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ABSTRACT

Acoustic echo cancellers (AEC) are becoming increasingly important because of the widespread use of hands-free
devices. Due to their simplicity, most of the cancellers rely on NLMS-type adaptive filters to model and track the
time-varying echo path. Recently, adaptive combinations of filters are gaining increasing popularity as a flexible and
versatile approach to overcome compromises inherent to adaptive filters, thus enhancing the overall performance. Re-
garding AEC scenarios, such filter combinations have already been proposed for, e.g., improving the trade-off between
convergence speed and steady-state error or for reducing the dependency on varying ratios of linear and nonlinear
distortions.

In this paper, we present a new AEC approach, showing improved performance for unknown or time-varying signal-
to-noise ratios (SNR). The proposed scheme exploits the fact that the coefficient energy of a typical echo path is
not uniformly distributed, but decays exponentially. Under this condition,an NLMS filter will introduce significant
estimation errors for less significant filter taps due to gradient noise. Since the number of affected coefficients strongly
depends on the SNR and hence on the implied noise floor, the cancellation performance may degrade considerably
for low SNRs. In order to relieve the coefficient noise, the adaptive impulse response is split into a number of non-
overlapping blocks, each of which is combined with a virtual ’zero-block’, having fixed zero coefficients, with time-
varying relative weights for both the nonzero and the zero-block. In practice, this results in a possibly biased estimation
of some of the filter coefficients. However, it has been shown that suchestimates can yield advantages in terms of
mean-square error, especially for low SNRs. The combination of eachblock is implemented by a convex mixing, where
the control parameter is updated according to a stochastic gradient descent method so as to minimize the global error
of the AEC. For moderate block numbers, the increment in computationalcost over a conventional NLMS canceller
is negligible. In particular, this contribution investigates the operation of the blockwise combined filter for low SNR
conditions, comparing its performance with standard NLMS- and PNLMS-type filters.

The robustness and benefits of the proposed approach are thereby experimentally verified for noise and speech inputs.
Moreover, the influence of the number of blocks and the mixing parameters is also studied and indications on future
work (as e.g. accounting for impulsive noise or an extension to nonlinear filters) are given.

INTRODUCTION

In many of today’s communication scenarios, the desire for a
natural, untethered movement of all participating speakers re-
sults in the need for hands-free communication systems. Con-
sequently, due to the unconstrained sound propagation from
the loudspeaker to microphone, such setups usually require an
acoustic echo cancellation (AEC) mechanism in order to pre-
vent the echo component in the local room from being fed back
to the far-end speaker (Hänsler and Schmidt 2004). Moreover,
such cancellers become also important for the widespread use
of mobile devices, since the light housings of these units in-
evitably yield a relatively free sound propagation even in the
normal (i.e. not hands-free) use mode or in video telephony si-
tuations. Fig.1 illustrates the basic AEC task, where the echo
y(k) contained in the microphone signald(k) is to be removed
by the replicâyc(k) generated by the adaptive cancellation fil-
ter.

In order to model and track the time-varying echo path, mainly
corresponding to the room impulse response (RIR), most echo

x(k)
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ŷc(k)

n(k)d(k)ec(k)

AEC

Figure 1: Acoustic echo cancellation scenario with adaptive
filter (AEC). No double-talk is considered in this scheme.

cancellers rely on adaptive transversal filters due to their sim-
plicity. In that sense, AEC is a classical and prime example
of the system identification problem, involving considerably
large filter sizes and input signals with challenging statistical
properties (e.g. nonstationary speech). To date, most practical
algorithms often employ rules based on the least mean square
(LMS) scheme for the adjustment of the filter coefficients for
the sake of computational simplicity and numerical robustness.
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However, there is usually the well-justifieda priori assumption
that RIR exhibits an exponential decay curve and, therefore,
the energy reflected by the adaptive model coefficients will de-
crease in the same way.

