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ABSTRACT

The status of numerical predictions of the natural emission of sound by bubbles is reviewed. High-amplitude sound is
generally emitted during events such as bubble pinch-off from an orifice, fragmentation, or coalescence: cases when
there are brief, extreme distortions to the gas-liquid interface. While well-established theory relates bubble sizes to their
natural emission frequencies, practical measurements are complicated by uncertainly on the sound amplitude emitted by
individual bubbles, which is determined by the fluid dynamics of the event. Benchmark experimental data was previously
generated by the coalescence of bubbles; such events inherently involve extreme distortions to the interface. Numerical
calculations by a two-dimensional axisymmetric compressible level-set code are presented, simulating the experimental
conditions. This method gives good predictions of the interfacial kinematics and oscillation frequency but less realistic
predictions of the acoustic amplitude. A second approach employs a three-dimensional multi-material code, and is
significantly more computationally intensive. Preliminary results on a spherically perturbed bubble show that an excellent
agreement with the oscillation frequency can be obtained, in cases where the bubble is both far from and close to a wall.

INTRODUCTION

In physical terms, a gas bubble is a compressible ‘spring’ con-
nected to the surrounding mass of liquid and hence, like any
mass-spring system, the gas volume can oscillate with a natural
frequency. A combination of the equations of mass and momen-
tum conservation for a liquid of infinite extent surrounding a
spherically-symmetric, volumetrically-oscillating gas bubble
leads to the Rayleigh-Plesset equation (Rayleigh 1917, Plesset
and Prosperetti 1977),
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where R is the instantaneous bubble radius, Pg is the pressure in
the bubble, p∞ is the liquid pressure far from the bubble, σ is the
surface tension, and µ is the dynamic viscosity. Linearisation of
(1) for small-amplitude, inviscid oscillations, neglecting surface
tension, and using the ideal gas law to relate the bubble radius
to Pg, gives a simple harmonic equation. The resulting natural
frequency was first predicted by Minnaert (1933) for millimetre-
sized bubbles. Minnaert’s equation (1933) gives the natural
frequency f0 as,
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where γ is the ratio of specific heats of gas inside the bubble,
P0 is the absolute liquid pressure which equals p∞ when sur-
face tension is neglected, ρ is the liquid density and R0 is the
equilibrium bubble radius.

Repeated experiments have demonstrated that (2) is appropri-
ate for the assumptions under which it was derived (Strasberg
1953, Longuet-Higgins et al. 1991, Manasseh et al. 2004). Even
in complex systems of bubbles, frequencies based on the as-
sumptions behind (1) compare reasonably well with experiment
(Manasseh and Ooi 2009). However, the mechanism or mecha-
nisms with which bubble sound emissions are initiated remain
unclear. Thus, unlike the frequency, the amplitude of bubble
sound emissions is difficult to predict.

Passive emission of small-amplitude sound by bubbles is com-
mon in many practical industrial flows (Hsi et al. 1985, Boyd
and Varley 2001, Manasseh et al. 2001b) or environmental
flows (Melville et al. 1988, Ding and Farmer 1994, Manasseh
et al. 2006). The difficulty in predicting the amplitude is one
problem in the interpretation of the signals from such sources
(Boyd and Varley 2001, Manasseh et al. 2001b), leading to
complex signal-processing approaches (Al-Masry et al. 2005,
Manasseh et al. 2006). Numerical simulations of compressible
multiphase flows have advanced in quality (e.g. Og̃uz and Pros-
peretti 1993, Prosperetti and Og̃uz 1993, Hu and Khoo 2004,
Manasseh et al. 2001a, Bui and Manasseh 2006, Klaseboer and
Khoo 2004). However, careful comparison with matching lab-
oratory experiments is required. A particular issue is control
over the interfacial curvature in compressible multiphase flow
(e.g. Liovic et al. 2009).

