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ABSTRACT 

The finite-difference time-domain method considering longitudinal and shear waves and two types of damping terms 
has been proposed as a prediction method for structure-borne sound. In the method, both solids and fluids are as-
sumed to be governed by a unique set of motion equations and viscoelastic constitutive equations using averaged ma-
terial parameters. Herein the formulation of the method for inhomogeneous anisotropic media is presented and some 
numerical examples are shown. The comparison between predicted and measured data of floor impact noise in a two-
story concrete building is first introduced from the viewpoints of energy decay and frequency characteristics. Next, to 
investigate the accuracy of the prediction method, the numerical results for a simple vibroacoustic system of a circu-
lar plate clamped in a duct are compared with analytical ones obtained by the thin-plate theory. In the comparison, 
discrepancies in eigenfrequency can be observed because the considered plate is rather thick. However the predicted 
eigenfrequencies in vacuo well correspond with those derived from the thick-plate theory. Last, propagation of waves 
in a wooden block and the radiated sound are calculated and the numerical results are compared with the measured 
ones. Although the material parameters need to be identified by use of the measured data, the calculated results can 
be in good agreement with the measured ones. 

INTRODUCTION 

The finite-difference time-domain (FDTD) method was 
originally developed in the field of electromagnetics [1], and 
it has been investigated for a long time [2-4]. Recently, this 
method has been widely studied in various acoustical fields, 
including ultrasonics [5], underwater sound [6], etc.. In archi-
tectural acoustics, this method has been applied to hall acous-
tics [7-9] and traffic noise problems [10], and is currently 
attracting a great deal of attention as a prediction method and 
a visualization tool for sound fields. As for vibroacoustic 
problems, the insulation performance of double-leaf windows 
has been investigated using thin plate theory with the acous-
tical FDTD method [11]. 

The authors investigated the possibility of employing the 
vibroacoustic FDTD method, which considers longitudinal 
and shear waves as well as two type of damping, to predict 
the architectural structure-borne sound [12]. In the method, 
both solids and fluids are assumed to be governed by a 
unique set of motion equations and viscoelastic constitutive 
equations using averaged material parameters. Consequently, 
the vibroacoustic problems can be reduced to inhomogeneous 
problems in the method. However, the formulation is limited 
to isotropic media. Herein, as a further study of the method, 
the formulation for inhomogeneous anisotropic media is pre-
sented and some numerical examples are also shown. Al-
though there have been some studies on the finite-difference 
method for anisotropic media [13, 14], damping terms have 
not been considered. 

First, the comparisons between predicted and measured data 
of floor impact noise in a two-story concrete building are 
introduced from the viewpoints of energy decay and fre-
quency characteristics [12]. Next, considering a simple vi-
broacoustic system of a circular plate clamped in a duct, the 
numerical results obtained by the FDTD method are com-
pared with analytical ones derived from the thin-plate theory 
to investigate the accuracy of the prediction method. Last, 
propagation of waves in a wooden block and the radiated 
sound are calculated and the numerical results are compared 
with measured ones. 

FORMULATION 

Basic equations 

Considering the condition of small deformation, adiabatic 
transition, and athermic media, a unique set of motion equa-
tions and viscoelastic constitutive equations with two types of 
damping terms is expressed in tensor notation as 

j

ij
i

i

a
T

v
t
v

∂
∂

=+
∂
∂ ζρ , (1) 

klijklklijklij ecT ξε += , (2) 

