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 The physics of wedge diffraction: high-frequency 
approximate solution in the vicinity of shadow 

boundary  
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PACS: 43.20.EI  

A top-down physical principle called virtual discontinuity principle of diffraction is proposed by us for analyzing 
waves diffracted by perfectly reflecting objects and a mathematical model is formulated to calculate diffracted waves 
by a sum of two elementary diffracted waves. The model is applied to waves diffracted by a wedge and high-
frequency approximate solution for diffracted waves is deducted from the model that works at any angle of observa-
tion point. In the conventional analysis the approximate solution is derived from the rigorous solution, but it does not 
work when the observation point lies in the vicinity of shadow boundary. The success in our model is due to the sim-
ple structure introduced by the elementary diffracted waves. Thus the principle is validated firmly by this result and 
the implication of the new principle is discussed shortly. 

1. INTRODUCTION 

We have proposed a new physical principle that is called 
virtual discontinuity principle of diffraction for analyzing 
waves diffracted by perfectly reflecting objects and formu-
lated a mathematical model for calculating diffracted waves 
by a sum of two elementary diffracted waves [1],[2]. The 
special merit of our model lies in the fact that diffracted 
waves calculated by the model always satisfies the boundary 
condition at the surface of the object This property is not 
supported by other principles for analyzing diffracted waves, 
for examples, Kirchhoff’s formula [3], geometrical theory of 
diffraction [4], and Boundary Element Method [5].  

The model is applied to waves diffracted by a wedge and 
high-frequency approximate solution for diffracted waves is 
deducted from the model that is exactly the same as the one 
that has been already derived from the rigorous solution of 
waves diffracted by the wedge [2]. It is rare to find the rela-
tion derived from the rigorous solution in the relations de-
ducted from the model formulated by a top-down physical 
principle. Thus the principle is validated fairly by this result. 
The above approximate solutions, however, do not work in 
the vicinity of shadow boundary. The role of diffracted waves 
lies in the compensation of discontinuity caused by the geo-
metrical optics solution, that is, discontinuity at shadow 
boundary. Thus the above agreement may not be enough to 
validate the principle firmly. 

In this presentation high-frequency approximate solution that 
works in the vicinity of shadow boundary is deducted from 
the model, whereas it is not succeeded in deriving this rela-
tion from the rigorous solution since shadow boundary in 
diffracted waves occurs at two angles and that angles change 
complicatedly as a function of wedge and source angles. On 
the other hand shadow boundary in elementary diffracted 
waves occurs at one angle and it equals to the source angle. 
This outstanding simplification enabled by the new model 
makes it possible to deduct the high-frequency approximate 
solution near shadow boundary from the model and it is 

combined with the conventional one so that the approximate 
solution can be applied at any angle of observation. The ac-
curacy of the approximate solution is examined by comparing 
it with the rigorous solution and that of the new approximate 
solution in the vicinity of shadow boundary is almost the 
same as that of the conventional one at far outside of shadow 
boundary. This would validate the new principle further since 
it should make the analysis remarkably simpler.  

This paper is organized as follows. In Sec.2 wedge-shaped 
region and potential in the region are mathematically defined. 
In Sec.3 a virtual space is formulated by incorporating mirror 
images reflected by edges of wedge. In Sec.4 the Green’s 
theorem is applied to the virtual space to formulate a mathe-
matical model for diffracted waves in terms of elementary 
diffracted waves. In Sec.5 some properties of diffracted 
waves are derived from the model. In Sec.6 high-frequency 
approximate solution of elementary diffracted waves is de-
ducted from the model using potentials in free space and 
nondiffractive wedges. These potentials are useless in the 
conventional analysis since no diffracted waves are existed in 
them but elementary diffracted waves can exist in them. In 
Sec.7 high-frequency approximate solution of diffracted 
waves is calculated by the model and compared with the 
rigorous solution. A short summary and discussion on the 
implication of the new principle are given in Sec.8. 

2. PRELIMINARIES 
2.1 Wedge-shaped region 
                  
Draw a half line in the two-dimensional space and denote the 
starting point as  and introduce the polar coordinate system Q

),( θr=r  by specifying r  as a distance measured from Q  
and θ  as an angle measured from the half line in the anti-
clockwise direction. Let  be a wedge-shaped region (ab-
breviated by wedge) of apex angle  and be defined by  

0W
Φ2

},0|),{(0 Φ≤≤Φ−≥= θθ rrW                                    (1)   
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where π≤Φ<0  and π=Φ  corresponds to an semi-infinite 
plane, 2/π>Φ  a concave wedge, 2/π<Φ  a convex 
wedge and 2/π=Φ  a reflecting plane. The apex of 0W  lies 

on  and Q 0W  is bounded by two edges B  and . Let a c
0 B0

)(θL  denote an half line that starts from Q  and runs in the 
θ  direction. Then the edges can be specified as  

and .  

