission.

WAVE BASED MODEL

The Wave Based Method (WBM) is a Trefftz-based determinis-
tic prediction method for the steady-state dynamic analysis of
coupled vibro-acoustic systems. A general description of the
method can be found in [12]. In this method, the steady-state
dynamic variables (sound pressures and plate displacements)
are expressed in terms of a set of wave functions which are
solutions of the homogeneous parts of the governing dynamic
equations, completed with a particular solution function of the
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Figure 1: Geometry of the considered problem: STL of structure
placed in a niche between two reverberant rooms: (a) single
wall (b) double wall.

inhomogeneous equation. Since the functions are exact solu-
tions of the governing equations, the contribution of a certain
function in a set is merely determined by the (vibro-)acoustic
boundary conditions. As only a finite number of functions can
be considered, the boundary conditions can only be satisfied
approximately. The wave based model described in this section
is based on the model presented in [13].

Problem definition

The geometry of the considered problem is shown in Figure 1.
A rectangular single or double wall with dimensions Lpx and
Lpy is placed in a niche between two rectangular 3D rooms.
Source and receiving room have dimensions Lxe× Lye× Lze
and Lxr × Lyr × Lzr respectively. The niche has a depth Lzne
at emitting side and a depth Lznr at receiving side. In source
and receiving room, uniform damping is taken into account as
function of the reverberation time T . To calculate the sound
transmission loss, a harmonic volume point source is placed in
the source room at position (xs,ys,zs).

Rooms and air cavities

The source room is divided into two parts by a plane through
the point source, parallel to the back wall. For the single wall
problem, one gets 5 subdomains (2 in the source room, niche
at emitting side, niche at receiving side and receiving room).
In the case of a double wall, the air cavity is considered as an
extra subdomain. The steady-state acoustical pressure in each
subdomain pa,i (single wall: i = 0 . . .4, double wall: i = 0 . . .5)
is governed by the homogeneous Helmholtz equation,

∇
2 pa,i(x,y,z)+ k2

a pa,i(x,y,z) = 0. (1)

ka = ω

cair
is the acoustic wavenumber in air, with ω the circular

frequency and cair the speed of sound in air. In source and
receiving room, uniform damping is introduced by making the

acoustic wavenumber complex:

ka = ka

(
1− j

1
2

f T
2.2

)
, (2)

where T is the reverberation time of the room. f is the frequency,
j =
√
−1.

Thin plates

For acoustically thin plates, the transverse displacement wi of
the plate at position z = zpi (single wall: i = 2, double wall:
i = 2,3) fulfils Kirchhoff’s thin plate bending wave equation,(

∇
4− k4

B,i

)
wi(x,y) =

pa,i(x,y,zpi)− pa,i+1(x,y,zpi)

B′i
, (3)

where the bending wave number kB,i and the plate bending
stiffness B′i are defined as

kB,i = 4

√
m′′i ω2

B′i
and B′i =

Eih3
i (1+ jηi)

12(1−ν2
i )

, (4)

with m′′i = ρihi the surface mass density of plate i, hi the plate’s
thickness. The material of plate i has a density ρi, a Young-
modulus Ei, a loss factor ηi and a Poisson coefficient νi.

Field variable expansion

The acoustic pressures are approximated in terms of the follow-
ing acoustic wave function expansion,

pa,i(x
′,y′,z′) = ∑

m
∑
n

(
e− jkzimnz′Pimn + e jkzimnz′Qimn

)
×ϕimn(x′,y′), (5)

where

ϕimn(x′,y′) = cos
(

mπ

Lxi
x′
)

cos
(

nπ

Lyi
y′
)

(6)

and

kzimn =

√
k2

a,i−
(

mπ

Lxi

)2
−
(

nπ

Lyi

)2
. (7)

Lxi and Lyi are the cross-sectional dimensions of the room,
niche or cavity. The local coordinate systems (x′,y′,z′) are de-
fined as follows: (x′,y′,z′) = (x,y,z) for source room (i = 0,1),
(x′,y′,z′) = (x−∆xpe,y−∆ype,z− zp(i−1)) for the niches and
cavity (single wall: i = 2,3, double wall: i = 2 . . .4), (x′,y′,z′) =
(x−∆xpe +∆xpr,y−∆ype +∆ypr,z− zp(i−1)) for the receiving
room (single wall: i = 4, double wall: i = 5). The wave functions
are exact solutions of the homogeneous Helmholtz equation (1).

