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ABSTRACT

The issue of sound attenuation in multi-layered structures leads to find optimal geometrical stacking of layers in order
to minimize vibrations and transmission of waves across the material. Various orientations of unidirectional layers are
studied and their acoustic properties are presented using a geometrical simplification. In a first approximation, only
bulk waves are considered. They propagate in a multi-layered medium where the celerity changes from one layer to
another. This simple model of propagation in homogeneous medium authorizes a fast computation of the transmission
coefficient thanks to the transfer matrix formalism. The effect of different geometrical stackings can thus be analyzed.
Particularly, self-similar or fractal structures possess topological characteristics combining periodic and disordered ones.
Therefore, they present very interesting acoustic properties : resonance and band gaps. Transmission coefficient is studied
for classical (simple, periodic, random) and two alternative stackings based on the Cantor set.

INTRODUCTION

Increasing sound attenuation in multi-layered structures without
enhancement of thickness or quantity of mass may lead to focus
on special geometrical properties as viable solutions. Indeed,
propagation of acoustic or elastic waves in inhomogeneous
media depends on the medium geometry and the wavelength.
Due to their topology, periodic or disordered media reduce the
transmission of sound : the first ones reflecting acoustic wave
in the same way as photonic crystals do with light, and the
others trapping waves in random labyrinths. Eusebio Sempere’s
sculpture in Madrid that stops frequencies in certain directions
is a phononic crystal [2]. While periodic media possess eva-
nescent modes that define bad gap or “stop band” [3], in finite
intervals of frequencies, disordered materials are characterized
by exponentially localized modes [4].

Fractals are a third kind of geometry : the “disorder” is distribu-
ted in the same manner at each scale. Mandelbrot defined them
by

a rough or fragmented geometric shape that can be
split into parts, each of which is (at least approxima-
tely) a reduced-size copy of the whole [1].

As they combine division of space and iteration process, frac-
tals combine both periodicity and randomness properties. This
process has to be driven to infinity to build a mathematical frac-
tal. Since the beginning of the 80’s, vibrational properties of
self-similar structures have been widely studied [5-7]. Fractal
structures are characterized by the fractal dimension D, related
to the geometry. Their spectral properties show eigenmodes
called “fracton” : they are neither extended in the usual sense
nor exponentially localized. For real structures, different sort
of modes exists because the pre-fractal order is finite : for wa-
velengths larger than the correlation length the medium seems
homogeneous, for wavelength smaller than the smallest particle
dimensions, the vibrations are those of the smallest components
of the structure. Between this two regimes, eigenmodes are
fractons and thus, crossover frequencies appear.

On the experimental point of view, Bernard Sapoval created a
fractal noise-reducing wall [8] and achieved to increase signi-
ficantly road noise absorption [9]. Then, evidence of fracton

existence, was demonstrated by investigations on silica aerogels
[10], ultrasound attenuation [11], propagation of sound in one-
dimensional Cantor Composites [6] or prefractal waveguide
[12]-[13].

After a brief theoretical presentation of sound propagation in
1D multi-layered structure, different self-similar media are des-
cribed and the effects of diverse geometrical stackings (periodic,
random and fractal) are analyzed.

SCALAR MODEL FOR SOUND PROPAGATION
IN A HALF-PERIODIC MULTI-LAYERED STRUC-
TURE

FIGURE 1: Multi-layered structure

First, a simplified 1D model for sound propagation in multi-
layered media is presented. Acoustic waves propagate in a
medium constituted by a succession of N semi-infinite layers
(figure 1), with the same thickness dn, characterized by their
density ρ and the sound celerity cn.

cn changes from one layer to another, and is a function of layers
orientation ϕn (figure 2) :

cn = f (cosϕn,sinϕn). (1)

The transmission of scalar waves in the structure can be ob-
tained by a transfer matrix method. Pressure (pn, pn−1) and
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FIGURE 2: Polar plot of celerity, c(ϕ)

particle velocity (vn,vn−1) at both sides of the nth layer are
connected by a transfer matrix operator Mn :