In (Makino et al. 1993), this observation has been used in or-
der to weight the filter tap updates according to their position
of the coefficient in the filter, thereby increasing the speed
of convergence over a normalized LMS (NLMS) algorithm.
However, the effective application of this approach requires
some knowledge regarding the bulk delay and weight-decay
constant, which is usually not available. In (Duttweiler 2000),
this modification has been generalized to the notion of ’propor-
tionate’ updating and has mainly been motivated by seeking
to alleviate the drawback of the uniform LMS-type updates
in presence of quite sparse impulse responses. This scheme
does not assume othera priori knowledge about the echo chan-
nel but its sparsity. The extended version in (Benesty and Gay
2002), named improved PNLMS (IPNLMS), has proposed a
control parameter that can be used to switch between the pure
NLMS and the weighted updates such that the performance
of the adaptation is more robust to scenarios with dispersive
response (i.e. PNLMS). Both PNLMS and IPNLMS offer ad-
ditional advantages with respect to the NLMS method, mainly
in sparse enviroments, requiring, however, an increased com-
putational cost. In addition, PNLMS can obtain a worse perfor-
mance with respect to that of a single NLMS adaptive filter, if
the RIR of the echo cancellation scenario is not so sparse, but
rather dispersive.

Furthermore, adaptive combinations of adaptive filters (Arenas-
García et al. 2006) have recently gained increased popularity as
a flexible and versatile approach to overcome the various com-
promises due to the specific properties of each adaptation algo-
rithm. In the context of echo cancellation, these schemes have
been proposed for, e.g., improving the trade-off between con-
vergence speed and residual error (Arenas-García et al. 2006,
Azpicueta-Ruiz et al. 2008), reducing the dependency on un-
known and varying ratios of linear and nonlinear distortions
(Azpicueta-Ruiz et al., 2010) and for estimating the optimum
model length of the adaptive filter (Zeller et al. 2009).

This paper proposes a novel AEC approach, that mainly fo-
cuses on improving the performance for unknown and/or time-
varying signal-to-noise ratios (SNR), especially for low SNRs.
Like the methods in (Makino et al. 1993) and (Benesty and Gay
2002), the proposed combination scheme exploits the fact that
the coefficient energy of a typical echo path is not uniformly
distributed, but decays exponentially. Under this condition, an
NLMS filter will introduce significant estimation errors for less
significant filter taps due to gradient noise. Since the number
of affected coefficients strongly depends on the present SNR
and hence the implied noise floor, the cancellation performance
may degrade considerably for low SNRs.

Splitting the adaptive impulse response into a number of non-
overlapping blocks, the impact of quite low SNR on the co-
efficient noise can be relieved, since each block is combined
with a virtual ’zero-block’, having fixed zero coefficients. The
combinations between each block with actual, non-zero coeffi-
cients and the ’zero-block’ is implemented by a convex mixing,
where the control parameter is updated according to a stochas-
tic gradient descent method so as to minimize the global error
of the AEC. In practice, this results in a possibly biased esti-
mation of some of the filter coefficients. However, it is well-
known that such estimates can yield advantages in terms of
mean-square error, especially for low SNRs (Kay and Eldar
2008). In addition, for moderate block numbers, the increment
in computational cost over a conventional canceller is negligi-
ble.

In particular, we will study the performance of the new ap-
proach based on standard NLMS-type filters and the IPNLMS
from (Benesty and Gay 2002). The robustness and benefits of
the proposed approach are thereby experimentally verified for
stationary noise and nonstationary speech inputs.

The rest of this contribution is structured as follows: the second
section presents a detailed explanation of the proposed echo
canceller. The behavior of our scheme is shown in the third
section for different input signals by means of several expe-
riments, where the influence of different parameters has been
studied. Finally, the conclusions of our work and suggested
further research are provided in the last section.