)(0 Φ= LB a

c )(0 Φ−= LB

2.2 Potential 

The waves propagating in  are stationary in time and sat-
isfy the following relation 

0W

)(22
Srr −−=+∇ δUkU                                               (2) 

where U  stands for the potential of waves,  the 
wave number (

)/2( λπ=k
λ : the wavelength), δ  the delta function, 

 the position vector of the point source S  and 
the relations  and  hold. In the free 

space  radiates the direct waves U  that is given by 

),Sr θ( S=Sr

F

m

D

∞<< Sr0 Φ<<Φ− Sθ

S

)4/(|)|(H)|( )2(
0 jkU F

SS rrrr −=                                (3) 

where H0
(2) stands for the 0-th order Hankel function of the 

second kind,  j the imaginary unit and the stationary time 
function exp(jωt) is deleted where ω stands for the angular 
frequency. 

As to the boundary condition, the Dirichlet condition 
(∂U/∂n=0) or the Neumann condition (U=0) is set to edges of 
the wedge where n stands for an inner unit vector normal to 
the edges. Let us denote the wedge that satisfies the Dirichet 
condition as the hard wedge and the Neumann condition as 
the soft wedge. The edge of the hard wedge can be regarded 
as a mirror of  where m stands for the reflection coeffi-
cient of the mirror. Similarly the edge of the soft wedge can 
be regarded as a mirror of . In this paper the distinc-
tion between the hard and soft wedges is made by the nu-
merical value of . 

1=m

1−=m

The diffracted waves can be considered as a deviation from 
the geometrical optics waves. Then the potential can be ex-
pressed as 

)()()( rrr DG UUU +=                                                  (4) 

where  stands for the potential for the geometrical optics 
waves and U  that for the diffracted waves.  

GU

2.3. Elementary diffracted waves 

In this paper a new field quantity that is called elementary 
diffracted waves is introduced by the following relation 

ll ll dUrkgrE
L

nr ∂∂+−= ∫ /)())((),(
)(θ

θ                   (5) 

where E stands for the potential for the elementary diffracted 
waves, ℓ the coordinate taken along L(θ), rℓ the position vec-
tor of a point on L(θ), an unit vector normal to L(θ) taken 
in the anticlockwise direction as shown in Figure 1, and g the 
Green’s function that is given by 

ln

).4/()(H)( )2(
0 jxxg =                                                  (6) 

 

 

Figure 1 Calculation of elementary diffracted waves 

Our model for wedge diffraction described in this paper is 
formulated in terms of E  and it can be calculated using U in 
W0 as seen in (5). Physically, however, E  is considered as a 
contribution of U on L(θ) to the point O ,that is, located at 

),( πθ +r  as shown in Fig.1. But in this case O  is not 
included in W . Inversely if O  is kept in W0 0, it might be 
necessary to draw L(θ) in the outside of W0. Thus it is neces-
sary to make the physical concept of E  compatible to the 
structure of the space that is under consideration. 

 

Figure 2 Extention of wedge-shaped region 

3. FORMATION OF A VIRTUAL SPACE 

3.1 Extension of a wedge-shaped region  

Extend the wedge-shaped region beyond the edges by con-
sidering the edges aB  and c  as mirrors and mirrored im-
ages are assumed to be spread out beyond the edges. The 
wedges 

0 B0

,...3,2,1, =iWi are spread out beyond aB  and the 

wedges 
0

,...3,2,1, −−−=iW are spread out beyond  where i 
stands for a number of wedge and |i| corresponds to the re-
flection number. The wedge W

i
c

c

B0

i is bounded by L((2i+1)Ф) 
and L((2i-1)Ф) and let us denote the former as aB  and the 

latter as B . If a point in W
i

i 0 that is specified by ( *),θr  is 
imaged to a point ),( θr  in Wi by mirror reflections as shown 
in Figure 2, then the following relations 

)9(2*)1(
)8()2()1(*
)7()2/)sgn(2/int()(

Φ+−=

Φ−−=

+Φ==

i
i

wi

i

i

θθ
θθ

θθθ
  

hold where )(θw  stands for the number of wedge in which 
)(θL  runs , int(  the integral part of the real number x , and 

 the sign of 
)x

)sgn(x x  that is equal to  for ||/ xx 0≠x  and 0 
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for . Let us denote θ* as the original angle of θ. Then 
the potential at (r, θ) can be assigned by the following rela-
tion 