Eq. (5) leads to following wave function expansion for the
particle displacement in the z-direction,

wa,i(x
′,y′,z′) =− j

ω2ρair
∑
m

∑
n

(
e− jkzimnz′Pimn− e jkzimnz′Qimn

)
× kzimnϕimn(x′,y′), (8)

with ρair the density of air.

Following wave function expansion is used for the transverse
displacement of the plates:

wi(x,y) = ∑
p

∑
q

Aipqϕpimn(x,y). (9)

Assuming simply supported plates, following expansion func-
tions are used:

ϕpimn(x,y) = sin
(

pπ

Lpx
(x−∆xpe)

)
sin
(

qπ

Lpy
(y−∆ype)

)
.

(10)

The proposed pressure expansions satisfy a priori the rigid side
wall boundary conditions. The plate displacement expansions
satisfy a priori the simply supported boundary conditions.
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Continuity and boundary conditions

In the source room, a rigid back wall is assumed,

wa,0

∣∣∣
z′=0

= 0. (11)

In the receiving room (single wall: i = 4, double wall: i = 5), the
rigid back wall assumption gives following boundary condition:

wa,i

∣∣∣
z′=Lzr

= 0. (12)

At the source plane z = zs, continuity of pressure and particle
velocity is imposed,

pa,0

∣∣∣
z′=zs

= pa,1

∣∣∣
z′=zs

, (13)

jωwa,0

∣∣∣
z′=zs

+δ (x′− xs,y′− ys) = jωwa,1

∣∣∣
z′=zs

. (14)

At the interface between the niche and the source, continuity of
pressure and normal particle displacement is imposed,

pa,1

∣∣∣
z′=Lze

= pa,2

∣∣∣
z′=0

, (15)

wa,1

∣∣∣
z′=Lze

= wa,2

∣∣∣
z′=0

. (16)

Similar continuity conditions have to be fulfilled at the niche-
receiving room interface (single wall: i = 3, double wall: i = 4),

pa,i

∣∣∣
z′=Lznr

= pa,i+1

∣∣∣
z′=0

, (17)

wa,i

∣∣∣
z′=Lznr

= wa,i+1

∣∣∣
z′=0

. (18)

At the plates surfaces, continuity of transverse displacement is
imposed (single wall: i = 2, double wall: i = 2,3),

wi = wa,i

∣∣∣
z′=Lzi

, (19)

wi = wa,i+1

∣∣∣
z′=0

. (20)

Method of solution

The participation factors in the expansions (5) and (9) are de-
termined by the boundary and continuity conditions (11)-(20)
and the equations of motion (3) of each plate. The boundary
and continuity condition errors are forced to zero in an inte-
gral sense through the application of a Galerkin-like weighted
residual formulation [12, 13].

For the interface conditions (15)-(18), an auxiliary variable wi
is introduced. The particle displacement at the interfaces is
expanded in a series of the form (9)-(10), similar to the plate
displacement expansions. Consequently, one gets an equiva-
lent problem with 3 (or 4) plates, separated by air cavities, for
a single (or double) wall placed in a niche. The particle dis-
placement continuity conditions (16) and (18) are replaced by
4 equivalent continuity conditions of the forms (19)-(20). The
pressure continuity conditions (15) and (17) can be interpreted
as an equivalent equation of motion of the form (3), with the
left hand side put to zero.

Because of the simple rectangular geometry, the factors Pimn
and Qimn can be eliminated analytically in function of the pri-
mary unknowns Aipq, by use of the weighted residual formula-
tions of the boundary and interface conditions. The (equivalent)
equations of motion of the plates then result in a symmetric
matrix of equations in the unknowns Aipq.

Calculation of STL

The sound transmission loss (STL) is determined by the mea-
surement formula,

ST L = Lpe−Lpr +10log
S
Ar

. (21)

The sound pressure levels in emitting and receiving room Lpe
and Lpr are calculated by analytical integration of the acoustic
pressure over the respective room volumes. S is the surface
area of the element and Ar = 0.16Vr

Tr
the absorption area of the

receiving room, with Vr the volume and Tr the reverberation
time.

STL is calculated at 81 frequencies per third octave band. The
average STL in each frequency band is calculated from the
summated sound pressure levels Lp,1/3 octave,

Lp,1/3 octave = 10log

(
81

∑
i=1

10Lp,i/10

)
. (22)

NUMERICAL AND EXPERIMENTAL VALIDATION

Continuity and convergence analysis

Figure 2: 9.5 mm glass in niche (2D): pressure at 200 Hz. Source
position (xs,zs) = (1.0 m, 0.5 m).

