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ABSTRACT

Non-destructive inspection of plates and plate-like objects is often performed by local thickness measurements requiring
scanning of the object under investigation. A viable alternative is given by flexural waves, which propagate along the
plate and can be used to retrieve information on remote locations by measuring the scattered field. In order to obtain an
image of inhomogeneities in the plate, the dispersive characteristics of flexural waves have to be taken into account. The
resolution and the quality of the resulting image can be improved by several means. The most important parameters
in this context are the frequencies employed for imaging and the positions of sources and receivers with respect to
the region to be imaged. On the processing side, further improvement of the quality of the obtained images can be
achieved by regularizing the inverse imaging problem using a priori assumptions on the structures to be expected. Results
obtained by regularization with maximal sparseness or minimal total variation are presented. As an alternative to these
‘mathematical’ regularization techniques, a more advanced physical model of the scattering can be employed to explain
the measured data. Abandoning the Born approximation and including multiple scattering between the defects in the
model is shown to lead to images with high resolution and low noise level.

INTRODUCTION

Plates and plate-like objects can be inspected by measuring the
local material thickness using bulk waves. However, this method
is time-consuming due to the required scanning of the inspected
structure. The usage of guided waves forms a viable alternative:
guided waves propagate along the plate. Waves being reflected
or scattered from inhomogeneities in the medium can be picked
up at a limited number of receiver points. In a subsequent step,
the measured signals can be used to create an image showing
the position and severity of defects.

In general, guided waves are dispersive: their propagation ve-
locity depends on the frequency, such that wave fronts from
an impulsive source spread out with increasing distance from
the source (Auld 1973). This property has to be dealt with in
order to obtain accurate information on the location of primary
(excitation) or secondary (diffraction) sources in the wave field.

Flexural waves, also known as bending waves, are one member
of the family of guided waves in plates. They are used in this
work as a typical dispersive wave type that can easily be gener-
ated and measured. Flexural waves can be excited at relatively
low frequencies and form the main cause for sound radiation
from vibrating plates.

This paper is structured as follows: A method for removing the
effects of dispersion from measured time signals is described,
followed by a discussion of techniques for the generation of
an image of material properties using information available
at a limited number of receiver points. Several regularization
methods for this inverse imaging problem are introduced and
compared. As an alternative solution, results obtained with a
more sophisticated physical model including multiple scattering
are presented.

THE FLEXURAL WAVE EQUATION

The propagation of flexural waves is described by a fourth order
differential equation:(

∇
4−ω

2 m
B

)
u(ω,x) = 0, (1)

with x = (x,y)T representing the spatial coordinate, B being the
bending stiffness and m representing the mass per unit area of
the plate (Cremer et al. 2005). In this simple form, the bending
stiffness B is assumed to be constant, whereas the mass per unit
area is allowed to vary (Leissa 1969). The Green’s function
G(ω,x0,x) can be shown to have the following form:

G(ω,x0,x) =− j
8k2

[
H(2)

0 (k∆x)−H(2)
0 (− jk∆x)

]
, (2)

with ∆x = |x− x0|, x0 being the point of origin, j =
√
−1 rep-

resenting the imaginary unit and k being the wavenumber:

k =
√

ω
4

√
m
B

. (3)

From Eq. 3, it can be seen that the wavenumber k depends
nonlinearly on the frequency ω .

For higher frequencies or higher distance from the source, the
Green’s function is approximately proportional to a simple
exponential function:

Gapprox(ω,x0,x) ∝ e− jk∆x = e− j
√

ω 4
√

m
B ∆x. (4)

The effects of dispersion arise due to the fact that the phase
spectrum of the Green’s function depends nonlinearly on the
frequency. This nonlinear dependency makes the wave fronts
spread out with advancing time and with increasing distance ∆x
from the source.
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REMOVAL OF THE EFFECTS OF DISPERSION