0=x

*),(),( θθ rUmrU i=                                                (10) 

where i and θ*  are calculated by (7) and (8) and mi reflects 
the amplitude reversal in case of the soft wedge )1( −=m . 
Since the original angle is symmetric with respect to the edge, 
U in the hard wedge is symmetric with respect to the edge 
and antisymmetric in the soft wedge. According to the 
boundary conditions, that is, ∂U/∂θ=0 for the hard wedge and 
U=0 for the soft wedge, the continuity of U and ∂U/∂θ at the 
edge holds for hard and soft wedges. Similarly the following 
relation holds for the elementally diffracted waves 

.                                          (11) *),()(),( θθ rEmrE i−=

Consequently ),( θrE  in the hard wedge is antisymmetric 
with respect to the edge and symmetric in the soft wedge. 
The continuity of E and θ∂∂ /E  at the edge also holds for 
hard and soft wedges since 0=E  is immediately obtained 
from (5) at the edge of the hard wedge and 0/ =∂∂ θE  can 
be also derived at that of the soft wedge. Thus U  and E  are 
extended beyond the edges continuously up to the 1st deriva-
tive.For the sake of later references, let  denote the mirror 
image of S  in  and 

iS

iW ))(,()( iri SS θ=Sr  its position vector , 
then  

Φ+−= ii S
i

S 2)1()( θθ                                             (12) 

holds and the direct waves from  is expressed as iS

)|,(),( i
FiF

i SSrUmrU == θθ                               (13) 

where  in the right side is given by (3) if  is replaced 
by .  

FU Sr
)(iSr

3.2 Virtual space V  

A virtual space V is defined as a space that can be observed 
by the observation point O  that is placed at ),( θr=r  in  
where mirror images are assumed to be spread out beyond the 
edges. Let us introduce a half line

0W

)( πθ += LD , that is, a 
half line that starts from Q and runs in the direction of πθ +  
as shown in Figure 3. It is also a half line to calculate 

),( πθ +rE  in (5). If a point on )(θL  is rotated in the anti-
clockwise direction until it touches D  in  where pW

)( πθ += wp  is a nonnegative integer. Let D  express  
that is running in  and  a truncated wedge that is 

bounded by B  and . Similarly if a point on 

a

D

D

pW pW
c
p

aD )(θL  is 

rotated in the clockwise direction, it touches  in W  where D n

)( πθ −= wn  is a nonpositive integer. Let D  express  
that is running in W  and  a truncated wedge that is 

bounded by B  and . Then the virtual space  V  is for-
mulated by 

c D

n
D

a

a

nW

n
cD

.)( 1

1∑ −

+=
∪∪∪= p

ni i
D

n
D

p WWWV                                   (14) 

If either  or  holds, the third term in the right side 
of (14) becomes zero. The potential on  and  are dif  

0=p 0=n
D cD

 

Figure 3 Formation of a virtural space 

ferent for most cases and the potential in V  is not continuous 
at . Accordingly it is called as a virtual discontinuity line.  D

i =
DD

4. MODEL IN ELEMENTARY DIFFRACTED WAVES 

Draw closed curves C  in 

 that comprise 

),..,0,..,( pni

pin WpniWW ),1,..,0,..,1(, −+= V  as 

shown in (14). Each C  is composed by two circular arcs of 
radius 

i

)1( <<εε and )1( >>γγ  respectively and two seg-
ments connecting these arcs along the edges or D  as shown 
in Figure 3. The centers of curvature of arcs lie on Q  and the 
radii ε  and γ  are common for all C  . Then the following 
relation is obtained by applying the Green’s theorem to each 

 and taking a sum of the resulting relations 

i

iC

)15(0/)(|)|(

/|)|()(

=∂∂−−

∂−∂∑ ∫=

lll

ll

dUkg

kgUp

ni Ci

nrrr

nrrr
  

where a circle of very small radius centered at O  is included 
in C  and that centered at S  in C . If S  is not included 
inside , no circle is added to . The same story holds for 

 and C . As seen in Figure 3, two integral paths run par-

allel to the edge, that is, one in C  and the other in C  
where 

0 i i n

nC nC

pS p

i 1+i

1,..., −= pni . Since the potential is continuous at 
edges, these pairs of integrals are cancelled out each other. 
And there remain the integrals along a  and c  since  is 
the only edge in Figure 3 where the potential is discontinuous. 
In this case  lies on the extension of , then the following 
relations hold 