In order to validate the wave based model, a two-dimensional
case is examined. The geometry can be seen in Figure 2. In the
source room, with dimensions 3.0 m × 2.5 m, a point source is
placed at position (xs,zs) = (1.0 m, 0.5 m). The receiving room
has dimensions 3.5 m × 3.0 m. A glass pane with thickness 9.5
mm and length 1.5 m is placed at a position 2:1 within a niche
with depth 0.6 m. The glass has a density ρ = 2420 kg/m3, an
elasticity modulus E = 62000 MPa, a Poisson coefficient ν =
0.23 and a total loss factor η = 0.025. Figure 2 shows the pres-
sure predictions at 200 Hz, obtained with a wave based model,
consisting of 300 acoustic wave functions in each (sub)room
and niche, and 300 structural wave functions for each (auxiliary)
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Figure 3: 9.5 mm glass in niche (2D): convergence of (a) particle
displacement at source room - niche interface at 200 Hz (b) STL.
∆ STL is the difference in STL with the reference solution (N =
300). N is the number of room-, plate- and nichemodes used in
the expansions.

plate displacement. The figure illustrates that the pressure con-
tinuity conditions at the room-niche interfaces are accurately
represented. The fact that the pressure contour lines are perpen-
dicular to the rigid walls, indicates that the boundary conditions
are also accurately represented.

The most critical approximation error is the continuity of nor-
mal particle displacement at the various interfaces (source plane,
source room - niche, niche - receiving room). At these interfaces
there is a discontinuity in particle displacement. For example at
z = 2.5 m, w = 0 at the rigid wall of the source room, whereas
at the niche interface w 6= 0. To accurately describe the parti-
cle displacement, one needs enough expansion functions, see
Figure 3(a). If one increases the number of functions, the ap-
proximation error reduces, so convergence to the right solution
is achieved. Overall values like room-averaged pressure levels
and STL converge faster to the exact solution (see Figure 3(b)).
Therefore, accurate STL values (error less than 0.1 dB) can be
obtained with a reasonable number of expansion functions. Con-
vergence is guaranteed if (1) a minimal number of expansion
functions, depending on frequency, is used and (2) the number
of auxiliary plate modes (which gives the number of continuity
condition equations imposed) is lower or equal to the number
of room and niche modes.

Single fiberboard plate

The sound transmission loss of a single fiberboard plate was
measured with the pressure method according to ISO 140-3 in
the transmission chambers of the Laboratory of Acoustics at

the K.U.Leuven. Each transmission chamber has a volume of
87 m3. The fiberboard plate has dimensions 1.25 m × 1.50 m,
see Figure 4. Detailed sections of the measurement aperture are
shown in Figure 5. The staggered niche has been changed to a
flat one at both sides of the panel, creating a tunnel with dimen-
sions 1.25 m × 1.50 m and a depth of 0.40 m. The fiberboard
plate is placed in the tunnel, resulting in niche-depths Lzne =
0.15 m at emitting side and Lznr = 0.25 m at receiving side. At
the receiving side, the outer niche was also partly covered with
a plasterboard construction. The results are compared with a
wave based model with and without niche. In the wave based
model with niche, the outer niche (with dimensions 1.80 m ×
1.90 m) is neglected as a first approximation. In the simulations,
a plate density ρ = 675 kg/m3, an elasticity modulus E = 3500
MPa and a Poisson coefficient ν = 0.48 are used for the fiber-
board. For the total loss factor of the plate and the reverberation
times of emitting and receiving room, measured values are used.

Figure 4: Measurement setup: fiberboard 9.5 mm with dimen-
sions 1.25 m × 1.50 m.

Figure 6 shows the measurement and simulation results of the
sound transmission loss in 1/48 octave bands. Three frequency
regions can be recognized. In the low frequency range, till
approximately 250 Hz in this case, the sound transmission is
dominated by the modal behaviour of rooms and structure. The
dynamic range is very large. From 250 Hz till 1600 Hz, sound
transmission is determined by the mass of the structure. Here,
non-resonant transmission is dominant, resulting in the well-
known mass-law behaviour. Above 1600 Hz, the coincidence
dip, determined by the bending stiffness of the plate, is clearly
visible.

