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ABSTRACT 

The effect of the resilience of the steel studs on the sound insulation of steel stud cavity walls can be modelled as an 
equivalent translational stiffness in simple models for predicting the sound insulation of walls. Numerical calculations 
(Poblet-Puig et al., 2009) have shown that this equivalent translational stiffness varies with frequency. Vigran 
(2010a) has derived a best-fit third order polynomial approximation to the logarithm of these numerical values as a 
function of the logarithm of the frequency for the most common type of steel stud. This paper uses an inverse ex-
perimental technique. It determines the values of the equivalent translational stiffness of steel studs which make 
Davy’s (2010) sound insulation theory agree best with experimental sound insulation data from the National Research 
Council of Canada (NRCC) (Halliwell et al., 1998) for 126 steel stud cavity walls with gypsum plasterboard on each 
side of the steel studs and sound absorbing material in the wall cavity. These values are approximately constant as a 
function of frequency up to 400 Hz. Above 400 Hz they increase approximately as a non-integer power of the fre-
quency. The equivalent translational stiffness also depends on the mass per unit surface area of the cladding on each 
side of the steel studs and on the width of the steel studs. Above 400 Hz, this stiffness also depends on the stud spac-
ing. The equivalent translational stiffness of steel studs determined in this paper and the best-fit approximation to that 
data are compared with that determined numerically by Poblet-Puig et al. (2009) and with Vigran’s (2010a) best-fit 
approximation as a function of frequency. The best-fit approximation to the inversely experimentally determined val-
ues of equivalent translational stiffness are used with Davy’s (2010) sound insulation prediction model to predict the 
sound insulation of steel stud cavity walls whose sound insulation has been determined experimentally by NRCC 
(Halliwell et al., 1998) or CSTB (Guigou-Carter and Villot, 2006). 

INTRODUCTION 

Heckl (1959a; b) derived formulae for the sound power radi-
ated on one side of an infinite plate excited by a point force 
and the sound power per unit length radiated from one side of 
an infinite plate excited by an infinite line source. These for-
mulae only apply below the critical frequency of the plate. 
He used these results to predict the improvement in sound 
insulation obtained by attaching a lightweight panel at a dis-
tance from heavyweight wall with point or line connections 
to the heavy weight wall and filling the resulting wall cavity 
with sound absorbing material. Heckl’s theory and those 
theories based on it, ignore the mass of the connecting studs 
and assume that the behaviour of each stud is independent of 
the other studs. 

Sharp (1973; 1978) and Sharp et al. (1980) applied Heckl’s 
results to predict the sound insulation of lightweight cavity 
walls with rigid studs or rigid point connections. Gu and 
Wang (1983) modelled resilient steel studs as springs with an 
equivalent translational stiffness of 9 or 10 MPa. Davy 
(1990b; a) stated that Gu and Wang’s formulae “are not ob-
viously an extension of Sharp’s formulae” and introduced an 
equivalent mechanical compliance (the inverse of equivalent 
mechanical stiffness) of 61 10−×  1/Pa into Fahy’s (1985) 
version of Sharp’s theory. Notice that Davy’s value of 
equivalent mechanical stiffness is a factor of 9 or 10 less than 

Gu and Wang’s value. Because Fahy had not integrated over 
angle of incidence, Davy performed the integration. 

The results mentioned above only apply below the critical 
frequency. Davy (1991) extended his theory to above the 
critical frequency. Both Sharp’s and Davy’s theories included 
empirical correction factors below the critical frequency. 
Davy (1993) replaced his empirical correction factor with the 
effects of resonant vibration in both panels. He also found 
and corrected an error in his theory above the critical fre-
quency. Unfortunately this paper introduced an apparent 
asymmetry into the theory. Davy was able to explain that the 
apparent asymmetry in panel critical frequency was due to 
total internal reflection. If this total internal reflection is taken 
into account, the apparent asymmetry in panel critical fre-
quency is removed. Heckl pointed out that there is still an 
asymmetry in panel total damping loss factors. However this 
asymmetry will only arise if the panels have identical critical 
frequencies and different total damping loss factors. The 
recommended approach in this case is to use the average total 
damping loss factor for both panels. 