D D D

O D

.                                      (16) 0/,|| =∂∂+=− nrr grll

Thus at the limits of 0→ε  and ∞→γ , the integrals along 
 and  can be expressed by a cD D ),( πθ +−  and rE

),( πθ −rE  respectively and the integrals along the arcs be-
come zeros. Consequently (15) can be rewritten as 

)17(

),(),(),(

),()2/))(sgn(2/1(

),()2/))(sgn(2/1(),(

1

1 πθπθθ

θθπθ

θθπθθ

−++−+

−−−+

−++=

∑ −

+=
rErErU

rUn

rUprU

p

ni
F
i

F
nS

F
pS
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F D

F a

where the direct waves are resulted from the integrals along 
the small circle centered at  and (13) is used. This is the 
expression of the potential of waves in the wedge in terms of 
the elementary diffracted waves. The first term in the right 
side of (17) takes  if  is included inside of , 

 if  is located on D , and 0 otherwise. And the 
same story holds for the second term of (17) since the sources 

 and  may not be included in the truncated wedges. In 

the third term  is always included in  so no sgn function 
is included in this term. The sum of the first three terms in 
(17) comprises the geometrical optics waves. Then as seen 
from (4) and (17) the potential for diffracted waves is ex-
pressed by the sum of the fourth and fifth terms in (17), that 
is, 

iS

pU pS pW

2/pU pS

pS nS

iS iW

),(),(),( πθπθθ −++−= rErErU D                          (18) 

and in terms of the original angles (18) is rewritten as 

)*)(,()()*)(,()(),( πθπθθ −−++−−= rEmrEmrU npD  (19) 

where )( πθ += wp  and )( πθ −= wn . (18) and (19) corre-
spond our model for diffracted waves in terms of elementary 
diffracted waves. 

The physics of wedge diffraction is quite clear in (17) where 
the physics is illustrated in the virtual space. The first term in 
(17) changes discontinuously when D  crosses , that is, 

when the relation 

a
pS

)( pSθπθ =+  holds, but this jump is 
compensated by the fourth term so that the potential changes 
continuously since ),( θrE  changes discontinuously at 

)(iSθθ = . The same story holds for the second term and in 
this case the jump occurs when )(nSθπθ =−  holds and it is 
compensated by the fifth term. On the other hand in the con-
ventional analysis the physics must be illustrated in . Let 

 be the angle at that U  changes discontinuously and 
denote it as the angle for shadow boundary. Then as shown 
below in the section 5.3,  changes complicatedly as a 
function of 

0W

SBθ D

SBθ

Sθ  and . Accordingly the physics of wedge 
diffraction has been unclear in the convention theory of dif-
fraction.  

Φ

5. PROPERTIES OF DIFFRACTED WAVES 

5.1 Boundary condition 

Assume Φ−=θ  in (19), that is, calculate  at the bound-
ary . Then the following relations hold 

DU
cB0

*)()*(,1 ππ −Φ−=+Φ−−=+ np                             (20) 

where (7) and (8) are used. Then inserting these relations into 
(19), 

0|),( =Φ−=θθrU D                                                         (21) 

is resulted for the soft wedge )1( −=m  and 

0|/),( =∂∂ Φ−=θθθrU D                                                (22) 

for the hard wedge . The same story holds for  at 

the other boundary B . Consequently it becomes clear that 

the boundary conditions are satisfied in (18) and (19). It is the 
necessary condition that the expression for diffracted waves 
should satisfy but no conventional expressions have satisfied 
it so far. 

)1( =m DU
a
0

5.2 Nondiffractive wedge 

Let  be a natural number . Then the following 
relation holds 

q ,...)2,1( =q

)4,(),( Φ+= qrErE θθ ,                                          (23) 

since the original image is reconstructed after two consecu-
tive mirror reflections. Then if  

q2/π=Φ                                                                  (24) 

holds, the right side of (18) becomes zero, that is,  
holds for the soft and hard wedges. Let us denote the wedges 
that satisfy (24) as the nondiffractive wedges and q=1 corre-
sponds to a reflecting plane and q=2 to a concave wedge of 
Ф=π/4. This is the well-known result but in the conventional 
analysis of diffracted waves this fact is useless since there are 
no diffracted waves in these wedges. In this analysis, how-
ever, these wedges are very useful since 

0≡DU

E  does exist in 
them and the potential in them can be expressed by the well-
defined geometrical optics waves. 