The wave based model without niche gives reasonable predic-
tions, see Figure 6(a). However, there are some slight discrep-
ancies. In the low frequency range, STL is overestimated at
the resonance dips, resulting in a global overestimation in third
octave bands. In the mid-frequency range, the predicted STL is
very smooth, whereas the measurement results shows dips and
peaks in a range of 8 dB. Thirdly, the measured coincidence dip
is broader in comparison with WBM results.

Figure 6(b) shows that the niche-effect can largely explain these
differences. The depth of the resonance dips is better predicted
in the low frequency range. The niche can also explain the dips
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Figure 5: Measurement aperture: (a) horizontal section (b) ver-
tical section.

Figure 6: STL fiberboard 9.5 mm: measurement and (a) WBM
simulation without niche (b) WBM simulation with niche.

and peaks in the mid-frequency range and the broadening of the
coincidence dip. Orthotropic properties of the fiberboard can
be another explanation of the broader coincidence dip.

Laminated glass panel

Cops et al. [3] measured the sound transmission loss of a lami-
nated glass panel in the transmission chambers of the Labora-
tory of Acoustics at the K.U.Leuven. The laminated glass panel
had dimensions 1.60 m × 1.30 m and 4 mm glass - 0.76 mm
buthyl - 4 mm glass thickness. The influence of the placement
of the glass in the measurement opening was investigated. The
panel was placed in an extreme position (niche depth 0.00 m
and 0.70 m) and nearly centrally placed (niche depth 0.30 m
and 0.40 m). The measurement results are shown in Figure 7.
The two measurement setups are also simulated with the wave
based model. The laminated glass panel is simulated as a single
glazing with a thickness of 8 mm, a density ρ = 2500 kg/m3, an
equivalent elasticity modulus Eeq = 52 000 MPa and a total loss
factor η = 0.10. In the model for the extreme placement, niche
depths Lzne = 0.05 m and Lznr = 0.65 m are used. This is more
realistic and gives better agreement with measurement results.

Source: [3]

Figure 7: STL laminated glass 4.4 mm, dimensions 1.60 m ×
1.30 m: measurement and WBM predictions for edge location
(Lzne = 0 m, Lznr = 0.70 m) and center location (Lzne = 0.30 m,
Lznr = 0.40 m).

The agreement between the measured and predicted STL val-
ues is good, especially for the nearly central position of the
panel (see Figure 7). The wave based model is able to predict
the influence of the position of the panel in the niche. Below
the coincidence frequency, the significant difference between
edge and central placement can be seen in both measurement
and simulations. Around coincidence, the wave based model
overestimates STL for the edge position. A possible explana-
tion can be the overestimation of the total loss factor for this
configuration.

PARAMETRIC STUDY

Niche effect for single and double glazing

In the following sections, the 3D wave based model is applied
to a single glazing (thickness 9.5 mm) and a double glazing
(9.5/12/9.5 mm) with dimensions 2.4 m × 2.4 m. The material
properties used are the same as those used for the glass in
the continuity and convergence analysis. The glazing is placed
inside a niche with depth 0.6 m at three locations: the edge
position (Lzne,Lznr) = (0 m, 0.6 m), the normal position (0.2 m,
0.4 m) and the center position (0.3 m, 0.3 m). The prediction
results are given in Figure 8. As a reference, the STL calculated
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Figure 8: Comparison of STL with and without niche: (a) single
glazing 9.5 mm (b) double glazing 9.5/12/9.5 mm.

for the same source and receiving room without niche is shown.
The diffuse transmission loss for infinite layers, calculated with
a transfer matrix approach, is also given as a comparison.

The third octave prediction results for single glazing (see Figure
8(a)) are similar to the results reported in [10] by Kim et al. The
niche effect is most obvious below the coincidence frequency
around 1250 Hz. Lowest STL values are obtained for the center
position. The edge position gives higher values compared to the
WBM reference case without niche. This is in contrast with the
model of Kim et al., where STL was always lower in the case
with niche. The STL is hardly affected by the existence of a
niche above the coincidence. The niche effect results in a less
pronounced, but broader coincidence dip.

The results for double glazing (see Figure 8(b)) exhibit the
same tendencies. At the mass-spring-mass resonance frequency
around 160 Hz, the dip is more pronounced in the case with
niche, also for the edge position. This phenomenon was also
seen in measurements on double glazing done by Yoshimura
[8]. In the mid-frequency range, the niche effect reduces STL,
except for the edge position. The dip around the coincidence of
the glass panes is broadened.