Vigran (2010b) gives a good summary of Sharp’s method of 
modelling sound transmission due to rigid studs and point 
connections. Vigran extends Sharp’s theory to above the 
critical frequency using a different approach to that of Davy. 

Hongisto (2006) showed that Davy’s theory agreed well with 
measurements on steel stud walls with sound absorption in 
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the cavity while Gu and Wang’s theory did not. Unfortu-
nately Davy’s theory only agreed well because as Hongisto 
also showed Davy’s theory for the sound transmission via a 
wall cavity with sound absorbing material produced results 
which were too high. It turned out that Davy’s theoretical air 
borne results were approximately the same as the experimen-
tal steel stud structure borne results and thus produced excel-
lent agreement. Davy (1998) modified his airborne theory by 
limiting the upper angle of integration to a maximum value of 
61°. He also set the equivalent mechanical compliance of the 
steel studs to 0 1/Pa and introduced “an empirical steel stud 
structure borne attenuation of 10 dB relative to wooden 
studs”. In 2009, Davy (2009) recommended “a stud attenua-
tion factor in the range from 0.02 to 0.2”. He actually used a 
stud attenuation factor of 0.04 to compare his theory with 
experimental results. Davy (2010) used an equivalent me-
chanical compliance of 61.6 10−×  1/Pa for steel studs but 
limited the predicted steel stud transmission to be greater 
than a minimum value of 0.005. 

Guigou-Carter et al. (1998) modelled the sound insulation of 
10 mm plasterboard mounted by rigid or resilient line con-
nections 50 mm from a heavyweight wall. The 50 mm cavity 
was filled with glass wool. Their resilient line connectors 
were assumed to have an equivalent translational stiffness of 
10 MPa. Poblet-Puig et al. (2006) calculated the vibrational 
level difference between 9 mm and 13 mm gypsum plaster 
board wall leaves connected via steel studs and compared 
these differences with those calculated for a line connections 
with a range of equivalent translational stiffnesses or a range 
of equivalent rotational stiffness. Guigou-Carter and Villot 
(2006) used this information to calculate the sound insulation 
at low frequencies of two gypsum plaster board steel stud 
cavity walls with sound absorbing material in the wall cavity. 
At higher frequencies they modelled the steel studs as resil-
ient point connections situated at the positions of the screws 
used to attach the gypsum plaster board to the steel studs. 

Research by Poblet-Puig (2008) and Poblet-Puig et al. (2009) 
has shown that a steel stud can be modelled as a translational 
spring with an equivalent translational stiffness which varies 
with frequency in the range from 105 to 108 Pa. The constant 
value of equivalent mechanical compliance used in Davy 
(2010) corresponds to an equivalent translational stiffness of 

56 10×  Pa which lies towards the bottom end of the above 
range. The value of the minimum stud transmission used in 
Davy (2010) is -23 dB. This also lies in the 0 to -40 dB stud 
transmission range determined by Poblet-Puig et al. (2009) 
for a standard steel stud. Vigran (2010a) has derived a best-fit 
third order polynomial approximation to the logarithm of 
Poblet-Puig’s numerical values as a function of the logarithm 
of the frequency for the most common type of steel stud. 

USE OF POBLET-PUIG’S STIFFNESS VALUES 

Initially, the equivalent translational stiffness values of 
Poblet-Puig et al. (2009) for standard TC steel studs were 
used with Davy’s (2010) theory to predict the average of nine 
experimental measurements by the NRCC (Halliwell et al., 
1998). These nine measurements were made on walls consist-
ing of two layers of 16 mm gypsum plasterboard on each side 
of 90 mm steel studs at 406 mm spacing. There was sound 
absorbing material in the wall cavity. This type of wall con-
struction is denoted as 16+16-90-406 in this paper. For walls 
where the thicknesses of gypsum plaster board on each side 
of the steel studs are different, the second leaf thicknesses are 
included in brackets. An example is 13+16(16+16)-90-406. 
Some of the walls only had one layer rather than two layers 
of gypsum plasterboard on one side or both sides of the steel 
studs. An example is 13-90-406. 