5.3 Angle for shadow boundary SBθ  

The potential  changes discontinuously at ),( θrU D

)(, Φ≤≤Φ−= SBSB θθθ  as mentioned above. As seen from 
(18), this happens if either  or  is equal to πθ +SB πθ −SB

)(iSθ  since ),( θrE  changes discontinuously at )(iSθθ =  
where  stands for an integer. Assume the relation i

*)( πθθ += SSB . Then the following relation is derived from 
(8) 

S
ppp

SB p θπθ )1(2)1()1( −+Φ−−=−−                         (25) 

where  is a nonnegative integer. Thus if ))(( πθ += Swp p  is 

an odd integer, (25) is reduced to )( pSSB θπθ =+  and if 
 is an even integer, it is reduced to p )( pSSB −=− θπθ . 

Thus the requirement for the shadow boundary is satisfied for 
any . The same story holds for p *)( πθθ −= SSB . Conse-
quently the angle for the shadow boundary is given by 

*)( πθθ ±= SSB                                                           (26) 

where (7) and (8) are used to calculate the original angles in 
(26). Thus SBθ  changes complicatedly as a function of Sθ  

and Φ . This makes it difficult to analyze  in the 
vicinity of 

),( θrU D

SBθ . On the other hand the simple structure of the 
discontinuity points in ),( θrE  as mentioned above makes it 
simple and straight forward to analyze ),( θrE in the vicinity 
of the discontinuity point.  

6. HIGH-FREQUENCY APPROXIMATE SOLUTION  

Calculate high-frequency approximate solution of ),( θrE  in 
the nondiffractive wedge firstly and then extend the result to 
the arbitrary wedge. The potential in the nondiffractive 
wedge is described by the geometrical optics solution and is 
given by 



23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010 

ICA 2010 5 

)|,()2/|,( 12

0∑ −

=
===Φ q

i i
Fi SSrUmqrU θπθ         (27) 

where (13) and (24) are used. Let ),( θrF  be the fundamen-
tal solution of ),( θrE  and is given by 

∫ ∂−∂+−=
)(

)2(
0 j)4/(/|)|(H))((),(

θ
θ

L
dkrkgrF ll l nrr S    

(28) 

where (3) is used. As seen in (28), ),( θrF  corresponds to 
),( θrE  in the free space, that is, there is the source S  in the 

space but no scatterer and no diffracted waves in it. But as 
mentioned in the section 5.2, there are elementary diffracted 
waves in the space and the most fundamental characteristics 
of diffracted waves can be seen in them as shown below. 
Thus ),( θrF  is denoted as the fundamental solution. From 
(5), (27) and (28) ),( θrE  in the nondiffractive wedge is 
expressed as 

),()/2|,( 12

0 θπθ rFmqrE
i

q

i
i∑ −

=
==Φ                  (29) 

where ),( θrFi  is given by (28) if  is replaced by .  Sr )(iSr

In the analysis below, it is assumed that , so the 
Hankel functions are approximated as 

1, >>Skrkr

       (30) 
).4/3jjexp()/2()(H

),4/jjexp()/2()(H
2/1)2(

1

2/1)2(
0

ππ

ππ

+−≅

+−≅

xxx
xxx

6.1 High-frequency approximate solution of ),( θrF    

Let us divide the space into two regions. One is a large angle 
region (abbreviated by LR) and is defined by the relation 

 where Ω  is a constant that depends on kr  and 

. The other is a small angle region (abbreviated by SR) 
and is defined by |

Ω>− || Sθθ

Skr
Ω≤− |Sθθ . The relation (28) is evaluated 

for LR and SR separately.  

 

Figure 4 Analysis in large angle region LR 

6.1.1 ),( θrF  in LR  

The following relations hold in the vicinity of  in Figure 4,   Q

)sin(|)|(H/|)|( )2(
1

)2(
0 SkkkH θθ −−−=∂−∂ SS rrnrr ll ,   (31) 

)cos(|| SSr θθ −−≅− ll Srr .                                            (32)     

Then (28) can be rewritten as 

)33(,)))cos(1(jexp(

))(8/()(jexp())(sin(),(

0

2/1

ll dk

rrrrkrF

S

SSS

∫
∞

−−−

+−−=

θθ

πθθθ
   

where (30) is used. Performing the integration by part and 
taking the first term, (33) can be rewritten as 

)2/)cot((),( S
HL RrF θθθ −=                                    (34) 

where superscripts H and L  stands for the high-frequency 
approximate solution and the large angle region respectively 
and  is a constant and is given by R

))(8/())(jexp(j 2/1
SS rrkrrkR π+−−= .                      (35) 

As seen in (35), the amplitude of R  is proportional to 
. Thus (34) shows the cylindrical waves from S  

that are scattered by the apex Q . Thus 

2/1)/(1 Srr
HLF  corresponds to 

the scattered component in F . As seen from (34), however, 
HLF  does not work in the vicinity of Sθθ = . 