PROPOSED ECHO CANCELLER

Echo cancellation constitutes a particular case of plant identi-
fication problems, with the objective to estimate an acoustic
echo path in order to eliminate the replicas of the input sig-
nal u(k) present in the microphone signald(k), that can be ex-
pressed adopting vector notation as

d(k) = hT (k)u(k)+n(k) = y(k)+n(k). (1)

Column vectorh(k) represents the impulse response of the
echo path,u(k) is the input vector containing the lastN input
signal samples, i.e.,u(k) = [u(k),u(k−1), ...,u(k−N + 1)]T ,
whereN denotes the length of the planth(k), andn(k) is the un-
correlated noise that is also received by the microphone. Note
that double-talk is not considered in (1).

Different kinds of adaptive filters are normally employed to
modelh(k) as part of an AEC, among others, the NLMS and
IPNLMS adaptive filters. The objective of our proposal is to
enhance the behavior of acoustic echo cancellers based on sin-
gle adaptive filters under low SNR conditions, while still main-
taining a good performance if the actual SNR present in the
cancellation scenario is high.

The proposed scheme is based on a block-wise decomposi-
tion of an adaptive filter with lengthN (Arenas-García and
Figueiras-Vidal 2009), whose impulse response readswT (k) =
[w1(k),w2(k), ...,wN(k)]. This filter produces an output̂y(k),
that can be expressed as the superposition ofM partial block
outputsŷm(k), i.e.,

ŷ(k) = wT (k)u(k) =
M

∑
m=1

wT
m(k)um(k) =

M

∑
m=1

ŷm(k). (2)

Therefore, whole filterw(k) is split into M non-overlapping
blocks with lengthP = N/M, i.e.,

wm(k) = [w1+(m−1)P(k),w2+(m−1)P(k), ...,wmP(k)]T , (3)

wherem = 1, ...,M denotes a specific block. Similarly,um(k)
represents a column vector including theP input samples of
signalu(k) necessary to obtain̂ym(k), i.e.,

um(k)= [u(k−(m−1)P),u(k−1−(m−1)P), ...,u(k−mP+1)]T .
(4)

The proposed scheme can be implemented employing different
kinds of adaptive filtersw(k). Normally, the adaptation of filter
coefficients depends on error signale(k) = d(k)− ŷ(k), and we
can assume thatw(k + 1) = f[w(k),u(k),e(k)], wheref refers
to the function which characterizes each particular adaptation
algorithm.

The performance of the adaptive filter can be improved adap-
tively weighting partial outputŝym(k), with m = 1, ...,M, which
could bias the estimation of the unknown filter. Thus, output of
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the proposed schemêyc(k) is constructed by means of convex
combinations of each block output̂ym(k) with the output of
a virtual zeros-block, whose coefficients are always equal to
zero, and hence, do not need to be updated. Therefore,

ŷc(k) =
M

∑
m=1

{ŷm(k)λm(k)+ [1−λm(k)] ·0} =
M

∑
m=1

ŷm(k)λm(k)

(5)
whereλm(k) corresponds to them-th mixing parameter. The
multiplication included in (5) results in a biased estimation
of the coefficients of unknown filterh(k) whenλm(k) 6= 1. In
(Lázaro-Gredilla et al., 2010) it has been shown that these bi-
ased estimates can in fact provide reductions in terms of mean-
square error (MSE), mainly for low SNRs.

The aforementioned interpretation of multiplications in (5) as
combinations with zero-blocks permits to employ well-known
update schemes for adaptively learningλm(k) with m = 1, ...,M.
All the mixing parameters are adapted in order to minimize
power of the estimation errorec(k) = d(k)− ŷc(k), by means
of the normalized stochastic gradient algorithm published in
(Azpicueta-Ruiz et al. 2008). In order to keep mixing parame-
ters in range [0,1], we define

λm(k) = sgm[am(k)] =
1

1+exp[−am(k)]
, (6)

and, instead of directly updatingλm(k), we adjustam(k) as
follows

am(k +1) = am(k)−
µa

pm(k)
∂e2

c(k)
∂am(k)

= a(k)−
µa

pm(k)
ec(k)ŷm(k)

∂λm(k)
∂am(k)

,

(7)

whereµa is a step-size that manages the adaptation ofam(k),
andpm(k) = β pm(k−1)+(1−β )ŷ2

m(k), with β close to 1, is
a low-pass filtered estimation of the power ofŷm(k).