where ρ is the density, v is the velocity vector, t is time, ζ is a 
constant to describe the damping force proportional only to 
the velocity and is also used to model the wave propagation 
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in porous materials [15], T is the stress tensor, a(=[x, y, z]) is 
the position vector, c is the stiffness tensor, ε is the strain 
tensor, ξ is the viscosity tensor, which describes the damping 
force proportional to the second-order space derivative of the 
velocity, and e(=∂ε/∂t) is the strain velocity tensor. It should 
be noted that a combination of two types of damping terms ζ 
and ξ yields similar characteristics to the Rayleigh damping. 
Considering the reciprocity of stiffness and viscosity, the 
stiffness tensor c and the viscosity tensor ξ can be abbrevi-
ated to the matrix forms which respectively have 21 inde-
pendent constants. In addition, if orthotropic media are con-
sidered, the constants can be reduced to 9 independent ones. 
In this case, the relationship between c and Young’s moduli 
E, shear moduli G, and Poisson’s ratios υ can be given by 
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where c is the stiffness matrix and s is the compliance matrix. 
For a fluid, the bulk modulus κ and zero should be substituted 
for c11=c22=c33=c12=c13=c23 and c44=c55=c66, respectively. In 
this case, Eq. (2) means the constitutive equation of a Newto-
nian fluid. The linearized Navier-Stokes equation, where a 
convection term and a volumetric force are neglected, can be 
derived by substituting Eq. (2) into Eq. (1).  The sound pres-
sure can be obtained by calculating u∇−κ , where u means 
the displacement vector. In this study, perfectly matched 
layers (PMLs) [16, 17] are employed as absorption layers 
located outside the target region. The PML medium is a non-
physical material, which has the same characteristic imped-
ance as the adjacent medium and also attenuates wave propa-
gation. Therefore, waves that propagate in the PML medium 
do not generally satisfy the classical wave equation. However, 
existing materials can be expressed in the same forms as the 
PML medium by selecting the appropriate constants. Accord-
ingly, Eqs. (1) and (2) can be rewritten as 
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Figure 1. Three-dimensional staggered grid system. 

where vx=vx,x+vx,y+vx,z=v1 is the x-directional velocity, 
vy=vy,x+vy,y+vy,z=v2 is the y-directional velocity, 
vz=vz,x+vz,y+vz,z=v3 is the z-directional velocity, 
σxx=σxx,x+σxx,y+σxx,z=T11 is the x-directional normal stress, 
σyy=σyy,x+σyy,y+σyy,z=T22 is the y-directional normal stress, 
σzz=σzz,x+σzz,y+σzz,z=T33 is the z-directional normal stress, 
τxy=τxy,x+τxy,y=T12=T21 is the shear stress defined in the xy-
plane, τyz=τyz,y+τyz,z=T23=T32 is the shear stress defined in the 
yz-plane, and τzx=τzx,z+τzx,x=T31=T13 is the shear stress defined 
in the zx-plane. ζd,x=ζd,y=ζd,z(=ζd) (d=x, y, z) in parts other than 
the PMLs and ζx,d=ζy,d=ζz,d(=ζp

d) in the PMLs. ζ ’d are con-
stants used for impedance matching in the PMLs. In parts 
other than the PMLs, the constants must be zero. 

Averaging of material parameters 

Reference points for the stress and velocity are arranged on 
the staggered-grid system shown in Fig. 1. Δx, Δy, and Δz are 
the spatial intervals between the reference points of normal 
stress for the x, y, and z directions and their point locations 
are expressed by i, j, and k, respectively. Although the spatial 
intervals between the reference points of shear stress and 
velocity are identical to those of normal stress, their point 
locations should be properly shifted according to the stag-
gered-grid system. Hence, for example, the point locations of 
xy-shear stress are expressed by i+0.5, j+0.5, and k, and those 
of x-velocity are expressed by i+0.5, j, and k. Δt is the time 
interval for the calculation, and the elapsed-time counter is 
given by superscript n for normal and shear stresses and 
n+0.5 for velocities. 

The target region of a vibroacoustic problem can be consid-
ered to be filled with an inhomogeneous anisotropic material 
which is governed by Eqs. (1) and (2). Herein, all material 
parameters are defined at the reference points of normal 
stress and the mean values are used at the reference points of 
velocity and shear stress [18-22]. At the reference points of 
velocity, arithmetic averages are employed, for example: 
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At the reference points of shear stress, harmonic averages are 
employed, for example: 
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The damping constants are also given by their arithmetic 
averages at velocity points and by their harmonic averages at 
shear-stress points. 

Boundary conditions 

Multiple boundary conditions should be considered: a fixed 
boundary, a free boundary, and an absorption boundary. As 
mentioned in the preceding section, the PMLs are employed 
as the absorption layers in this study. Hence, the following is 
devoted to a fixed boundary and a free boundary. Herein both 
the fixed and free boundaries are defined at the plane, which 
includes the reference points of velocity and shear stress. 