Longuet-Higgins (Longuet-Higgins 1990) proposed three gen-
eral mechanisms by which the energy giving an initial acoustic
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perturbation could be imparted to the bubble: (i) a difference
in instantaneous Laplace pressure at the instant the bubble is
formed; (ii) the radial inrush of liquid as the pinch-off occurs;
and (iii) an excitation (Longuet-Higgins 1989) by nonlinear
interactions of shape modes of the volumetric or ‘breathing’
mode of the bubble. It is likely that some of these mechanisms
might apply in some situations, but not in others (Leighton
1994).

Bubbles can emit sound on pinch-off from a parent body of gas.
This event could lead to mechanism (ii). It was first observed
by Knud Lunde (see Leighton 1994) that a high-speed liquid jet
penetrates the bubble on the breaking of the neck that joins it
to its parent body of gas, and may be responsible for compress-
ing the trapped gas (Manasseh et al. 1998). Recently, Deane
and Czerski (2008) obtained excellent experimental imaging
of the jet and used the experimental interfacial kinematics to
calculate a forcing function for the Rayleigh-Plesset equation.
Longuet-Higgins (Longuet-Higgins et al. 1991) also proposed
that orifice-formed bubbles could make sound by mechanism
(iii).

Bubbles are often formed from a free surface. This is common
in situations such as raindrop impact (e.g. Pumphrey and El-
more 1990, Pumphrey and Crum 1990), plunging jets (e.g. Hahn
et al. 2003, Chanson and Manasseh 2003) and wave-breaking
(e.g. Melville et al. 1988, Loewen and Melville 1991, Ding and
Farmer 1994, Manasseh et al. 2006). Once the surface closes,
forming the bubble, there must be a sudden transition from a
cavity at atmospheric pressure to a closed bubble in which the
pressure exceeds atmospheric by the Laplace pressure due to
surface tension, plus the hydrostatic pressure that must now be
supported. Thus, in this second class of phenomena, mechanism
(i) is a possible explanation as well as (ii) and (iii). Pumphrey
& Elmore (Pumphrey and Elmore 1990) created bubbles from
drop impacts in the laboratory. However, the amplitude pre-
dicted by Laplace-pressure theory was only about 25% of the
experimental values, and the trend with bubble size was not
predicted. One issue in most laboratory-tank experiments is the
presence of reverberation from the tank walls, which in some
cases could alter the measured frequency as well as amplitude.

Manasseh et al. (2008) also proposed a Laplace-pressure equal-
isation theory; their experiment on coalescing bubbles and
results are outlined below. The present paper reviews com-
pressible multiphase numerical simulations of these experi-
ments. The present paper also presents more fundamental high-
resolution three-dimensional calculations that may ultimately
be necessary to predict the amplitude.

EXPERIMENTS

Experimental Method

The experiments used to benchmark numerical calculations
were detailed by Manasseh et al. (2008), so only brief details
are reproduced here. The test section was a glass tank 1,000 mm
high with a square cross-section of 150 mm. The tank was filled
with filtered tap water at a temperature between 16 and 17◦C.
Air bubbles of 1.6 mm diameter were injected at 85 mm from
the bottom of the tank by a needle with an internal diameter of
0.1 mm and a length of 100 mm. The rate of bubble production
was controlled by adjusting the pressure in the tank to which
the needle is connected.

A high-speed digital video camera (Photron Ultima APX) was
used to film the bubble detachment from the tip of the needle
at a frame rate of 20,000 Hz and with an exposure time of
1/87,600 s. The region imaged was 1.113 mm high and 2.226
mm wide with a resolution 128× 256 pixels. Images of the

bubbles were processed to extract their equivalent spherical
radius and location as a function of time (Ellingsen and Risso
2001) .