Although other adaptation schemes can be used to adjustλm(k)
(Candido et al. 2008), the sigmoïdal activation in (6) reduces
the gradient noise in (7) whenλm(k) ≈ 1 or λm(k) ≈ 0. Note
that this is especially important in order not to degrade algo-
rithm’s performance, if no bias is necessary, i.e.,λm(k) ≈ 1.
See (Lázaro-Gredilla et al., 2010) for more details.

In order to avoid algorithm paralysis in (7), the range of values
of a(n) is tipically restricted to [-4,4]. However, this prevents
λm(k) from reaching the limit values of the interest range, i.e.,
0 and 1. This drawback can be solved by slightly modifying
(6),

λm(k) =
sgm[am(k)]−sgm[−4]

sgm[4]−sgm[−4]
(8)

which allowsλm(k) to reach all the values inside [0,1].

Fig. 2 represents a block diagram of the proposed echo can-
celler, which can be seen as consisting of two different parts:
An adaptive filter whose coefficients are updated to minimize
its error signal,e(k); and the structure necessary to obtain out-
puts of each block̂ym(k) and to adapt mixing parametersλm(k)
in order to minimize the power of cancellation error,ec(k). In
addition, it should be noted that our algorithm can be applied
employing different kinds of adaptation algorithms.

With this scheme, it is possible to consider the exponential de-
cay of the energy of echo pathh(k), obtaining an echo estimate
ŷc(k) that enhances that of an standard adaptive filter, mainly
for low SNRs. The performance of the proposed scheme can
be explained in the following way:

Figure 2: Scheme of the proposed canceller. For the sake of
clarity, each block of the adaptive filterwm(k) has been rep-
resented as a complete adaptive filter where the shadowed re-
gions correspond with non-active coefficients.

• When the SNR is high, estimation̂y(k) is normally not
affected by gradient noise produced by the adaptation
of whole adaptive filterw(k). In this case,λm ≈ 1 for
m = 1, ...,M, and the overall scheme behaves as adap-
tive filter w(k), sinceŷc(k) ≈ ŷ(k).

• If the SNR is low, estimation̂y(k) is degraded due to
the gradient noise associated with the adaptation of fil-
ter w(k). However, because of the exponential decay
of the energy of a typical RIR, the number of affected
coefficients strongly depends on both the SNR and the
specific shape ofh(k). This suggests that further advan-
tages could be obtained if we split the adaptive filter
in different blocks, considering different regions of the
impulse response. Thus, the estimation of each block
can be biased by means of a mixing parameter, yielding
λm(k)ŷm(k), improving the identification of the coeffi-
cients in the blocks that are affected by gradient noise,
in case ofλm(k) < 1. The multiplication byλm(k) re-
duces the MSE of the estimation, giving rise to an en-
hanced overall cancellation performance.

Due to the time-variant adaptation of the mixing parameters
(7), this echo canceller is able to achieve a suitable perfor-
mance with respect to unknown or possibly time-varying SNR
and/orh(k), without requiring anya priori knowledge about
the cancellation scenario.

Obviously, the proposed scheme involves an increment in terms
of computational cost with respect to the operation of a sin-
gle adaptive filter. This increase mainly depends on the adap-
tation of mixing parameters according to (7), and therefore, it
depends on number of blocksM. However, for moderate num-
ber of blocks, the computational cost associated with the adap-
tation ofλm(k) with m = 1, ...,M can be considered negligible
in comparison to the cost required by the update of the adap-
tive filter. In this case, the computational cost of the proposed
scheme corresponds, approximately, to that of a standard adap-
tive filter, w(n).