(
p
v

)
n
=

(
cos(kndn) jZn sin(kndn)
j

Zn
sin(kndn) cos(kndn)

)(
p
v

)
n−1

, (2)

where kn(ϕn) is the wave number and

Zn(ϕn) =
ρn√

1
cn(ϕ)2 −

sin(θinc)
c2

0

. (3)

consequently, on ϕn. The product of elementary matrices yields
to the value of p and v at one end of the system as a function of
the value at the other end. The transmission coefficient :

T (ω) =

∣∣∣∣ pN+1

p0

∣∣∣∣2 (4)

of the stacking can thus be computed. This scalar wave model
enables to correlate peaks of transmission coefficient to the
structure resonance modes.

PRE-FRACTAL GEOMETRIES

Physical fractals are not real mathematical fractals : they are
only self-similar or pseudo-periodic. In order to understand the
propagation of acoustic waves in such geometries, different sta-
ckings are studied : a simple one, constituted of one 0◦ oriented
layer, a periodic one, a random one, and finally, two based on
the Cantor’s set. The periodic stacking consists in a succession
of a unit cell composed by two layers with different orientation,
thus different speed of sound, but similar density and thickness.
The random stacking is formed by random oriented layers. The
triadic Cantor set is created by repeatedly deleting the open
middle thirds of a set of line segments. This process is iterated
ad infinitum. It is self-similar, because it is equal to two copies
of itself, if each copy is shrunk by a factor of 3 and translated.
Two types of Cantor-like stackings are examined. The first is
constructed by a sequence of two different oriented media A
and B [7] :

A
ABA

ABA BBB ABA
ABA BBB ABA BBBBBBBBB ABA BBB ABA

· · ·
(5)

The second is a Cantor set for the angle layers orientation
ϕ . When the pre-fractal sequence is up to the Nth generation,
and the central layer has an orientation ϕ0, the structure is a
succession of 2N+1 +3 layers :[

0
ϕ0

3N 0 . . . 0
ϕ0

3 j 0 . . . 0
ϕ0

3
0 . . . 0

ϕ0

3 j 0 . . .
ϕ0

3N 0
]

(6)

RESULTS : PERIODICITY, RANDOMNESS AND
SELF-SIMILARITY

Waves propagating through the structures are influenced by
the self-similar geometry. What is the impact of such a self-
similarity ? This issue is treated by studying the transmission
coefficient of pre-fractal stakings and comparing it to simple,
periodic and random ones.

Transmission

Acoustic waves are modified by acoustic impedance contrast
between media, and therefore by difference of phase velocity
or density. The more important the difference of impedance
encountered is, the more the wave is reflected. The shape of
cn(ϕ) (figure 2) indicates that a 72◦ oriented layer maximizes
the difference of velocity, thus impedance, with a 0◦ oriented
one. The largest angle of Cantor-like structure is then chosen to
be 72◦.

It is well known that periodic structures present frequency bad
gaps due to interferences of waves reflected at interfaces. For a
succession of 2d period composed by two layers characterized
by a sound velocity vi and a density ρ , central frequencies of
gap can be worked out theoretically [14]. For an incident normal
wave, there are two types of gaps centered respectively on :

f b
m =

2m−1
2(d/v1 +d/v2)

, (7)

f c
m =

m
d/v1 +d/v2

, (8)

where m ∈ N. The more layers there are, the deeper the gap is.
Considering a superposition of unit cells constituted by two 0◦

and 72◦ oriented layers, with ρ = 1577 kg·m−3, d = 0.15 mm,
v1 = 1982 m/s and v2 = 2643 m/s, band gaps due to periodicity
are centered on multiple of f b

1 = 3.77 MHz and f c
1 = 7.55 MHz.

The stacking is constituted by M layers, thus M coupled reso-
nators, each possessing fm = cm/2dm as eigenfrequency. Cou-
pling of underlayers makes difficult an interpretation of spec-
trum (transmission peaks) because other modes of vibration are
raised.