In Manasseh et al. (2008), a Brüel & Kjaer type 8103 hy-
drophone pre-amplified by a Brüel & Kjaer type 2635 charge
amplifier was used to transduce the acoustic signal. Distances
were calculated from the true acoustic centre of the 9.5 mm
diameter hydrophone and Manasseh et al. (2008) detailed the
signal conditioning and processing procedures; the signal was
logged at 120 kHz. The distance from the acoustic centre to the
bubble centre was 19.1±0.1 mm. Owing to the concerns about
reverberations in small tanks, Manasseh et al. (2008) reported
tests confirming that the sound field fell off approximately as
1/r, where r is the distance from the bubble centre, rather than
being significantly affected by sound wave modes or reverbera-
tions. The acoustic and video data were precisely co-registered
by a careful procedure accounting for minor shifts in digital
electronic acquisition rates.

Acoustic time series and photo-montages of the high-speed
video frames were generated over the same time window so that
acoustic and visual events could be clearly correlated. Since
most of the interesting variations occur on the centreline of
the bubble image, a montage of a strip of pixels bracketing
the centreline of the image preserved much of the relevant
information content (Manasseh et al. 2008). In the extreme, a
montage of strips each only 1 pixel wide would be a ‘time-space
diagram’ (e.g. Goharzadeh and Mutabazi 2001) showing the
rate at which events move along the centreline.

NUMERICAL METHODS

Axisymmetric level-set method

A compressible, multiphase simulation of the experiments of
(Manasseh et al. 2008) was implemented by an axisymmet-
ric level-set model. The calculation was based on the level-set
method to track the interfaces, and an explicit flow solver for
compressible and nearly incompressible multiphase flows. The
gas and liquid are treated as a single continuum fluid with prop-
erties varying continuously from gas to liquid states. Coupled
with a high-resolution advection scheme, this modelling ap-
proach allows the description of the movement of gas and fluid
and the deformation of the interface separating them on a fixed
computational mesh (Bui and Manasseh 2006).

Using a single-field formalism for describing a gas-liquid flow
featuring well-resolved interfaces, the momentum equation is

∂ρU
∂ t

+∇ · (ρUU) =−∇P+ρg+∇ · τ +σκn̂iδ , (3)

where τ is the stress tensor, σκn̂iδ is the surface tension force
that is non-zero only at the interface, σ is the surface tension
coefficient, and n̂ is the interface orientation.

The compressible-nearly incompressible flow solver was fur-
thermore based on the solution of an additional differential
equation for pressure which was derived from the laws of mass
and energy conservation,

∂ p
∂ t

+U ·∇p =−ρc2
∇ ·U, (4)

where c is the sound speed defined as

c2 = γ

(
p+ p∞

ρ

)
,

where p∞ is a stiffness parameter which is zero for the gas.
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A generic equation of state of the form

ρe =
p+ γ p∞

γ−1
, (5)

was used, where e is the internal energy. As in the presentation
of the Rayleigh-Plesset equation and solution (1)-(2), the pa-
rameter γ has the usual meaning of the ratio of specific heats
for the gas, but is used in conjunction with p∞ to define the
compressibility of the liquid.

To track the evolution of the interface, a level function is ad-
vected by the flow. This function is chosen as a signed distance
function with the zero level set defining the interface location
Osher and Sethian (1988), and has the form

φt +(U ·∇)φ = 0. (6)

Using the level function, the steep changes of fluid properties
across the interface were smoothed out to minimize numerical
oscillations in the solution of Navier-Stokes equations. The
level function was also used to calculate interfacial geometrical
properties, such as the normal vector, ~n, and the interfacial
curvature, κ , as follows:

~n =
∇φ

|∇φ |
, κ = ∇ ·~n,

which in turn define the surface tension.

The system of differential equations describing the fluid and in-
terface motions was solved using a predictor-corrector method
(see Yoon and Yabe (1999)). The high-resolution numerical
schemes ENO (Essentially-Non-Oscillatory) or WENO
(Weighted ENO) was used for the convective flux calculation.