EXPERIMENTS

In this section, we present several experiments in order to show
the advantages of the proposed scheme with respect to a can-
celler based on a standard adaptive filterw(k). Simulations
have been carried out considering an unknown echo pathh(k)
truncated toN = 512 taps, whose impulse response and energy
distribution are depicted in Fig.3 using a sampling rate of 8
kHz. We will show results using two kinds of input signals:
White noise with unit variance and real speech. Uncorrelated
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Figure 3: (a) Echo path employed in the experiments. (b) A
smoothed representation of the energy distribution ofh(k).

noise,n(k), is added to the microphone signal, such that diffe-
rent SNR settings can be controlled.

Although our scheme can be implemented employing different
kinds of adaptive algorithms, in this section we consider an
adaptive IPNLMS filter whose length matches that ofh(k). In
this way, we will refer in the following to the proposed scheme
asblockwise biased IPNLMS (BB-IPNLMS).

Each coefficient of the IPNLMS filter is adapted according to:

wn(k +1) = wn(k)+
µgn(k)

δ +∑R
r=1 gr(k)x2

r (k)
e(k)xn(k) (9)

whereµ is the step size of the filter andR represents its length.
In all experiments,µ has been set to 1. In (9), factorsgn(k)
define the adaptation gain for each weight, calculated by:

gn(k) = (1−κ)
1

2N
+(1+κ)

|wn(k)|

ε +2∑R
r=1 |wr(k)|

. (10)

Althoughδ has been set to 0 in (9), ε in (10) is a small positive
constant, that is equal to 10−6 for all of the simulations.

The IPNLMS filter has become a very popular solution during
the last years; however, its behavior strongly depends on pa-
rameterκ. If κ =−1, (9) simply reduces to the adaptation rule
of an NLMS filter, whileκ = 1 turns the IPNLMS filter into
a pure PNLMS. Intermediate values ofκ give rise to mixed
behaviors.

The decomposition into blocks (as outlined in previous sec-
tion) establishes a compromise involving cancellation perfor-
mance and additional complexity. Therefore, one of the main
goals of this section is to present some insight about how to
choose the appropriate number of blocks that allows a suitable
echo cancellation, with a moderate increment in the number
of ope-rations. Independently of the number of blocksM, we
have chosenµa = 0.1 for the adaptation of mixing parameters
λm(k).

White noise as input signal

Using white stationary noise as the input signal, we will first
corroborate the advantages of our scheme for different values
of SNR,κ, and number of blocksM. We will use the excess
mean-square-error EMSEc(k) = E{[ec(k)− n(k)]2} as figure
of merit, averaged over 100 independent realizations. In addi-
tion, we will employ EMSE(k) = E{[e(k)−n(k)]2} as a refer-
ence measurement corresponding to a standard filter with the
same settings as the adaptive filter employed in our scheme.
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Figure 4: Echo cancellation gain reached by the BB-IPNLMS
canceller with respect to a canceller based on a stan-
dard IPNLMS filter, in terms of∆EMSE(∞) = EMSE(∞)−
EMSEc(∞). (a)κ = −1 (NLMS). (b)κ = −0.5.

Choosing number of blocks M

The steady-state performance of the BB-IPNLMS scheme has
been studied for different numbers of blocks. To that end, Fig.4
shows the gain of the proposed scheme with respect to a basic
canceller based on a standard IPNLMS filter, i.e.,∆EMSE(∞)=
EMSE(∞)−EMSEc(∞), calculated over 25000 iterations after
convergence of the algorithms. Moreover, we present results
for two different values ofκ , namelyκ = −0,5 (lower plot)
andκ = −1, that corresponds to an NLMS filter (upper plot).