Walls with fire rated and non fire rated gypsum plaster board 
(with slightly different masses per unit area) were grouped 
together, as were walls with different sound absorbing mate-
rial in the cavity. The NRCC report gives the actual mass per 
unit area of the gypsum plaster board. Because of the combi-
nation of different densities of gypsum plaster board into the 
same group, gypsum plaster board is assumed to have a den-
sity of 770 kg/m2 in this paper and the nominal thickness of 
the gypsum plasterboard is used with this density to calculate 
the mass per unit area. The sound absorption coefficient of 
the cavity sound absorbing material is assumed to be 1. Note 
that Davy’s (2009) theory limits the actual value of the sound 
absorbing material at low frequencies depending on the width 
of the cavity. 

A single layer of gypsum plaster board is assumed to have a 
Young’s modulus of 2.2 GPa. Because two layers of gypsum 
plaster board on one side of the steel studs are only fastened 
at points by the screws, they can slide relative to each other 
when being bent by the sound. The result is that the critical 
frequency of two equal thicknesses of gypsum plaster board 
is almost the same as that of a single thickness. In the theo-
retical results of this paper this result is achieved by assuming 
that two thicknesses behave as a single thickness of the same 
total thickness with a Young’s modulus of approximately one 
quarter of one of the original single layers. In this paper two 
layers of gypsum plaster board are assumed to have a 
Young’s modulus of 0.6 GPa. The Poisson’s ratio of gypsum 
plaster board is assumed to be 0.3. 
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Figure 1. Comparison of the average of five NRCC experi-
mental results with theoretical calculations for a 16-90-none 

type wall using Davy’s (2010) theory. 

Based on the comparison between Davy’s (2010) theory and 
the average of 5 NRCC measurements on walls with 16 mm 
of gypsum plaster board on each side of 40 mm double steel 
studs, the in-situ damping loss factor of gypsum plaster board 
is assumed to be 0.03. There was a 10 mm gap between the 
40 mm double steel studs giving a cavity width of 90 mm. 
The cavity was filled with sound absorbing material. This 
wall type is denoted 16-90-none in this paper and the com-
parison is shown in figure 1. 

The comparison between theory and the average of the nine 
experimental results for the 16+16-90-406 type is shown in 
figure 2. It is apparent that the stud only and the combined 
theoretical results are much more irregular that the experi-
mental or studless theoretical results. This is due to the ir-
regularity of the numerically calculated equivalent transla-
tional stiffness. Nevertheless, the comparison was encourag-
ing enough to proceed further. 
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DERIVING COMPLIANCE FROM NRCC DATA 

One way forward would have been to fit a smooth curve to 
the numerically calculated values of equivalent translational 
stiffness as has been done by Vigran (2010a). Instead the 
decision was made to determine the values of the equivalent 
translational compliance which would make Davy’s (2010) 
theory agree with NRCC sound insulation measurements on 
steel stud walls (Halliwell et al., 1998). The 126 steel stud 
walls were grouped into 28 different classes of wall. These 
types of wall were labelled as described at the start of the 
previous section. For each wall type and third octave band 
centre frequency, the value of equivalent translational com-
pliance which made zero or minimised the difference be-
tween theory and experiment was determined if possible. 
Davy’s (2010) theory does not use the stud borne transmis-
sion theory below the mass-air-mass resonance frequency 
because in that frequency range the air cavity rigidly couples 
the two wall leaves. Thus an equivalent translational compli-
ance could not be determined for frequencies below the 
mass-air-mass resonance frequency. In some situations, the 
theoretical air borne sound insulation was less than the ex-
perimental sound insulation. In these situations, it was also 
not possible to determine a meaningful value of equivalent 
stud compliance. 
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Figure 2. Comparison of the average of nine NRCC experi-
mental results (Halliwell et al., 1998) with theoretical calcu-

lations for a 16+16-90-406 type wall using Poblet-Puig et 
al.’s (2009) equivalent translational stiffness values for TC 

steel studs in Davy’s (2010) theory. 

Figure 3 shows the equivalent translational compliance de-
termined using this method for a 16+16-90-406 type of wall. 
Examination of figure 3 suggests that the equivalent transla-
tional compliance is approximately constant up to about 400 
Hz. Above 400 Hz, the relationship between the logarithm of 
the equivalent translational compliance and the logarithm of 
the frequency is approximately linear. In this frequency 
range, this linearity is very sensitive to the value of the criti-
cal frequency. The values of Young’s modulus given above 
for both double and single layers of gypsum plaster board 
were determined by choosing the values which made the 
above relationship as linear as possible. 