Three-dimensional Volume-of-Fluid method

A three-dimensional multi-material flow solution algorithm
based on Volume-of-Fluid (VOF) Hirt and Nichols (1981) in-
terface tracking was also considered as an alternative to the
level-set method. Advantages associated with using the 3D
VOF-based solution algorithm may include a greater control
over interfacial curvature (Liovic et al. 2009), which may be
relevant to modelling the extreme distortions to the surface of
mechanism (ii). The provision of three-dimensionality allows
the capturing of non-axisymmetric phenomena which may be
inherent to mechanism (iii), with the disadvantage of a much
greater computational cost. For the present paper, this code is to
be validated against analytic theory for a spherically-perturbed,
spherical bubble as a prelude to the sort of calculation presented
for the axisymmetric level-set code.

The 3D VOF-based flow solver again involves generation of
coupled gas-sided and liquid-sided flow fields, with coupling
achieved through interface tracking and through enforcement of
physics at interfaces between fluids in the form of jump condi-
tions. This approach is chosen in preference to the combination
of liquid-only flow simulators with vapor models, because of
its versatility in being able to capture gas-sided flow patterns.
In VOF methods, a phase indicator or color function

C(x) =
{

1 if x occupied by phase k = G
0 if x occupied by phase k = L

}
(7)

is introduced to identify the location of the interface at any
moment in simulated time, with the interface implicitly defined
by the spatial distribution C(x,y,z) in the discrete sense as
regions of 0 < C < 1>. VOF methods use the color function
for the purpose of interface tracking according to the advection
equation

∂C
∂ t

+U ·∇C = 0 , (8)

where U(x,y,z) is the velocity field. The C-weighted local den-
sity is defined as

ρ = CρG +(1−C)ρL . (9)

The same thermodynamic relations as presented for the level-set
flow solver also apply here.

The flow solver used to solve the small-scale flows described
in this paper is the MFVOF-3D code Liovic et al. (2006), Li-
ovic and Lakehal (2007b;a), Liovic et al. (2009). The flow
solver is based on finite-difference methods applied to orthog-
onal meshes. For various terms in the governing equations,
discretizations variously described as being finite-difference or
finite-volume are used to promote consistency and conservation
in simulated solutions. The MFVOF-3D code features 3D PLIC-
VOF for interface tracking on a mesh twice as fine as the flow
field mesh as proposed in Rudman (1998). The Centroid-Vertex
Triangle-Normal Averaging (CVTNA) scheme for interface re-
construction Liovic et al. (2006) enables second-order accuracy
in interface tracking to be achieved, and unsplit advection in
3D Liovic et al. (2006), Liovic and Lakehal (2008) enables
this to be achieved in a single-stage VOF method while locally
conserving mass. The array of advanced numerics included in
the MFVOF-3D software is described in more detail in Liovic
et al. (2006), Liovic and Lakehal (2007a), Liovic et al. (2009).

Experimental Results

As detailed by Manasseh et al. (2008), at very low bubble pro-
duction rates fb less than 3.5 s−1, a series of single bubbles
was formed, generating very low sound amplitudes. A threshold
was found at 3.8± 0.1 s−1 above which a small, ‘secondary’
bubble formed and coalesced with the first bubble. This process
generated sound amplitudes an order magnitude greater than
the detachment process. These emissions were thus just like any
individual bubble-acoustic pulse reported in the literature (e.g.
Minnaert 1933, Strasberg 1956, Leighton and Walton 1987,
Manasseh et al. 2001b). Loud sound emission under circum-
stances of bubble coalescence has been noted before (Leighton
et al. 1991).

first detachment
primary bubble
formation of

secondary bubble
formation of

final bubblesecondary detachment
t=0 mst=!0.15 ms t=0.05 ms t=0.10 ms t=2.05 ms

t=!3.04 ms t=!1.05 mst=!3.95 mst=!15.15 mst=!0.244 s

 
sound emission
coalescence and

Figure 1: Bubble formation sequence. Bubble production rate
fb is 3.8 s−1, bubble diameter 1.6 mm. From Manasseh et al.
(2008).