According to the figure, it can be seen that our scheme offers
important gains for low SNRs. For instance, for SNR = 5 dB,
the BB-IPNLMS filter reaches a gain of around 6.5 dB and 9
dB, for M = 16 andκ = −0.5 andκ = −1, respectively. It is
important to remark that, although the gain offered when SNR
is high is negligible, no degradation of the behavior ofw(k)
is observed in this situation. For the sake of completeness, we
have also included results for SNR < 0 dB , showing an increas-
ing gain as compared to the standard IPNLMS. Negative SNRs
can often be found, e.g., in in-car communication systems.

Regarding the selection of number of blocksM, similar conclu-
sions can be drawn from both panels of Fig4: The expressive
capability of the scheme grows with the number of blocks, giv-
ing rise to incremental gains with respect to the non-divided
case, forM = 1. However, if the length of a block is too small
(seeM = 256 corresponding toP = 2), this improvement is re-
duced due to noticeable gradient noise associated to the adap-
tation ofλm(k) with m = 1, ...,M. Furthermore, choosing very
small block lengths would also yield important increment in
the computational cost. For these reasons,M = 16 seems to be
a reasonable selection since it offers interesting gains with neg-
ligible increment in terms of computational burden. Therefore,
M = 16 will be employed for the rest of experiments.
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Figure 5: Echo cancellation gain reached by the BB-IPNLMS
canceller (M = 16 blocks) with respect to a canceller based on
a standard IPNLMS, in terms of∆EMSE(∞) = EMSE(∞)−
EMSEc(∞).
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Figure 6: Steady-state value of the 16 mixing parameters, con-
sideringκ = −1 and 0.5; and for SNR = 35, 15 and 5 dB.

Influence of κ

Parameterκ establishes a compromise in the operation of the
IPNLMS filter, making the adaptive filter behave closer to an
NLMS filter (κ = −1) or to a PNLMS filter (κ = 1). In order
to study this tradeoff, Fig.5 shows the steady-state gain ob-
tained for a canceller based on the BB-IPNLMS filter in terms
of ∆EMSE(∞), calculated exactly as in the previous subsec-
tion, as a function ofκ and for different SNRs.

As it can be seen from Fig.5, the proposed scheme improves
the performance of the standard IPNLMS for all values ofκ.
However, theamount of the improvement depends on the se-
lection ofκ :

• If κ →−1 (close to an NLMS filter), the BB-IPNLMS
improves the performance of the non-divided filterw(k)
noticeably. In this case, biasing the output of each block
is convenient, especially for low SNRs, reducing the
EMSE (see, for instance,κ = −0.5).

• However, for largeκ , the adaptation speed for each tap
of the IPNLMS filterw(k) is already independently ad-
justed to minimize the error, as can be seen in (9). In
this case, splitting the whole filter offers less important
gains (see, for instance,κ = 0.75).

In order to get a better understanding of the proposed scheme,
Fig. 6 shows the steady-state value of the 16 mixing parame-
ters consideringκ = −1 andκ = 0.5, and for SNR = 35, 15
and 5 dB. As it can be seen, if the SNR is high, e.g. SNR = 35
dB, mixing parameters converge to values close to 1 since bias-
ing is completely unnecessary and the whole scheme behaves
as the adaptive IPNLMS (withκ = −1 or κ = 0.5). However,
when the SNR decreases, the proposed scheme obtains an ad-
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Figure 7: Cancellation performance of the proposed scheme
(BB-IPNLMS) in terms of EMSE(k). (a) κ = −1 (NLMS fil-
ter). (b)κ = 0

ditional gain biasing output of some blocksym(k). The specific
value that eachλm(k) reaches directly depends on the energy
distribution of unknown systemh(k), that is represented in Fig.
3 (b), due to the constant power of the noise floor.

By close inspection, another influence ofκ can also be found:
If κ grows, allowing a more independent adaptation of each
tap in them-th block,λm(∞) increases as a consequence of a
smaller advantage from a biasedŷm(k) .