Also shown in figure 3 are the equivalent translational com-
pliances derived for the average of eleven 13-90-406 type 
NRCC measurements. These results show more variability 
than those derived from the 16+16-90-406 type walls because 

there is less difference between the theoretical studless sound 
insulation and the stud only sound insulation in this case. 
Since these are all greater than the compliances derived from 
the 16+16-90-406 type walls, it appears that the equivalent 
translational compliance depends on the properties of the 
gypsum plaster board leaves. 
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Figure 3. The equivalent translational compliance required to 

make Davy’s (2010) theory agree with the average of nine 
16+16-90-406 type and eleven 13-90-406 type NRCC ex-

perimental results (Halliwell et al., 1998). 
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Figure 4. The maximum and minimum values of equivalent 

translational compliance of steel studs derived by making 
Davy’s (2010) theory fit NRCC experimental data (Halliwell 

et al., 1998). 

BEST FITTING TO COMPLIANCE VALUES 

Figure 4 shows the maximum and minimum values of 
equivalent translation compliance derived by making Davy’s 
(2010) theory fit the 28 different wall type averages of the 
126 NRCC (Halliwell et al., 1998) measurements on steel 
stud walls with sound absorbing material in their wall cavi-
ties. Because the equivalent translational compliance appears 
to decrease as a function of frequency above 400 or 500 Hz, a 
linear regression in the frequency range from 400 to 6300 Hz 
was conducted of the natural logarithm of the compliance 

MC  as a function of the natural logarithms of the frequency 
f , the reduced mass of the gypsum plasterboard wall leaves 

rm , the steel stud spacing b  and the steel stud (cavity) width 
d . 
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The reduced mass rm  is given by 

 1 2

1 2
r

m mm
m m

=
+

 (1) 

where im is the mass per unit area of the ith wall leaf. It was 
chosen because it appears in the equation for the normal inci-
dence mass-air-mass resonance angular frequency 0ω , 

 
2

0
0

r

c
dm
ρω = . (2) 

In this equation 0ρ  is the ambient density of air, c  is the 
speed of sound in air and d  is the cavity (steel stud) width. 

According to Davy (2010), the stud transmission ratio J  is 
given by 

 23/ 2
1 2

2

41 1 M

J
m m cC
G

ω
=

⎛ ⎞
+ −⎜ ⎟
⎝ ⎠

 (3) 

where 

 1/ 2 1/ 2
1 2 2 1c cG m mω ω= +  (4) 

(Davy, 2009). The stud transmission ratio J  is the ratio of 
the vibrational energy transmitted from wall leaf 1 to wall 
leaf 2 by a resilient stud with an equivalent translation com-
pliance of MC  to that transmitted by a rigid stud ( 0MC = ). 

ciω  is the angular critical frequency of the ith wall leaf and 
ω  is the angular frequency of the sound. 

Inserting equation (4) into equation (3) gives 

 23/2
1 2

1/ 2 1/ 2
1 2 2 1

2

41 1 M

c c

J
m m cC

m m
ω
ω ω

=
⎛ ⎞

+ −⎜ ⎟+⎝ ⎠

. (5) 

If 1 2c c cω ω ω= = , then equation (5) becomes 

 23/2

1/ 2

2

41 1 r M

c

J
m cCω

ω

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

. (6) 

The appearance of the reduced mass rm in equation (6) is 
another reason for using it in the linear regression. 

Using each side of the linear regression equation as the ar-
gument of the exponential function produces the following 
equation. 

 f m b dx x x x
M rC Af m b d= . (7) 

The linear regression produced the values and 95% confi-
dence limits shown in table 1 for the constants in equation (7)
. Notice that at the 95 % confidence level, A is statistically 
different from 1 and all four x’s are statistically different 
from 0. 

Because the equivalent translational compliance appears to 
be approximately constant as a function of frequency below 
400 or 500 Hz, a linear regression in the frequency range 
from 63 to 500 Hz was conducted of the natural logarithm of 

the compliance MC  as a function of the natural logarithms of 
the same variables used in the previous linear regression. 
This linear regression produced the values and 95% confi-
dence limits shown in table 2 for the constants in equation (7)
. 