 

Figure 5 Analysis in small angle region SR 

6.1.2  ),( θrF  in SR  

Let P  be a foot of perpendicular dropped from Q  to the line 
 and from a closed region connecting OS )(θL , , a half 

line , a small half circle C  that is centered at S , and a 
partial circle of very large radius C  that is centered at Q  as 
shown in Fig.5 and apply the Green’s theorem to this closed 
region.. Then the following relation is obtained  

PQ
PS S

∞

.0//

/2/),()sgn(
)(

=∂∂−∂∂+

∂∂−+−−

∫
∫

QP

FF

L

FF
S

dnUgngU

dnUgrU

l

l
θ

θθθ
     (36)      

The contributions from PS  and C  are assumed 0 and the 
first term in the right side of (36) is the contribution from  
and the second term corresponds to 

∞

SC
),( θrF . Then (36) is 

rewritten as  

ldnUgngUrUrF Fa FF
S ∂∂−∂∂−−= ∫ //2/),()sgn(),(

0
θθθθ

                                                                                   (37) 

where a  stands for the length of  and is given by PQ

)/()sin( SSS ddrra +−= θθ                                  (38) 

where  and  stand for the length of OP  and  re-
spectively. Thus the other expression of the fundamental 
solution is obtained. By assuming |

d Sd PS

1|<<− Sθθ  and (30), (37) 
can be rewritten as 
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)))((4/())(jexp()Fr(
2/),()sgn(

)2/)(jexp(

))(4/())(jexp(
2/),()sgn(),(

2/1

11
0

2

2/1

SS

F
S

S

a

SS

F
S

HS

ddkddkb
rU

dddk

ddddk
rUrF

++−−

−=

+−⋅

+−−

−=

−−∫

π

θθθ

π

θθθθ

ll    

(39) 

where the superscript S  stands for the small angle region 
and Fr  the Fresnel function and is given by  

dttx
x

)2/jexp()(Fr
0

2∫ −= π                                       (40) 

where  and  is given by )r(F)r(F xx −=− b

)41(.))(/()sin(
)/)((

2/1

2/111

SSSS

S

kdkdkdkdkrkr
ddkab

+−=

+= −−

πθθ

π
 

The second term of the right side of (39) becomes 0 at 
Sθθ =  and the first term jumps from  to . 

This jump is to compensate the discontinuity caused by the 
geometrical optics solution as mentioned in the section 4.  

2/U− F F

F

2/U

6.1.3 Role of Fresnel function  

Let us study the role of the second term of the right side of 
(39). If the Fresnel function is approximated as follows 

})/(1)){j/(2/jexp(2/j)1()(Fr 322 xxxx πππ −−+−≅    (42) 

where  is assumed, then the second term in (39) is re-
written as 

2>x
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                                                                                   (43)   

where  is assumed. The first term of 
the right side of (43) corresponds to the high-frequency ap-
proximate expression of . Thus this term is 
canceling the first term of the right side of (39) as b  be-
comes larger than 2. The following relation is assumed to 
hold at  

)exp(j/j/1 22 bb ππ ≅+

2/),( θrU−

Ω=− Sθθ

)j()/12/j( 22
SS krkrbbkdkd +−=−++− ππ .    (44) 

Then the second term of the right side of (43) can be rewrit-
ten as 

),(
))2/)tan(()2/)(cot((
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where the identity  is used and )2/cot()2/tan(sin/2 xxx +=
|)2/)tan((||)2/)cot((| SS θθθθ −>>−  is assumed since 

|| Sθθ −  is assumed to be very small. Consequently 

 holds at ),(),( θθ rFrF ≅ HLHS Ω=− Sθθ  and the high-
frequency approximate solution of ),( θrF  is given by  

),())(1(),()(),( θθθθθθθ rFPrFPrF HL
S

HS
S

H −−+−= ΩΩ   

(46) 

where  takes 1 for )(xPΩ Ω≤|| x  and 0 otherwise. The rela-
tion (46) is the basic one in the analysis below. 