The circumstances leading to in-line pairing and subsequent
coalescence of orifice-formed bubbles have been studied before,
particularly in the chemical engineering literature (Nevers and
Wu 1971, Bhaga and Weber 1980, Stewart 1995, Manasseh
1996). However, most detailed coalescence studies are for the
pairing and coalescence of equal-sized bubbles.
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Figure 2: Time-series of video and acoustic data over a time
of 1 ms. Bubble production rate fb is 3.8 s−1, bubble diameter
1.6 mm. Secondary scale in upper panel shows video frame
numbers. From Manasseh et al. (2008).

As the air flow rate was increased, Manasseh et al. (2008) no-
ticed further coalescences occurred with each primary bubble,
with the number of coalescences increasing with air flow rate
and each coalescence regime being quite repeatable. Like the
binary in-line coalescences noted above, multiple coalescences
at a needle tip have been observed before with photographic
techniques (e.g. Yoshida et al. 1998). In the experiment of Man-
asseh et al. (2008), the production of the primary bubble and
all following bubbles that coalesced with it were still clearly
separated in time from the production of the next primary bub-
ble. Thus the ‘bubbling rate’ fb was the rate of production of
primary bubbles.

In Fig. 2, the time window shows 1 ms bracketing the coales-
cence event, for the case of fb = 3.8 s−1 in which only one
coalescence per primary occurs. The time t = 0 has been set at
the centre time of the frame where coalescence of the primary
and secondary bubble occurs. It is clear that the sound pulse is
initiated at the very instant of coalescence. It is clear that sound
pressure rises during the coalescence event.

The production of sound on coalescence was thought to be
a suitable paradigm for comparison with theory. There is no
jet formation, which could be quite complex to model, even
approximately (e.g. Deane and Czerski 2008). Thus, mecha-
nism (ii) is not occurring at this time. There is no signficant
relaxation of the bubble shape over the timescale that bubble
sound emission commences, making mechanism (iii) less likely.
Manasseh et al. (2008) attempted to apply a Laplace-pressure
equalisation approach. The variation of acoustic sound ampli-
tude scaled very well with the volume of the small bubble, but
the amplitude predicted by an averaged, energetic scaling was
an order of magnitude lower than experiment. Therefore, it is
of interest to see if a numerical simulation can obtain a better
prediction.

NUMERICAL SIMULATIONS OF BUBBLE COA-
LESCENCE

Simulation of bubble coalescence with the axisymmetric level-
set method was realised in a computational domain size of 7.68
x 11.52 mm, described by a uniform 256 x 384 computational
mesh. The bottom and side walls had no-slip boundary condi-
tions and the top of the domain was free slip. The initial radii
of the large and small bubbles were 0.8 mm and 0.125 mm
respectively, to match the experiment. Bubbles were initially
located to match the experiment 0.15 ms prior to coalescence.
The bubble density and viscosity were set as 1.2 kg m−3 and
1.7×10−5 Pa s. The liquid density and viscosity had their phys-
ical values of 1000 kg m−3 and 0.001 Pa s. The bubbles were
assumed to be filled with an ideal gas with γ = 1.4 and p∞ = 0
Pa and the liquid was assumed to be nearly incompressible with
γ = 7.15 and p∞ = 3.05×108 Pa. The surface tension coefficient
was that of the air-water interface, i.e. 0.074 kg s−2. Other pa-
rameters and conditions were chosen to match the conditions
of the experiment shown in Figure 1. Monitoring points (P1
and P2) were located on the horizontal line passing through
the centre of the large bubble and at 1/3 and 2/3 of the domain
radius respectively.

The predicted shapes of the bubbles at different times before
and after the coalescence are shown in Figure 3. In Figure 4, the
experimental observations are shown for the same times. It can
be seen that there is a very good agreement in the interfacial
kinematics of the coalescence event. In the experiment, the
secondary was still attached to the air supply on coalescence,
hence re-attaching the primary temporarily. The only significant
qualitative differences might be attributed to the fact that in the
simulation there was no air supply feeding the secondary bubble
immediately after a coalescence.