Table 1. Values and confidence limits for the constants in 
equation (7) in the frequency range from 400 to 6300 Hz. 
Constant Value 95% Upper 

Limit 
95% Lower 

Limit 
A 1.74 2.94 1.03 
xf -1.81 -1.77 -1.84 
xm -1.40 -1.29 -1.51 
xb -0.75 -0.59 -0.92 
xd 0.28 0.43 0.13 

Table 2. Values and confidence limits for the constants in 
equation (7) in the frequency range from 63 to 500 Hz. 

Constant Value 95% Upper 
Limit 

95% Lower 
Limit 

A 8.5 x 10-5 3.1 x 10-4 2.3 x 10-5 
xf 0.0134 0.133 -0.106 
xm -1.09 -0.82 -1.35 
xb -0.02 0.35 -0.40 
xd 0.81 1.19 0.42 

At the 95 % confidence level, A is statistically different from 
1, xm and xd are statistically different from 0 and xf and xb are 
not statistically different from 0. The fact that xf is not statis-
tically different from zero confirms the visual observation 
that the equivalent translational compliance is not a function 
of frequency in the frequency range from 63 to 500 Hz. 

Because xf and xb are not statistically different from 0, a new 
linear regression in the frequency range from 63 to 500 Hz 
was conducted of the natural logarithm of the compliance 

MC  as a function of the natural logarithms of the reduced 
mass of the gypsum plasterboard wall leaves rm  and the 
steel stud (cavity width) d . Using each side of this linear 
regression equation as the argument of the exponential func-
tion produces the following equation. 

 m dx x
M rC Am d= . (8) 

The linear regression produced the values and 95% confi-
dence limits shown in table 3 for the constants in equation (8)
. 

Table 3. Values and confidence limits for the constants in 
equation (8) in the frequency range from 63 to 500 Hz. 

Constant Value 95% Upper 
Limit 

95% Lower 
Limit 

A 9.3 x 10-5 2.7 x 10-4 3.2 x 10-5 
xm -1.09 -0.83 -1.35 
xd 0.80 1.19 0.41 

Table 4. Values and confidence limits for the constants in 
equation (7) in the frequency range from 2500 to 6300 Hz. 
Constant Value 95% Upper 

Limit 
95% Lower 

Limit 
A 0.0120 0.0196 0.0073 
xf -1.37 -1.32 -1.43 
xm -0.77 -0.71 -0.83 
xb -0.58 -0.49 -0.66 
xd 0.22 0.30 0.15 
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Looking at figure 4, the values of equivalent translational 
compliance are much more tightly grouped in the frequency 
range from 2500 to 6300 Hz. Thus it is of interest to repeat 
the original linear regression restricted to this frequency 
range. The results are shown in table 4. 

Given that the confidence intervals for xf and xm in table 1 are 
less than -1.5 and -1 respectively, while they are greater than 
-1.5 and -1 respectively in table 4, it is interesting to specu-
late that the true values of xf and xm in the high frequency 
range are -1.5 and -1 respectively. Also xb in table 4 is not 
statistically significantly different from -0.5 and it is also 
interesting to speculate that the true value of xb in the high 
frequency range is -0.5. These speculations lead to an inter-
esting conclusion. They imply that for a constant value d, the 
equivalent translational compliance is given by 

 1/2 3/ 2 1
M rC Bb mω− − −=  (9) 

in the high frequency range where B is a constant. Substitut-
ing equation (9) into equation (6) gives 

 2

1/2 1/2

2

41 1
c

J
Bc

b ω

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

. (10) 

This implies that for constant angular critical frequency cω  
constant stud spacing b  and constant speed of sound c, the 
stud transmission ratio J  is constant. This speculative result 
agrees with the assumption of a constant or a minimum stud 
transmission ratio made by Davy (1998; 2009; 2010). 

If the magnitude of the second term in the brackets of equa-
tion (10) is much greater than one, equation (10) becomes 

 2 28
cbJ

B c
ω= . (11) 

Equation (29) of Davy (2010) gives the stud borne transmis-
sion coefficient τ  as 

 
2 3
0
2 2

32 c HJ
G b
ρτ

ω
=  (12) 

where H is the D of equation (50) of Davy (2009). 