It is well known that IPNLMS filters with intermediate values
of κ clearly outperform NLMS filters, especially with sparse
unknown plants. However, it should be considered that, de-
pending on the degree of sparseness which isa priori unknown,
values ofκ close to 1 may imply a degraded performance with
respect to that of the NLMS filter. For these reasons,κ =−0.5
is a typical setting of IPNLMS (seeBenesty and Gay 2002),
and it is also a good selection for our proposed algorithm. Fur-
thermore, using NLMS filters can also be an interesting choice,
to benefit from the much smaller computational complexity of
NLMS with respect to IPNLMS adaptive filter.

The convergence properties of the BB-IPNLMS canceller have
also been studied for different values ofκ , averaging the results
of 1000 independent runs of the algorithm. Fig.7 shows the
EMSE evolution in a scenario where the SNR abruptly varies
at t = 5 seconds from an initial value of 5 dB to 30 dB, in
order to simulate an environment with ana priori unknown
and time-varying SNR. In addition, in order to evaluate the
reconvergence ability of the proposed scheme, the unknown
echo pathh(k) suddenly changes att = 2.5 andt = 7.5 s.

As it can be seen in Fig.7, the algorithm adapts to time-varying
SNRs without requiring anya priori information. The experi-
ment shows that our scheme obtains a better performance than
a canceller based on a standard adaptive filter with identical
κ , especially for low SNRs, not only under steady-state condi-
tions but also when it reconverges (see panel (a) whenκ =−1,
i.e., NLMS filter).
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Speech as input signal

We have also studied the performance of our proposal with re-
spect to a canceller based on a standard IPNLMS filter using
13 seconds of real male speech as input signal. In this case the
Echo Return Loss Enhancement (ERLE), defined as

ERLEc(k) := 10log10
E{[d(k)−n(k)]2}

E{[ec(k)−n(k)]2}
, (11)

is employed as figure of merit.

Fig. 8 shows the behavior of the algorithm for two different
configurations of the proposed canceller using an IPNLMS fil-
ter withκ =−0.5 and an NLMS filter respectively. As we have
explained before, for low SNRs the proposed canceller obtains
better results, i.e., a higher ERLE(k), than a canceller based on
a standard IPNLMS filter, see respectively panel (d) and (e).
Furthermore, there is no degradation in the algorithm perfor-
mance for high SNR, as it can be seen from both panel (b) and
(c).

Conclusions and future work

In this paper we have presented a novel acoustic echo canceller
especially convenient for low SNRs scenarios. Our scheme is
based on a decomposition of an adaptive filter (for instance
NLMS or IPNLMS) into non-overlapping blocks, whose par-
tial outputs are adaptively combined with avirtual block of
zeros. Following this approach, each output is adaptively bi-
ased reducing the residual echo when compared to the error
that would be obtained by a canceller based on the same non-
divided adaptive filter. Experimental results show that impor-
tant enhancements can be reached with a moderate number
of blocks, and, hence, with a negligible increment in terms of
computational cost.

In contrast to other schemes, noa priori knowledge is neces-
sary for the correct performance of the proposed canceller, and,
furthermore, no degradation is introduced with high SNRs. In
addition, the scheme holds for different kinds of adaptive fil-
ters, although using an NLMS or IPNLMS with smallκ is a
good option regarding performance and reliability.

Future work includes the extension of the block-wise decom-
position to nonlinear filters, and the evaluation of the proposed
scheme under impulse noise.

ACKNOWLEDGEMENT

This work has been partly supported by Spain Government
under grant TEC2008-02473/TEC, and by the Deutsche For-
schungsgemeinschaft (DFG) under contract number KE 890/5-
1.

The authors thank Dr. J. Benesty for kindly supplying the real
impulse response.

REFERENCES

J. Arenas-García and A. R. Figueiras-Vidal. Adaptive combi-
nation of proportionate filters for sparse echo cancellation.
IEEE Trans. on Speech and Audio Processing, 17(6):1087–
1098, August 2009.