The numerically simulated frequency of pressure oscillation
was 4000 Hz, which agrees well with the natural oscillation
frequency of the larger bubble predicted by (2), which is ap-

t = -0.15 t = -0.1 t = -0.05

t = 0. t = 0.05 t = 0.1

Figure 3: Simulation of the bubble coalescence event of Fig. 1
by the axisymmetric compressible level-set method. Time in
ms.
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proximately 4077 Hz. Furthermore, the numerically simulated
frequency is within about 5% of the experimentally measured
frequency of about 4150 Hz. In contrast, the simulated peak
pressure at point P1 is about 13 Pa; the experimental data,
transformed to P1 using the experimentally-confirmed inverse
relation between pressure and distance (Manasseh et al. 2008),
was about 20 Pa.

MULTI-MATERIAL NUMERICAL RESULTS

3D free compressible bubble oscillation

In the Rayleigh-Plesset equation (1), the pressure in the bubble,
Pg, is is related to the equilibrium bubble volume Veq = 4/3πR3

0
by

Pg = p0

(
V0

V

)
, (10)

The problem has previously been solved computationally us-
ing various approaches, such as boundary elements Blake et al.
(1997), Klaseboer and Khoo (2004), front tracking-based finite-
difference/finite-volume (FD/FV) computation Hao and Pros-
peretti (2004), and level-set/VOF FD/FV computation Sussman
(2003); common to the bulk of these approaches is the use of
an incompressible flow code that models the gas phase by as-
suming uniformly-distributed vapor pressure, i.e. no gas-sided
flow solution.

For the present test, the simulation setup used densities ρG =
1 and ρL = 1000 and viscosities µG = µL = 0. The small-
amplitude volume oscillations for validity of the Rayleigh-
Plesset solution involve constant curvature; for flow solver test-
ing, we can ignore surface tension by setting σ = 0, such that
P0 = P∞. A bubble of equilibrium bubble radius Req = 170 µm
was initially overexpanded to R(0) = 171.7 µm, for a 3%
change in mean gas density within the bubble over the os-
cillation. Based on γ = 1.4, p∞ = 101325 Pa and polytropic
compression, the initial pressure inside the bubble was set to
pG0 = 97177.8 Pa. One octant of the sphere was simulated us-
ing symmetry boundary conditions at x = 0, y = 0 and z = 0 in
conjunction with pressure boundary conditions at x = X , y = Y
and z = Z. Mesh sizes of 76×76×76 and 112×112×112 were

t = -0.15 t = -0.1 t = -0.05

t = 0. t = 0.05 t = 0.1

Figure 4: Experimental data for the same times as Fig. 3.

Figure 5: Pressure variation following the bubble coalescence
event, simulated by the axisymmetric compressible level-set
method.

used to keep the computations feasible with the available re-
sources. Uniform spacings (δx = 6.1111 µm in the 76×76×76
case and δx = 3.4375 µm in the 112× 112× 112 case) en-
compassed the entire bubble and immediate surrounds. Mesh
coarsening away from the bubble towards the outer boundaries
was used to minimize boundary effects and ensure free oscilla-
tion; the domain size spanned by the mesh was no smaller than
32R×32R×32R.

Figure 6 shows the volume of the bubble compared to the
Rayleigh-Plesset solution. The simulated solution captures the
periodic contraction and expansion realistically, with good quan-
titative correspondence achieved using meshes with > 106 mesh
cells. Richardson extrapolation of the nT/16 predictions by the
simulated solutions at the two different mesh resolutions show
close correspondence with the Rayleigh-Plesset solution. The
result shows the feasibility of capturing the short time-scale
first-order flow induced by volumetrically oscillating bubbles
on moderately-sized meshes. The continued approach of the re-
sults to the grid-independent result even on the 112×112×112
mesh motivates continued research towards achieving grid-
independence using smaller meshes, through numerics improve-
ments such as sharper discontinuity capturing to better resolve
the extrema in the oscillation.