As to the switching angle Ω , the following relations are 
obtained from (44) 
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And from (38) and (41) 
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Then from (47) - (50), Ω  is expressed as 

)))/(/((sin 2/12
10210

1 aaaaa −≅Ω − .                           (51) 

Note that three terms in , that is,  and 
direct waves and Fresnel term in , play their roles 
at right places. The direct waves in  compensates 
the discontinuity caused by the geometrical optics solution at 

 and the Fresnel term in  is equal to 0 at this 
angle but it cancels the direct waves and introduces the scat-
tered component so that 

),( θrF H ),( θrF HL

),( θrF HS

HS

HS

HSHL

),( θrF

Sθθ = ),( θrF

FF ≅  holds at Ω=− || Sθθ  

and  describes the scattered waves in LR. The 
Fresnel term plays the role to bridge the direct and scattered 
waves. This simple and straightforward structure of 

 deserves the name of the fundamental solution. 
The Fresnel function has been used in the analysis of diffrac-
tion frequently, but its role is made clear in this analysis.  It is 
necessary, however, to insert the wedge in the space to re-
lease the elementary diffracted waves from the cancellation. 
In return 

),( θrF HL

H ),( θrF

),( θrE  must satisfy the boundary condition at the 
edges of wedge.  

6.2 High-frequency approximate solution of ),( θrE  

By inserting (46) into (29), the high-frequency approximate 
solution of )2/|,( qrE πθ =Φ  is expressed as 

∑
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where  and  stand for  and 

 for 

),( θrF HL
i ),( θrF HS

i ),( θrF HL

),( θrF HS
iSS =  respectively. The first term of the right 

side of (52) shows that the sources in SR must be included in 
))(),...,((, Ω+Ω−= θθ wwiWi where (7) is used. If the fol-

lowing identity is used [6] 

qxqxqiq

i cot)/cot(1

0 =+−∑ −

=
π                                      (53) 

the second term in (52) can be reduced as 
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(54) 

The right side of (54) for the hard wedge  becomes )1( =m

))2/sin()2//(sin()2/cos()/( Φ−ΦΦΦ SR πθπθπθπ    (55) 

and is equal to zero at the boundary Φ±= )12( iθ  where  
stands for an integer. For the soft wedge 

i
)1( −=m  it be-

comes 

))2/sin()2//(sin()2/cos()/( Φ−ΦΦΦ SSR πθπθπθπ     (56) 

and its derivative is equal to zero at the boundary. Thus The 
right side of (54) satisfies the boundary conditions for an 
arbitrary wedge although the nondiffractive wedge is as-
sumed in its derivation. Note that the first term of the right 
side of (52) takes non-zero values only in the vicinity of the 
source and the behavior of the potential near the source is 
almost the same for arbitrary wedge. Consequently the high-
frequency approximate solution of ),( θrE  can be expressed 
as 
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                                                                                        (57) 

As seen in (57), the direct and scattered waves that are con-
tained in , are not separated in space, while those in 

, are separated. This may be considered as the ex-
penditure to fulfill the boundary condition. 

),( θrE H

H

D

H

),( θrF

7. CALCULATION OF DIFFRACTED WAVES 

From (18) and (57), the high-frequency approximate solution 
of  is expressed as ),( θrU

),(),(),( πθπθθ −++−= rErErU HHDH .               (58) 

If  and  hold, that is, 
if the observation point is placed far from the shadow 
boundaries,  is expressed by the second term of the 
right side of (57). Then after some algebraic calculation, (58) 
can be expressed as 

Ω>−+ |*)(| θπθ S Ω>−− |*)(| θπθ S

),( θrE

)2()(),( Φ+++−= SS
DH mzzrU θθθθθ ,                 (59) 
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xRxz

.           (60) 

The relations (59) and (60) correspond to the conventional 
high-frequency approximate solution literally that is derived 
from the rigorous solution of waves diffracted by the wedge 
[7]. It is rare to find the relation derived from the rigorous 
solution in the relations deducted from the model formulated 
by a top-down physical principle. Thus the principle is vali-
dated fairly by this result. The above approximate solutions, 
however, do not work in the vicinity of shadow boundary. 
The role of diffracted waves lies in the compensation of dis-
continuity caused by the geometrical optics solution, that is, 
discontinuity at shadow boundary. Thus the above agreement 
may not be enough to validate the principle firmly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Comparison of approximate solution (58) and rigor-
ous solution (61) for π=Φ , ,1=m λ5=r , λ6=Sr  and 

πθ 5.0=S . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Comparison of approximate solution (58) and rigor-
ous solution (61) for π=Φ , ,1=m λ20=r , λ24=Sr  and 