J. Arenas-García, A. R. Figueiras-Vidal, and A. H. Sayed.
Mean square performance of a convex combination of two
adaptive filters.IEEE Trans. on Signal Processing, 54(3):
1078–1090, March 2006.

L. A. Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal,
J. Arenas-García, and W. Kellermann. Adaptive com-
bination of volterra kernels and its application to
nonlinear acoustic echo cancellation. IEEE Trans.

on Speech and Audio Processing, in press. Available in
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
5428855&isnumber=4358086.

L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and J. Arenas-
García. A normalized adaptation scheme for the con-
vex combination of two adaptive filters. InProc. IEEE
Intl. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), pages 3301–3304, Las Vegas, April 2008.

J. Benesty and S. L. Gay. An improved PNLMS algorithm.
In Proc. IEEE Intl. Conf. on Acoustics, Speech, and Sig-
nal Processing (ICASSP), pages 1881–1884, Orlando, May
2002.

R. Candido, M.T.M. Silva, and V.H. Nascimento. Affine com-
bination of adaptive filters. InProc. 42nd Asilomar Conf.
on Signal, Systems and Computers, pages 236–240, Pacific
Grove, October 2008.

D. L. Duttweiler. Proportionate normalized least mean square
adaptation in echo cancelers.IEEE Trans. on Speech and
Audio Processing, 8(5):508–518, September 2000.

E. Hänsler and G. Schmidt.Acoustic Echo and Noise Control:
A Practical Approach. Wiley, Hoboken, June 2004.

S. Kay and Y. C. Eldar. Rethinking biased estimation.IEEE
Signal Processing Magazine, 25:133–136, 2008.

M. Lázaro-Gredilla, L. A. Azpicueta-Ruiz, A. R.
Figueiras-Vidal, and J. Arenas-García. Adap-
tive biasing the weights of adaptive filters. IEEE
Trans. on Signal Processing, in press. Available in
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
5443561&isnumber=4359509.

S. Makino, Y. Kaneda, and N. Koizumi. Exponentially
weighted step-size NLMS adaptive filter based on the
statistics of a room impulse response.IEEE Trans.
on Speech and Audio Processing, 1(1):101–108, January
1993.

M. Zeller, L. A. Azpicueta-Ruiz, and W. Kellermann. Adap-
tive FIR filters with automatic length optimization by mon-
itoring a normalized combination scheme. InProc. IEEE
Workshop on Applications of Signal Processing to Au-
dio and Acoustics (WASPAA), pages 149–152, New Paltz
(NY), October 2009.

6 ICA 2010



Proceedings of 20th International Congress on Acoustics, ICA 2010 23–27 August 2010, Sydney, Australia

0 2 4 6 8 10 12

−0.5

0

0.5

Time, [s]

x(
n)

(a)

0 2 4 6 8 10 12
−10

0

10

20

30

E
R

LE
, [

dB
]

Time, [s]

 

 

Proposed BB−IPNLMS Standard IPNLMS

(b)

0 2 4 6 8 10 12
−10

0

10

20

30

E
R

LE
, [

dB
]

Time, [s]

 

 

Proposed BB−IPNLMS Standard IPNLMS

(c)

0 2 4 6 8 10 12

−30

−20

−10

0

10

20

E
R

LE
, [

dB
]

Time, [s]

 

 

Proposed BB−IPNLMS Standard IPNLMS

(d)

0 2 4 6 8 10 12

−30

−20

−10

0

10

20

E
R

LE
, [

dB
]

Time, [s]

 

 

Proposed BB−IPNLMS Standard IPNLMS

(e)

Figure 8: Performance of the proposed scheme (BB-IPNLMS)
when using speech as input signal. (a) input signal. (b) ERLEs
of a standard IPNLMS filter withκ = −1 (NLMS) and of the
BB-IPNLMS canceller with same valueκ when SNR = 35 dB.
(c) Same than (a) butκ = −0.5. (d) Same than (b) but SNR =
5 dB. (e) Same than (c) but SNR = 5 dB.
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