On a fixed boundary, velocities in all directions must be zero. 
This condition can be directly satisfied at the reference points 
of velocity located on the boundary. However, because the 
reference points of the parallel-directional velocity to the 
boundary surface are not defined just on the boundary, virtual 
reference points are assumed outside the boundary, and their 
values are determined so that the mean velocities on the 
boundary are zero. For example under the condition where 
the plane i+0.5=I+0.5 is assumed to be a fixed boundary, 
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On a free boundary, the normal stress to the boundary surface 
and shear stresses defined in normal planes to the boundary 
surface should be zero. Similar to the case of a fixed bound-
ary, the reference points of normal stress, which should be 
zero, are not arranged on the boundary. Therefore, virtual 
reference points are assumed outside the boundary, and their 
values are determined so that the mean normal stresses just 
on the boundary are zero. For example under the condition 
where the plane i+0.5=I+0.5 is assumed to be a free boundary,  
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Discretization 

For example, Eq. (6) is discretized with a central difference 
as: 
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Eq. (14) is discretized with a backward difference for time 
derivation of the viscosity term and central difference for 
other terms as: 
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Transforming these discretized equations, updating formulas 
for vx,x

n+0.5(i+0.5, j, k) and σxx,x
n+1(i, j, k) can be obtained. 

Updating formulas for other variables can be obtained by a 
similar procedure. 

Stability condition 

This section is devoted to the stability conditions in the case 
of discretization as described in the preceding section. An 
arbitrary wave can be expressed as a superposition of plane 
waves. Therefore, the stability conditions for a plane wave of 
an arbitrary propagation angle are derived here [3]. To con-
sider the plane wave, velocities and stresses are, for example, 
expressed as 
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where i is the imaginary unit, kx, ky, and kz are x, y, and z-
directional wave number, respectively. Substituting Eqs. 
(35)-(37), etc. into Eqs. (6)-(28) with ζ ’d=0 yields a homoge-
neous state-difference equation expressed by 
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where the asterisk denotes the transpose, α=11, 22, 33, 12, 13, 
23, 44, 55, 66, and d=x, y, z. To obtain stable solutions from 
Eq. (38), all eigenvalues must be one or less for an arbitrary 
propagation angle, i.e., for an arbitrary coupling of kx, ky, and 
kz. Therefore, assigning sx, sy, and sz to their maximum values 
of 2/Δx, 2/Δy, and 2/Δz respectively, should enable Δt to be 
determined so that all eigenvalues of the matrix A are less 
than or equal to one. 

Initial condition and excitation 

In this paper, all initial values of velocities and stresses are 
set to zero. An input excitation is assumed to be a point force 
F(t). In this case, F(nΔt)/ΔS should be added to the normal 
stress in the excitation direction, which belongs to the spatial 
difference term in the updating formula of velocity. ΔS is the 
unit area normal to the excitation direction, for example, ΔS 
=ΔyΔz for x-directional excitation. 

NUMERICAL EXAMPLES 

Floor impact noise 

In this section, the comparisons between the predicted and 
measured data of floor impact noise are introduced [12]. Fig-
ure 2 shows the cross section and the plan of the two-story 
concrete building to be calculated. Two excitation points 
(Exc. 1 and 2), which are denoted in the figure, are consid-
ered. Figure 3 shows a picture of the experiment. In the cal-
culations, the excitation waves are assumed to be Gaussian  
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Figure 2. Section and plan of the two-story concrete building. 
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Figure 3. Picture of the experiment. 
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Figure 4. Distribution of displacements and sound pressures. 