Substituting equation (11) into equation (12) gives 

 
2
0
2 2 2

4 cc H
G B
ρ ωτ

ω
= . (13) 

Thus the speculative assumptions suggest that the stud borne 
sound insulation of a steel stud gypsum plaster board cavity 
wall with sound absorbing material in the wall cavity is inde-
pendent of the stud spacing at medium and high frequencies. 
This is not the case at low frequencies where table 2 shows 
that the equivalent translational compliance is independent of 
the stud spacing and thus that equation (12) retains its inverse 
dependence on the stud spacing b. 

Another conclusion to be drawn from an examination of ta-
bles 1 to 4 is that the equivalent translational compliance 
depends more strongly on the stud (cavity) width at low fre-
quencies than at medium and high frequencies. 

Some caution should be exercised with regard to the depend-
ence on stud spacing and stud (cavity) width. Only two stud 
spacings (406 and 610 mm) were considered. All but two of 
the walls whose results were analysed had 65 or 90 mm stud 
widths. The other two had 150 mm stud widths. On the other 
hand the values analysed are the most common used in prac-
tice. 
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Figure 5. Comparison of the best fit equations of this paper 
(Davy et al.) and that of Vigran (2010a) for the equivalent 

translational compliance with the Poblet-Puig et al.’s (2009) 
data for 70 mm wide TC steel studs spaced at 600 mm with 

13 mm gypsum plasterboard on each side. 
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Figure 6. Comparison of stud transmission ratio (dB) calcu-

lated using equation (3) and the best fit equations for the 
equivalent translational compliance of this paper (Davy et 

al.), the best fit equation of Vigran (2010a) and Poblet-Puig 
et al.’s (2009) numerical data for 70 mm wide TC steel studs 
spaced at 600 mm with 13 mm gypsum plasterboard on each 

side. 

In this paper the equivalent translational compliance MC  will 
be calculated as the minimum of equation (7) calculated us-
ing the constant values in table 1 and equation (8) using the 
constant values in table 3. The equivalent translational stiff-
ness is calculated by inverting of the value of the equivalent 
translational compliance. 

Define 
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 ( )10logx f= . (14) 

Then Vigran’s (2010a) best fit third order polynomial ap-
proximation, to Poblet-Puig et al.’s (2009) numerically calcu-
lated equivalent translational stiffness data for TC steel studs, 
is given by the following equation. 

 ( ) 3
10

2

log 0.6286

4.4051 10.3323 7.0722
MC x

x x

− =

− + −
. (15) 

Figure 5 compares the best fit equations of this paper (Davy 
et al.) and that of Vigran with the Poblet-Puig et al. data for 
70 mm wide TC steel studs spaced at 600 mm with 13 mm 
gypsum plasterboard on each side. The equivalent translation 
compliance of 61.6 10−×  1/Pa recommended by Davy (2010) 
is in rough agreement with the low frequency value of this 
paper of 61.9 10−×  1/Pa shown in figure 5. 

USE OF THE BEST FIT EQUATIONS 

Figure 6 shows the comparison of the stud transmission ratio 
J (dB) calculated using equation (3) and the best fit equations 
for the equivalent translational compliance of this paper 
(Davy et al.), the best fit equation of Vigran (2010a) and 
Poblet-Puig et al.’s (2009) numerical values for 70 mm wide 
TC steel studs spaced at 600 mm with 13 mm gypsum plas-
terboard on each side. The minimum value of the stud trans-
mission ratio of -23 dB recommended by Davy (2010) is in 
rough agreement with the high frequency results of this paper 
shown in figure 6. 

Table 5. The mean, standard deviation, maximum and mini-
mum of sound insulation theory (Davy, 2010) minus experi-
ment (Halliwell et al., 1998) for the third octave frequency 

bands from 50 to 6300 Hz for different wall types. 
Wall Type mean 

(dB) 
std 
dev 
(dB) 

max 
(dB) 

min 
(dB) 

13-65-406 -0.2 3.2 6.9 -4.0 
13-65-610 0.8 2.5 5.7 -2.5 
13-90-406 0.0 2.7 5.0 -4.0 
13-90-610 -0.2 2.4 5.7 -4.6 
13-150-610 -2.6 3.6 4.7 -6.1 
16-65-406 0.6 2.7 6.9 -4.2 
16-65-610 0.8 2.6 7.0 -3.9 
16-90-406 0.3 2.2 4.7 -2.9 
16-90-610 0.0 2.5 6.0 -3.2 
16-150-610 -0.5 2.4 3.1 -5.9 