The dispersion relation between wavenumber and frequency de-
scribed by Eq. 3 can be used to remove the effects of dispersion
by performing a mapping from frequency to wavenumber in the
spectral domain. In this mapping, the spectrum is resampled
according to the dispersion relation. The phase spectrum de-
pending nonlinearly on the frequency is mapped to a phase spec-
trum depending linearly on the wavenumber. This idea has been
developed in the fields of optical communication (Brinkmeyer
and Ulrich 1990) and non-destructive inspection (Wilcox 2003).
Figure 1 gives an overview of the processing steps. Dispersive
time signals are thereby converted to non-dispersive spatial sig-
nals providing information on the distance of an event in the
wave field to the receiver point.
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Figure 1: Schematic overview of the spectral mapping scheme
for dispersion removal; a dispersive temporal signal is converted
to a non-dispersive spatial signal.

This technique for dispersion compensation can be applied to a
time signal measured at a single position in order to retrieve the
location of a primary source, i.e., the point of excitation, or a
secondary source, for instance caused by diffraction due to an
inhomogeneity.

FORWARD IMAGING MODEL

A better insight in the state of the plate under investigation
can be obtained by the formation of a two-dimensional image
revealing the position of possible inhomogeneities. The image
is generated based on measurements taken using Ns sources and
Nr receivers with source index s and receiver index r for Nω dif-
ferent frequencies . A single measurement is obtained by using
one source-receiver pair. The incident wave field uinc(ω,s,x)
caused by each source is assumed to be known. The total field
u(ω,s,x) that can be observed is modeled as the sum of the
incident and the scattered field:

u(ω,s,x) = uinc(ω,s,x)+usc(ω,s,x). (5)

It satisfies the wave equation for the position-dependent wave-
number: [

∇
4− k(x)4

]
u(ω,x) = 0, (6)

whereas the incident field satisfies the wave equation for the
wavenumber k0 of the plate without inhomogeneities:(

∇
4− k4

0

)
uinc(ω,x) = 0. (7)

Subtracting Eq. 7 from Eq. 6, the following wave equation is
obtained for the scattered field caused by the inhomogeneities:(

∇
4− k4

0

)
usc(ω,x) =

[
k(x)4− k4

0

]
u(ω,x) = k4

0 χ(x)u(ω,x).
(8)

The scattered field can thus be interpreted as a field caused
by material inhomogeneities acting as secondary sources that
are activated by the total field. The source term on the right
hand side of Eq. 8 is usually referred to as the contrast sources
w(ω,x):

w(ω,s,x) = k4
0 χ(x)u(ω,s,x). (9)

The inhomogeneities, i.e., local deviations in material prop-
erties, are represented by a position-dependent dimensionless
contrast function χ(x):

χ(x) =
k(x)4

k4
0
−1. (10)

If there is no inhomogeneity present, k(x) = k0, and the con-
trast is equal to zero. In order to be able to apply the simple
bending wave equation given by Eq. 1, the contrast has to be
dependent on a change in mass per unit area only. This means,
for instance, that the model tries to explain a physically present
change in material thickness by a change in mass density for
reasons of simplicity. A similar choice is often made for the
calculation of the scattered field of acoustic waves by assuming
the mass density to be constant and explaining all observations
by changes in compressibility. However, it must be noted that
such a simplifying approximation might limit the performance
of the imaging algorithm (van Dongen and Wright 2007).

The Born approximation

If the contrast and the total wave field are known, the scat-
tered field is easily calculated by the spatial convolution of the
Green’s function for flexural waves with the contrast sources
defined by Eq. 9:

usc(ω,s,x) = k4
0

∞∫
−∞

G(ω,x,x0)χ(x0)u(ω,s,x0)dx0. (11)

The operator G is introduced as a short notation for this calcu-
lation:

usc(ω,s,x) = Gw(ω,s,x0). (12)

It can be seen that there exists an implicit relation between the
total field and the scattered field: the scattered field depends on
the total field, which is formed by the incident and the scattered
field. The problem can be simplified by application of the Born
approximation, which assumes that the total field incident on the
scatterer can be approximated by the incident field (De Hoop
1995). This approximation is valid if the scattered field is much
smaller than the incident field. A concurrent estimation of both
the total field and the contrast is thereby avoided.