pulses in which the coefficients are determined so that the 
waveforms are similar to the measured force data of the im-
pulse hummer used in the measurements. In each room, two 
vibration receivers (V. R. 1 and 2) are located at the centre of 
the ceiling, and two sound receivers (S. R. 1 and 2) are at the 
centre. In the measurements, acceleration pickups and micro-
phones are located at these points. Velocities in the normal 
direction are calculated by integrating measured acceleration 
values and sound pressures are measured at a sampling fre-
quency of 44100 Hz. As for the boundary conditions, the 
ground surface is assumed to be a fixed boundary, and in the 
Fig. 2, areas enclosed with broken lines are assumed to be 
PMLs. All the building frames are assumed to be isotropic 
concrete with a density of 2400 kg/m3, Young's modulus of 
2.4 × 1010 N/m2, and Poisson's ratio of 0.2. All rooms as well 
as outdoors are assumed to be filled with air with a density of 
1.205 kg/m3 (=ρ0) and a bulk modulus of 1.422 × 105 N/m2. 
The maximum target frequency in the calculations is set to 
500 Hz. Allowing for this, spatial intervals Δx=Δy=Δz are set 
to 50 mm. Viscosity coefficients for air are set as 
ξ11=ξ22=ξ33=3.6 × 10-5, ξ12=ξ13=ξ23=0, and ξ11=ξ22=ξ33=1.8 × 
10-5 Ns/m2, while those for concrete are assumed to be pro-
portional to the initial stiffness, i.e., ξ=ηc/ω0 where ξ is vis-
cosity matrix, η is loss factor and ω0 is the first-order natural 
angular frequency of the building. The assumed loss factor of 
the concrete is 0.005, and first-order natural angular fre-
quency is set at 2π × 32 rad/s. constants ζd is set as 
ζx=ζy=ζz=2.5 × 104 Ns/m4 for concrete and ζx=ζy=ζz=5 Ns/m4 
for air. Allowing for these assumptions and the stability con-
dition, the time interval is determined to 1 μs. 

Although the predictions and the measurements were per-
formed for two of excitation points, only the comparisons for 
Exc. 2 are shown here because the comparisons for Exc. 1 
have been already presented [12]. Figure 4 shows an example 
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Figure 5. Predicted and measured data at V. R. 1. 
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Figure 6. Predicted and measured data at S. R. 1. 

of the visualized field of displacement and sound pressure at 
section A-A' shown in Fig. 2. Displacements are expressed 
with black arrows at the reference points of the concrete, 
whereas sound pressures at the reference points of air are 
expressed with the colors shown in the color bar. To aid in 
the understanding, the displacements in the figure are multi-
plied by 80000. Figures 5 and 6 show the examples of echo 
diagrams (RMS) at V. R. 1 and S. R. 1, the impedance levels 
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Figure 7. Configuration of a circular plate clamped in a duct. 
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Figure 8. Distribution of displacements and sound pressures. 
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Figure 9. Numerical and analytical results of the impedance. 
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Figure 10. Numerical and analytical results of the impedance. 

at V. R. 1, and the transfer functions by a unit excitation at S. 
R. 1. Although some discrepancies can be seen, the predicted 
results are generally in good agreement with the measured 
ones. 

Radiation from a circular plate clamped in a duct 

In this section, the numerical results of sound radiation from 
a circular plate clamped in a duct are compared with analyti-
cal cal ones, which obtained based on Kirchhoff’s thin-plate 
theory. Figure 7 shows the configuration considered here. 
The circular plate is assumed to be concrete which has same 
material parameters as described in the preceding section 
except for damping parameters: All damping terms are ne-
glected here. The radius is 1500 mm and the thickness is 150 
mm. In the FDTD calculation, the spatial intervals Δx=Δy=Δz 
are set to 30 mm and the time interval is determined to 5 μs. 
The air layers with a depth of 1000 mm at each side of the 
plate are surrounded by PMLs with a depth of 1920 mm. 
Parameters for air are assumed to be same as described in the 
preceding section except for damping ones.  

Figure 8 shows an example of the visualized field of dis-
placement and sound pressure at section including the driving 
point. The displacements in the figure are multiplied by 
40000. Figure 9 shows the numerical and analytical results of 
impedance level at the driving point. In this figure, eigenfre-
quencies in vacuo obtained based on Mindlin’s thick-plate 
theory are also shown. Discrepancies between eigenfrequen-
cies of analytical results of the thin-plate theory and those of 
the thick-plate theory can be seen especially at high frequen-
cies because the plate considered here is rather thick. In addi-
tion, the discrepancies can be caused by the effect of acoustic 
load. The numerical results also indicate the slight differ-
ences in eigenfrequency with the thick-plate theory. There-
fore, to investigate the accuracy of the FDTD method itself, 
the circular plate in vacuo should be calculated. Figure 10 
shows the numerical results of impedance level of the circu-
lar plate with free boundary conditions. In this case, the ei-
genfrequencies predicted by the FDTD method well corre-
spond with those of the thick-plate theory. 