0.0 2.5×10
-5

5.0×10
-5

Time (s)

2.0×10
-11

2.1×10
-11

V
ol

um
e 

(m
3 )

Sim.  76×76×76
Sim.  112×112×112
Sim.  Richardson extrap.
Rayleigh-Plesset

Figure 6: Timeseries of the bubble volume calculated by the
compressible multi-material simulation.
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3D forced compressible bubble oscillation

To validate the 3D VOF flow solver in cases of both high fre-
quencies and nonlinear dynamics, it was applied to the forced
system of Manasseh and Ooi (2005). In the problem, a sphere
of gas of radius R0 at equilibrium pressure P0 is initialized at
the centre of an otherwise liquid flow domain of infinite extent.
An oscillating pressure field

PA = α sin(2π fext t) (11)

is applied, where α is the amplitude and fext is the frequency
of the external pressure forcing. Theoretical solutions to the
time history of the droplet size for single- and multiple-bubble
systems have been generated by Manasseh and Ooi (2005),
through solution to an ODE describing the oscillation in radius
about the equilibrium initial condition:(

1+(Nbub−1)
R0

D

)
ε̈ (12)

+

(
4µ

ρR3
0

)
ε̇ (13)

+

(
3κ

ρR2
0
(P0 +Pv)+(3κ−1)

2σ

ρR3
0

)
ε = 0 , (14)

where κ is the ratio of specific heats, Nbub is the number of
bubbles, Pv is the vapor overpressure, and ρ and µ are the
liquid density and viscosity. In the current test, the same input
parameters as used in Manasseh and Ooi (2005) were used
here – namely, ρ = 1000, µ = 0.001, κ = 1.33, Pv = 2330,
P0 = 100000 (all in SI MKS units). The current test used a
non-uniform 96× 96× 96 mesh to simulate an octant of the
oscillating bubble, with the bubble resolved using mesh cells
of width 6.25×10−7 m and aggressive coarsening used away
from the bubble to minimize domain truncation effects.

Figure 7 shows the time history generated by the 3D simulation.
The capturing of the main harmonic and subharmonics by the
simulation is impressive, albeit expensive; to resolve the troughs
of the oscillation requires use of CFL = 0.0001, with relaxing
of this CFL away from the flow reversal represented by the
troughs and peaks in the bubble radius. High accuracy in the
extrema of bubble radius is more difficult to capture than the
temporal locations of these extrema, but clear and reasonable
capturing of the extrema in radius was obtained. As shown for
the simulation of conventional Rayleigh-Plesset compressible
bubble oscillation, higher spatial and temporal resolution is the
first and obvious solution to achieving high-fidelity capturing
of the extrema in bubble radius in direct numerical simulation
using multi-material simulation codes.

Wall effect

Theoretical approaches to generating solutions for bubble os-
cillation have advanced significantly in their ability to predict
compressible bubble oscillation in the presence of walls and
in multi-bubble systems, with the review of Manasseh and
Ooi (2009) showing quite good capturing of experimentally-
measured resonance and natural frequencies by the ODE-based
theoretical models. One issue noted in the review is the dis-
crepancy between alternative theories for the prediction of nat-
ural frequency of bubble oscillation in the vicinity of walls.
Using the self-consistent mirror frequency theory, the natural
frequency is

ω = 0.816ω0 , (15)

where ω0 is the natural frequency is the absence of walls. In
contrast, the multiple-scattering mirror frequency theory, the
natural frequency is

ω = 0.833ω0 . (16)

Figure 7: Forced bubble response calculated by the compress-
ible multi-material simulation (continuous line), compared with
the nonlinear coupled-oscillator ODE model of Manasseh and
Ooi (2005) (+ symbols).