Figure 9 shows the difference between the STL for edge and
center position, both for the single and double glazing. It can
be seen that in the low frequency range, this difference is ap-
proximately independent of the specimen type, as predicted in
[11] for frequencies f < cair/

√
S = 143 Hz. The niche effect is

negligible around and above the coincidence dips of the glass
panels at 1250-1600 Hz. In the mid-frequency range, the double
glazing differences are 3 to 4 dB larger compared to single
glazing results. This can be expected, as STL of the double wall

Figure 9: The niche effect for single and double glazing (aper-
ture dimensions 2.4 m × 2.4 m, depth 0.6 m).

is highly dependent on the angle of incidence in this frequency
range. Around the mass-spring-mass resonance dip of the dou-
ble wall, the difference is small, as both the edge and center
position decrease STL.

Influence of panel location in the niche

The influence of the panel location in the niche is investigated
in this section. The same single and double glazing are placed
in a niche with depth Lzn = 0.6 m at various positions. Figure 10
shows the STL difference between the cases with and without a
niche. The changes in STL are shown as a function of normal-
ized panel location, Lzne/Lzn, for a couple of third octave band
values.

For the single glazing (see Figure 10(a)), typical behaviour as
reported in literature is found below coincidence. STL is min-
imal for central location in the niche and maximum for both
edge locations. Equal volumes of niches at both sides of the
transmitting panel increase the transmission of energy through
the panel, especially at its eigenfrequencies, due to the strong
coupling of the equal niches on both sides [3]. This strong cou-
pling cannot occur for the edge positions. The coupling can
be decreased by the introduction of a staggered niche instead
of a flat niche [7]. The artificial modification of the measure-
ment opening by placing a diametrically reflecting plate in the
opening has also shown the negative influence of this coupling
between the two niches on STL [3].

At the coincidence dip (1250-1600 Hz), the niche improves
STL slightly (1-2 dB), almost independent of the panel location.
In the low frequency range, for example at 100 Hz, STL is
determined by the modal behaviour of rooms, niches and plate.
The number of modes and the amount of coupling between
the various modes influences sound transmission. Therefore,
large differences can occur, but no general behaviour can be
indicated.

The results for double glazing (see Figure 10(b)) show the same
trends. This confirms the conclusion of Vinokur [11] that to
a reasonable approximation, the niche effect does not depend
on the specimen parameters but depends on on the aperture
dimensions and frequency. However, it can be seen that the
niche effects are more pronounced for the double glazing.

Influence of niche depth

The influence of tunnel depth on the niche effect is investigated
in detail by increasing the depth from 0 to 1 m. Figure 11 shows
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Figure 10: ∆ STL variations with panel location in niche with
depth Lzn = 0.6 m: (a) single glazing 9.5 mm (b) double glazing
9.5/12/9.5 mm.

∆ STL when the single or double glazing is placed at the source
room edge of the niche. For the single glazing, variation of
niche depth has limited influence (± 2 dB) on STL. Only in the
low-frequency range, larger variations are visible. The influence
of niche depth is larger for double glazing results, variations
between -4 dB and +2 dB are visible. When the panels are
located in the center of the tunnel, the niche effect is more
pronounced (see Figure 12). For small niche depths (compared
to the wavelength), generally it can be seen that the reduction in
STL below coincidence by the niche, increases with increasing
niche depth. When the depth is further increased, STL remains
more or less the same or is even improved again. Two opposing
effects of deeper niches can explain these results [8]. For niche
depths < λ/2, the niche can be modeled as if the plate lies
in the plane of the baffle. With niche depths ≥ λ/2, the niche
forms a baffle perpendicular to the plate perimeter, doubling
the radiation efficiency of the plate modes below coincidence.
As a result, resonant transmission is increased with increasing
niche depth. On the other hand, non-resonant transmission is
decreased for deeper niches due to the shielding of near-grazing
angles by the niche.

CONCLUSIONS

In this paper, a wave based model has been developed to inves-
tigate the niche effect on sound transmission loss determination.
Sound transmission between rooms is dependent on the cou-
pling between acoustic and structural modes. Therefore, the
dimensions of the rooms, the position and depth of the aperture
and the position of the structure in the niche can influence the
measured STL.

Figure 11: ∆ STL variations with niche depth when panel is
located at the edge of the niche: (a) single glazing 9.5 mm (b)
double glazing 9.5/12/9.5 mm.