Radiation from a wooden block 

In this section, the numerical and measured data of sound 
radiation from a wooden block, which is considered as an 
anisotropic medium, is investigated. Figure 11 shows the 
configuration considered here and a picture of the experiment 
is shown in Fig. 12. To minimize the effects of support con-
dition, the wooden block was suspended from the ceiling of 
the anechoic room and excited by an impulse hammer. In this 
case, it is sure that the block moves immediately after the 
excitation and, therefore, the condition of small deformation 
is not satisfied at quite low frequencies. Two acceleration 
pickups are located at the excitation-side surface of the block 
(V. R. 1 and 2) and a microphone is located at 300 mm away  
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Figure 11. Schematic of the experimental apparatus. 
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Figure 12. Picture of the experimental apparatus. 
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Figure 13. Distribution of displacements and sound pressures. 

from the centre of the block (S. R.). Velocities in the normal 
direction are calculated by integrating measured acceleration 
values through a high-pass filter with cutoff frequency of 
62.5 Hz and sound pressures are measured at a sampling 
frequency of 44100 Hz. The block is HINOKI cypress with 
dimensions of 280 × 70 × 35 mm. However, commonly-used 
material parameter for HINOKI cypress could not be found 
and there can be also considerable individual variability. 
Hence the material parameters such as Young’s moduli, 
Shear moduli, Poisson’s ratios, and coefficients for damping 
were identified by use of the measured data. The identifica-
tion was started with the commonly-used parameters of Picea 
jezoensis [23] and was performed by trial and error. The 
identified material parameters are as follows: EL=1.43 × 1010 
N/m2, ET=4.5 × 108 N/m2, ER=1.25 × 109 N/m2, GLT=7.0 × 
108 N/m2, GTR=6.2 × 107 N/m2, GRL=8.0 × 108 N/m2, υLT=0.6, 
υTR=0.234, υRT=0.035. The subscripts L, T, and R mean the 
fibrous direction, tangential direction, and radial direction, 
respectively. Viscosity coefficients are assumed to be propor-
tional to the initial stiffness and the assumed loss factor is 
0.05, and natural angular frequency is set at 2π × 2000 rad/s. 
constants ζd is set as ζx=ζy=ζz=1.17 × 105 Ns/m4. Parameters 
for air are assumed to be same as described in the preceding 
section of floor impact noise. Only the density was measured 
instead and the value is 467 kg/m3. Allowing for these condi-
tions and the stability condition, the spatial intervals 
Δx=Δy=Δz are set to 7 mm and the time interval is deter-
mined to 0.16 μs. 

Figure 13 shows an example of the visualized field of dis-
placement and sound pressure at section including the driving 
point. The displacements in the figure are multiplied by 20.  
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Figure 14. Measured and calculated data at V. R. 1. 
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Figure 15. Measured and calculated data at V. R. 2. 
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Figure 16. Measured and calculated data at S. R.. 

Figures 14 and 15 show the calculated and measured results 
of the impedance levels at V. R. 1 and 2. Figure 16 shows the 
calculated and measured results of the transfer functions at S. 
R.. In all of these figures, the slight discrepancies can be seen 
at low frequencies, which would be caused by additional 
masses of the acceleration pickups: While the mass of the 
wooden block is 340 g, that of each pickup is 20 g. Therefore 
the measured data of impedance tends to be higher than the 
calculated data and the measured data of transfer function 
tends to be lower than the calculated data. As seen in Fig. 14, 
although some differences between the antiresonance fre-
quencies can be observed, the calculated resonance frequen-
cies are in good agreement with the measured ones. As for V. 
R. 2, both of the calculated antiresonance and resonance fre-
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quencies do not correspond with the measured ones well. 
This would be due to the assumption of orthotropy and fur-
ther investigations should be needed. In Fig. 16, the measured 
data has some peaks and dips, which can not be seen in the 
calculated data. These peaks and dips would be caused by the 
sound radiation from the moving block. 

CONCLUSION 

The finite-difference time-domain method considering longi-
tudinal and shear waves and two types of damping terms is 
proposed for a prediction of radiated sound from inhomoge-
neous anisotropic media. In the method, both solids and flu-
ids are assumed to be governed by a unique set of motion 
equations and viscoelastic constitutive equations using aver-
aged material parameters. Herein the formulation and some 
numerical examples are presented. From these investigations, 
this method can predict both the vibration of a wide range of 
materials and the radiated sound. Although the method has a 
weakness of its huge computational load, it is expected that 
the method would become helpful for vibroacoustic problems 
by further improvement of computational processing per-
formance. 
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