To examine and further validate the 3D VOF multi-material flow
solver for this situation, it was used to simulate compressible
bubble oscillation at varying distances from a rigid wall. The
first at-wall investigation performed as part of this work used
an initially overexpanded bubble to drive the oscillation, with
an equilibrium radius of R0 = 1.7×10−4 m and initial overex-
panded radius Rinit = 1.717×10−4 m representing the distance
from the bubble center to the wall. For this case, an 88×88×88
mesh was used for a quadrant-based simulation, with the bubble
resolved by mesh spacing δx = 4.583×10−6 m and aggressive
coarsening in the open directions. An 88×88×176 was used
for the reference no-wall simulation, representing a mirroring
of the mesh used in the at-wall simulation.

The simulation of the essentially-at-wall spherical compressible
bubble oscillation yielded the reduced frequency ω = 0.841ω0.
The actual ratio R0/s = 0.495 in the simulation, compared to
the R0/s = 0.5 value used to derive equation 15, modifies the
multiplier for the self-consistent mirror frequency from 0.816 to
0.818. As such, correcting for the distance Rinit −R0 separating
the wall and the bubble in its equilibrium state, the frequency
of oscillation from the simulation is ω/ω0 = 0.839±0.01. The
cited error bounds account for both differences between alter-
natively analyzing bubble pressure and bubble volume signals
(indeed seen to be negligible), and sampling error over multiple
bubble periods (the larger source). The simulation therefore
supports the conclusion that the multiple-scattering mirror fre-
quency better describes compressible bubble oscilaliton near
a wall than the self-consistent mirror frequency theory. The
simulation also supports the conjecture in Manasseh and Ooi
(2009) that a single bubble and measurement of its radius over
time would more inclined result in equation 16 being adhered
to as compared to equation 15.
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CONCLUSIONS

The quantitative prediction of the amplitude of sound naturally
created by bubbles is a demanding task, owing to the variety
of fluid-dynamical mechanisms that may be at work. One pro-
posed mechanism (i) involves Laplace-pressure equalisation
occurring on the topological change. A second mechanism (ii)
invokes the extreme curvature of the gas-liquid interface at the
point when there is a change in interface topology and bub-
bles commence sound emission. The instantaneously-created,
very small radii of curvature drive very large, transient acceler-
ations that in turn cause compression or expansion of the gas
in the bubble. Another mechanism (iii) proposes a parametric
nonlinear process that demands significantly excitation of very
specific shape modes.

It is hoped that numerical calculations in concert with careful
experiments may lead to a prediction of the magnitude of sound
created.

Numerical calculations with an axisymmetric, compressible
level-set code, simulating actual laboratory conditions, demon-
strate excellent prediction of the interface kinematics, very good
prediction of the oscillation frequency (within 5%) but much
less satisfactory prediction of the amplitude of sound emission,
which are roughly 30-40% less than the experimental values.
One possible explanation for the discrepancy is domain size,
which in lateral extent is an order of magnitude smaller than the
experiment. However, if domain limitations are significant, they
should significantly alter the frequency, and they clearly do not.
A further explanation for the amplitude under-prediction is in-
sufficient resolution, which might prevent correct reproduction
of the physics of mechanism (i). In addition, the imposition of
axisymmetry may inhibit some modes required by (iii).

As a prelude to systematically testing the various hypotheses
for bubble sound emission by numerical experiment, a three-
dimensional, multi-material code was set up. Owing to the
three-dimensionality, this code had almost an order of magni-
tude more grid points than the level-set method. A simple spher-
ical perturbation generated a frequency in excellent agreement
with analytic frequency. Using this method, the fundamental
oscillation frequency of a bubble near a boundary showed a
shift in natural frequency owing to the presence of the image
of the bubble on the other side of the boundary. These fre-
quency calculations compare very well with analytic theory
and experiment, offering further evidence that the limitations
of a finite computational domain are not significant, at least for
small perturbations to the interface. Thus, a three-dimensional,
if computationally intensive, approach may in the future yield
a comprehensive prediction of the amplitude of bubble sound
emission.
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