. πθ 5.0=S

Since no high-frequency approximate solution that works in 
the vicinity of the shadow boundary, is derived from the rig-
orous solution,  calculated by (58) is compared 
with  calculated by the rigorous solution. The rigor-
ous solutions of the potential 

),( θrU DH

D ),( θrU
),( θrU  in the hard and soft 

wedges are given by [8], [9]  
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Figure 8 Error in the approximate solution in figures 6 and 7 
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 (61) 

where ν=π/2Ф, Jpv and Hpv
(2) stand for the Bessel function of 

real order and the second kind Hankel function of real order 
respectively, ε0 = 1, εp = 2, (p≠0), and r < rS is assumed. By 
subtracting the geometrical optics solution from the potential 
calculated by (61), the rigorous solution UD(r,θ) is obtained. 

The graphs of UD and UDH for Φ＝π, m=1 and θS=0.5π 
are shown in figures 6 and 7. Since in this case UD is anti-
symmetric with respect to θ=0 [2], the graphs are shown 
only for 0.0<θ/π< 1.0. From (26), θSB = ±0.5π. Thus the 
potential in these fugures changes discontinuously at θ = 0.5
π. Figure 6 corresponds to the graphs for r/λ=5.0 and rS/λ
=6.0 and figure 7 for r/λ=20.0 and rS/λ=24.0. From (51), 
Ω=0.214π in figure 6 and 0.137π in figure 7. In the calcu-
lation of UDH , the first term in the right side of (57) takes 
nonzero values for |θ - 0.5π|<Ω, that is, 0.286π< θ < 0.714
π in figure 6 and  0.363π< θ < 0.637π in figure 7. The 
potentials in these graphs are normalized by that of the direct 
waves, that is, UF and the real and imaginary parts of the 
normalized potential are shown in these figures. Conse-
quently only the real part shows the jump of amplitude 1.0 at
θ=0.5π that corresponds to the angle for shadow boundary. 
Two Graphs in figure 7 are almost overlapping while in fig-
ure 6 the deviation of two graphs become evident around the 
switching angles θ=0.286π and 0.714π, especially in the 
imaginary part. The error in the approximate solution is 
evaluated in figure 8. As seen in this figure the error becomes 
largest at the switching angles and the high-frequency ap-
proximate solution is working properly in the vicinity of 
shadow boundary. 

8. SUMMARY AND DISCUSSION 

By applying the Huygens-Fresnel principle to the virtual 
space, a mathematical model for diffracted waves is con-
structed in terms of the elementary diffracted waves. By in-
troducing the elementary diffracted waves, the physics of 
wedge diffraction and a new mechanism for generating dif-
fracted waves are made clear. The elementary diffracted 
waves can be contained in the wave field in a pair and the 
pair of them is cancelled out each other except the wedge 

releases them from the cancellation. Thus simple and well-
defined wave fields that contain no diffracted waves, such as 
free wave field and field in nondiffractive wedge, contain 
elementary diffracted waves in them and can be used as ideal 
wave fields for analyzing elementary diffracted waves. Con-
sequently the high-frequency approximate solution of waves 
diffracted by the wedge for any observation angle can be 
deducted from our model. At the observation angle far from 
shadow boundaries, the deducted solution agrees to the con-
ventional approximate solution derived from the rigorous 
solution literally. And our approximate solution works in the 
vicinity of shadow boundaries whereas in the conventional 
analysis it is not succeeded to derive the approximate solu-
tion that works in the vicinity of shadow boundaries [10]. 
The success of our model lies mainly in the simple structure 
of elementary diffracted waves around shadow boundary. 
Thus our top-down physical principle for diffraction is vali-
dated firmly by these results. 
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The virtual space is formulated by emitting wave rays from 
the observation point into all directions where the ray goes 
straight and is reflected at the boundary, and rearranging the 
potential on the ray as though it would go straight without 
reflection. Inversely the ray emitted from any point in the 
virtual space passes through the observation point. Thus if the 
secondary wavelet behaves like a particle in propagation and 
like a wave in addition, the application of the Huygens-
Fresnel principle to the virtual plane corresponds to gathering 
all the secondary wavelets that attain the observation point to 
determine the potential at that point. The wave-particle dual-
ity that is popular in quantum physics, is also working at the 
core of diffraction process in classical physics and it gives the 
scheme to provide unique virtual space to each observation 
point. This simple and understandable principle deserves an 
underlying principle for wave propagation in a space that 
contains perfectly reflecting objects. This statement will be 
supported by the simplicity and effectiveness of the principle 
in analyzing various diffraction phenomena. 
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