13(13+13)-65-406 0.8 2.5 6.0 -3.8 
13(13+13)-65-610 -0.2 2.3 6.5 -3.5 
13(13+13)-90-406 0.8 1.9 5.1 -1.7 
13(13+13)-90-610 0.1 2.4 5.7 -4.1 
16(16+13)-65-610 -0.2 2.4 6.2 -3.8 
16(16+16)-65-406 0.1 2.6 5.3 -5.4 
16(16+16)-65-610 0.5 2.3 6.0 -3.2 
16(16+16)-90-406 0.4 1.6 3.7 -2.0 
16(16+16)-90-610 0.4 1.7 3.6 -2.2 

13+13-65-406 -0.2 2.3 5.1 -4.0 
13+13-65-610 -0.3 2.6 5.0 -4.8 
13+13-90-406 0.1 1.4 3.8 -2.9 
13+13-90-610 0.1 2.8 5.9 -4.4 

13+16(16+16)-90-406 -0.2 2.1 4.0 -3.9 
16+16-65-406 -1.3 2.5 4.3 -6.4 
16+16-65-610 -0.6 2.0 3.9 -4.1 
16+16-90-406 -0.8 1.8 3.1 -4.5 
16+16-90-610 -0.5 2.4 3.4 -4.6 

Overall -0.1 2.4 7.0 -6.4 
16-90-none 0.2 1.9 4.6 -3.2 

Table 5 shows the mean, standard deviation, maximum and 
minimum of sound insulation theory (Davy, 2010) minus 
experiment (Halliwell et al., 1998) for the third octave fre-
quency bands from 50 to 6300 Hz for the 28 different wall 
types using the best fit equations derived in this paper for 
equivalent translational compliance. The overall row in table 
5 shows the average value of the mean differences, the root 
mean square of the standard deviations of the differences, the 
maximum of the maximum differences and the minimum of 
the minimum differences. For comparison, the last row of 
table 5 shows the values for the 16-90-none wall type whose 
theoretical and experimental results are graphed in figure 1. 
This last wall type is without studs which bridge the wall 
cavity. The overall standard deviation of 2.4 dB is not exces-
sively greater than the 1.9 dB standard deviation of the 16-
90-none wall type without bridging studs. 
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Figure 7. Comparison of the average of nine NRCC experi-
mental results (Halliwell et al., 1998) with theoretical calcu-

lations for a 16+16-90-406 type wall using the equivalent 
translational compliance best fit equations for steel studs in 

Davy’s (2010) theory. 

Figure 7 shows the comparison of the average of nine NRCC 
experimental results (Halliwell et al., 1998) with theoretical 
calculations for a 16+16-90-406 type wall using the equiva-
lent translational compliance best fit equations for steel studs 
in Davy’s (2010) theory. This figure should be compared 
with figure 2. From Table 5, it can be seen that the mean, 
standard deviation, maximum and minimum of the combined 
theory minus experiment for figure 7 are -0.8, 1.8, 3.1 and -
4.5 dB respectively. The equivalent numbers for figure 2 are 
3.0, 5.7, 11.2 and -8.4 dB. Thus it can be seen from both 
these sets of numbers and the figures that the best fit equa-
tions derived in this paper perform better overall than the 
numerical calculations of Poblet-Puig et al. (2009). This is 
thought to be due the very complicated vibrational situation 
that the numerical calculations of Poblet-Puig et al. (2009) 
are attempting to analyse from first principles. Nevertheless, 
the calculations of Poblet-Puig et al. (2009) are very impor-
tant because they provide a first principles theoretical expla-
nation of why steel studs behave vibrationally in the way that 
they do. 