FIGURE 3: Transmission coefficient for a normal incident wave
for Cantor-like stacking on thickness (5) — and on angle (6) ů
·ů ·ů · up to the third generation.
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For an incident normal wave, the transmission coefficient pre-
sents peaks of resonance (figure 3). The first resonance occurs
when the whole structure vibrates in phase, the others are as-
sociated with vibration of each or connected layers. While an
unidirectional structure resonates for multiples of the eigen-
frequency (depending on media thickness and sound velocity),
Cantor-like stackings modes are not regularly distributed. This
is due to the multiple scales of pseudo-periodic structures.

Thickness Cantor (5) and angle Cantor (6) stackings possess
multiple scales. The first one has different sizes of similar cells :
B, ABA, BBB, AB, each vibrating at it own eigenfrequency
and harmonics. Sound velocity of sound for the second changes
from one layer to another because they are oriented differently.
This raises many eigenfrequencies. Thus both stackings possess
many characteristic frequencies interacting and generating the
transmission coefficient (figure 3).

It is very interesting to note that self-similar structures present
drop of transmission almost in the band gap zone of periodic
media : 3.6 MHz to 4.7 MHz for the angle Cantor structure,
3.1 MHz to 5.15 MHz and 5.8 MHz to 7.6 MHz. However, for
the thickness Cantor structure, there is a resonance around
the gap central frequency. This could be caused by the self-
similarity of structures, they are nearly periodic, so it seems
logical that a gap appears in the same zone as for periodic sys-
tems. Fractons are distributed in and out the gap. For structures
with many layers, the density of states could determine whether
they are extended or localized.

Transmitted Power

Moreover, stackings can be compared in term of transmitted
power per frequency band comparatively with a total trans-
mission. The band is chosen in order to give the maximum of
information, without showing too many oscillations (figure 4).
For random stacking, the calculated transmitted power is the
average of transmitted power for aleatory oriented stackings
(orientation angles are chosen among angles composing the
Cantor-angle stacking : [0 ϕ0 ϕ0/3 ϕ0/9].

FIGURE 4: Transmitted power for unidirectional ů ·ů ·ů · perio-
dic - - -, angle cantor — and random stackings -ů · -

The unidirectional medium transmits 80% of incident energy.
When at least one layer oriented differently , transmitted power
changes. Due to depth of gaps, the periodic stacking blocks the
most energy, only 63% of the power is transmitted. On average,
the Cantor-angle stacking transmits more energy than random
ones, 78% versus 71%. On the whole frequencies, coupling
of modes compensates the presence of gap. Nevertheless, for
given frequency bands, Cantor is more efficient than random
systems : half of energy is attenuated. Due to self-similarity, its
behaviour is halfway between periodic and random ones.

Pre-fractal order

Dealing with self-similarity, it seems essential to analyze the
pre-fractal order influence (figure 5).

FIGURE 5: Transmission Coefficient for thickness Cantor (up)
and angle Cantor (down) : (order 3 ů ·ů ·ů · and order 4 —)

Increasing pre-fractal order for the thickness Cantor induces a
deepening of gaps. Transmission coefficient of the first gap falls
from 0.11 to 0.018. While order of fractal increases, multiple
characteristic thickness, thus frequencies, appear. The wave is
scattered by the structure, and transmission drops. The angle
Cantor stacking is less affected by fractal order : the main gap
decreases from 0.38 to 0.35. Actually, this can be explained
noticing that the more important the order is, the closer to 0◦ the
layers are, and the less reflected they are. The scale difference
introduced by impedance contrast is not significant.

CONCLUSION

Finally, waves propagation in 1D self-similar and multi-layered
structures can be described by a transfer matrix formalism
leading to the media transmission coefficient. Unidirectional,
peridoric, random and self-similar stackings properties are ana-
lyzed and compared. Self-similar (or pseudo-periodic) and per-
iodic stackings band gaps are located around the same frequen-
cies. They transmit a little more than periodic stackings but
in certain frequency band they are more efficient than random
ones. Unfortunately, a coupling of modes for angle Cantor struc-
ture limits is efficiency. The investigations will be deepened
studying density of states and localization properties of the two
self-similar structures.
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