When the structure is placed inside a niche, STL values are gen-
erally decreased below coincidence, compared to STL values
without niche. This can be explained by the strong coupling be-
tween the modes at both sides of the tunnel and the interaction
with the structural modes, especially for a central placement.
For edge positions, this coupling cannot occur. Therefore, pre-
dicted STL is highest for both edge positions.

Around and above the coincidence frequency, the niche effect is
negligible. The position of the plate in the niche and the niche
depth has no influence. Globally, the coincidence dip is broader
and less pronounced when a plate is placed in a niche.

In the low frequency range, where modal density is low, the
niche effect is largely depending on the specific situation. No
general behaviour can be indicated.

The predicted values for a single wall are in agreement with
previous measurements and theory. The same tendencies are
visible for double walls. However, the effect of the niche on STL
of a double wall is larger. Differences in third octave band STL
values between edge and central positions tend to be 3 to 4 dB
higher than for the single wall in the mid-frequency range. This
can be expected, as sound transmission of the double wall is
highly dependent on angle of incidence in this frequency range.
The mass-spring-mass resonance dip is more pronounced in
comparison with the case without a niche.
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Figure 12: ∆ STL variations with niche depth when panel is
located at the center of the niche: (a) single glazing 9.5 mm (b)
double glazing 9.5/12/9.5 mm.

REFERENCES

[1] T. Kihlman and A. C. Nilsson. “The effect of some labo-
ratory design and mounting conditions on reduction in-
dex measurements”. J. Sound Vib. 24.3 (1972), pp. 349–
364.

[2] A. Osipov, P. Mees, and G. Vermeir. “Low-frequency
airborne sound transmission through single partitions in
buildings”. Appl. Acoust. 52.3/4 (1997), pp. 273–288.

[3] A. Cops, M. Minten, and H. Myncke. “Influence of the
design of transmission rooms on the sound transmission
loss of glass - Intensity versus conventional method”.
Noise Control Eng. J. 28.3 (1987), pp. 121–129.

[4] ISO 140-1:1997 Acoustics - Measurement of sound in-
sulation in buildings and of building elements - Part
1: Requirements for laboratory test facilities with sup-
pressed flanking transmission.

[5] R. W. Guy and P. Sauer. “The influence of sills and
reveals on sound transmission loss”. Appl. Acoust. 17.6
(1984), pp. 453–476.

[6] R. E. Halliwell and A. C. C. Warnock. “Sound transmis-
sion loss: Comparison of conventional techniques with
sound intensity techniques”. J. Acoust. Soc. Am. 77.6
(1985), pp. 2094–2103.

[7] A. Cops and D. Soubrier. “Sound transmission loss of
glass and windows in laboratories with different room
design”. Appl. Acoust. 25.4 (1988), pp. 269–280.

[8] C. Hopkins. “Sound insulation”. Elsevier Ltd., Oxford,
UK, 2007. Chap. 3, pp. 253–258.

[9] S. Kurra and D. Arditi. “Determination of sound trans-
mission loss of multilayered elements part 1: Predicted
and measured results”. Acta Acust. united Ac. 87.5
(2001), pp. 582–591.

[10] B. K. Kim et al. “Tunneling effect in sound transmission
loss determination: Theoretical approach”. J. Acoust.
Soc. Am. 115.5 (2004), pp. 2100–2109.

[11] R. Vinokur. “Mechanism and calculation of the niche
effect in airborne sound transmission”. J. Acoust. Soc.
Am. 119.4 (2006), pp. 2211–2219.

[12] W. Desmet. “A wave based prediction technique for
coupled vibro-acoustic analysis”. PhD thesis. Katholieke
Universiteit Leuven, Departement Werktuigkunde, 1998.

[13] A. Dijckmans and G. Vermeir. “Application of the wave
based prediction technique to building acoustical prob-
lems”. Proc. of ISMA2010, Leuven. 2010.

8 ICA 2010


	Introduction
	Wave based model
	Problem definition
	Rooms and air cavities
	Thin plates

	Field variable expansion
	Continuity and boundary conditions
	Method of solution
	Calculation of STL

	Numerical and experimental validation
	Continuity and convergence analysis
	Single fiberboard plate
	Laminated glass panel

	Parametric study
	Niche effect for single and double glazing
	Influence of panel location in the niche
	Influence of niche depth

	Conclusions