Of course, the real test of the best fit equations derived in this 
paper is how they perform when used to predict experimental 
sound insulation data other than that from which they were 
derived and when they are used with theories other than 
Davy’s (2010) theory. As a first step in this direction, CSTB 
measurements (Guigou-Carter and Villot, 2006) are com-
pared with Davy’s (2010) theory using the best fit equations 
derived in this paper. 
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Figure 8 shows a comparison of CSTB experimental results 
(Guigou-Carter and Villot, 2006) with theoretical calcula-
tions for a 9(13)-175-600 type wall using the equivalent 
translational compliance best fit equations for steel studs in 
Davy’s (2010) theory. The mean, standard deviation, maxi-
mum and minimum of the combined theory minus experi-
ment are -0.6, 4.4, 6.0 and -9.8 dB respectively. 
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Figure 8. Comparison of CSTB experimental results 

(Guigou-Carter and Villot, 2006) with theoretical calcula-
tions for a 9(13)-175-600 type wall using the equivalent 

translational compliance best fit equations for steel studs in 
Davy’s (2010) theory. 
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Figure 9. Comparison of CSTB experimental results 

(Guigou-Carter and Villot, 2006) with theoretical calcula-
tions for a 13-125-600 type wall using the equivalent transla-
tional compliance best fit equations for steel studs in Davy’s 

(2010) theory. 

Figure 9 shows a comparison of CSTB experimental results 
(Guigou-Carter and Villot, 2006) with theoretical calcula-
tions for a 13-125-600 type wall using the equivalent transla-
tional compliance best fit equations for steel studs in Davy’s 
(2010) theory. The mean, standard deviation, maximum and 
minimum of the combined theory minus experiment are 1.4, 
5.6, 6.5 and -8.7 dB respectively. 

From 50 to 160 Hz in figure 8 and from 100 to 200 Hz in 
figure 9, the experimental curve is in reasonable agreement 

with the stud only curve. Over most of these two frequency 
ranges, the studless curve and hence the combined curve are 
less than the experimental curve. Thus although the airborne 
sound insulation is under predicted by Davy’s (2010) theory 
in these frequency ranges for reasons which are not clear at 
this stage, the stud borne sound insulation predictions appear 
to be in good agreement with the experimental results in 
these frequency ranges. At most of the higher frequencies the 
experimental results are less than the predicted results and the 
differences are larger in figure 9. 

At first sight, it appears that there may be some systematic 
difference between these two CSTB results and the 126 
NRCC results. However it should be borne in mind that the 
175 mm cavity width of figure 8 is larger than any of the 126 
NRCC cavity widths and that the 125 mm cavity width of 
figure 9 is larger than all but 2 of the 126 NRCC cavity 
widths. 

It should also be noted that Guigou-Carter and Villot (2006) 
modelled the experimental results in figures 8 and 9 as point 
connections due to the screws above about 100 or 150 Hz. 
However the NRCC walls also used screws to attach the gyp-
sum plaster board to the steel studs. Clearly more compari-
sons between Davy’s (2010) theory, other theories and ex-
periment are needed. 

CONCLUSIONS 

This paper has derived empirical best fit formulae for the 
equivalent translational compliance of standard steel studs by 
making Davy’s (2010) sound insulation theory agree with the 
experimental measurements of the National Research Council 
of Canada (NRCC) on 126 different gypsum plaster board 
steel stud walls with sound absorbing material in their wall 
cavities. The values of the equivalent translational stiffness of 
standard steel studs are easily obtained by inverting the cal-
culated values of equivalent translational compliance. 

The equivalent translational compliance or stiffness depends 
on the masses per unit area of gypsum plaster board fastened 
to each side of the steel studs and the width of the steel studs 
(which is also the cavity width). Above 400 or 500 Hz, it also 
depends on the frequency and the spacing between the steel 
studs. 

The values of equivalent translational compliance derived in 
this paper and the stud velocity transmission ratios derived 
from them are in rough agreement with values proposed pre-
viously by Davy. 

When used with Davy’s (2010) sound insulation theory, the 
empirical best fit formulae for equivalent translational stud 
compliance are reasonably successful at predicting the NRCC 
experimental sound insulation results from which the empiri-
cal best fit formulae were derived. They are less successful 
when predicting two CSTB experiment sound insulation 
results. Thus more comparisons between experimental sound 
insulation results, Davy’s (2010) sound insulation theory and 
other sound insulation theories using the empirical best equa-
tions derived in this paper are needed. Other theories of 
sound insulation with which the empirical best fit equations 
of this paper could be used include those of Craik and Smith 
(2000a; b), Wang et al. (2005), Legault and Atalla (2009; 
2010), Poblet-Puig (2008) and Vigran (2010b; a). 
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