usc(ω,s,x)≈ k4
0

∞∫
−∞

G(ω,x,x0)χ(x0)uinc(ω,s,x0)dx0. (13)

The scattered field measured at the receiver locations xr can
then be calculated:

usc(ω,s,r)≈ k4
0

∞∫
−∞

G(ω,xr,x)χ(x)uinc(ω,s,x)dx. (14)

This operation can be expressed by the operator GR performing
a mapping from the contrast to the receiver signals for a given
incident field:

usc(ω,s,r) = GRχ(x). (15)
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THE INVERSE IMAGING PROBLEM

The reconstruction of the contrast χ(x) from measurements
usc(ω,s,r) at the receiver points for possibly different source
positions is known as the inverse imaging problem. In a straight-
forward approach, Eq. 15 can formally be inverted in a least-
squares sense:

χ(x) =
(

G†
RGR

)−1
G†

Rusc(ω,s,r), (16)

with the superscript dagger denoting the hermitian adjoint of
an operator. The operator GR is, in general, ill-conditioned,
such that direct inversion is not possible. Hence, stabilization
and possibly regularization are required to overcome the ill-
posedness. There exist several strategies to tackle this objective,
some of which are discussed in the following sections.

Backpropagation

A first approximation to the full inversion as presented in Eq. 16
is given by applying only the adjoint operator:

χ(x) = G†
Rusc(ω,s,r). (17)

This approach is known as backpropagation. From a physical
point of view, it provides a correct solution only for the phase
spectrum. Therefore, it enables correct localization of inhomo-
geneities, but provides rather poor resolution due to the fact that
the amplitude spectrum is not perfectly inverted.

Furthermore, the positions of sources and receivers determine to
what extent the wavenumber spectrum of the inhomogeneities
can be retrieved in the image (Langenberg 2002). A coincident
source-receiver pair, for instance, is able to retrieve spectral
content at wavenumbers equivalent to half the wavelength of
the frequency employed for imaging. This setup is thus ade-
quate for the imaging of strong, localized transitions in material
properties. A resolution of approximately half a wavelength
must be regarded as the general limit for imaging under the
Born approximation (Wolf 1969).

In a tomography setup with source and receiver on opposite
site of the region to be imaged, spectral content corresponding
to lower wavenumbers can be retrieved. Hence, such a setup
is suited for the detection of gradual variations of material
properties over a larger region. For optimal imaging setups,
both aspects have to be combined. The ideal constellation is
obtained if the imaging region is surrounded by sources and
receivers.

Figure 2 shows a simulation setup for an aluminum plate of
3 mm thickness with a number of transducers able to act as
both sources and receivers. The transducers are positioned on a
semicircle on one side of the imaging domain.

The region to be imaged contains three inhomogeneities, the
true contrast of which is depicted in Fig. 3. In the simulations,
the full forward problem including multiple scattering is solved,
and the total field in the plate is calculated. Four different fre-
quencies between 500 Hz and 4 kHz are used for the imaging
process. In order to make the simulations more realistic, 10 %
noise is added to the receiver signals.

The imaging result obtained by backpropagation is shown in
Fig. 4. The constellation of defects can be recognized. However,
the defect on the left side is imaged more clearly than the one
on the top. This is due to the fact that the array of sources and
receivers positioned to the right of the imaging region images
the vertically oriented defect as a strong reflector, whereas the
horizontally oriented defect of equal severity reflects signifi-
cantly less energy towards the array. It is recognizable only by
the diffraction from its tips.
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Figure 2: Simulation setup used for the calculation of the re-
ceiver signals.
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Figure 3: Image of the true contrast as used in the simulation.
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Figure 4: Imaging result obtained by backpropagation.

Regularized imaging

If the resolution cannot be optimized by choosing a different
frequency range or a different setup of sources and receivers,
regularization of the inverse imaging problem provides another
method of increasing the resolution of the resulting image.

A common choice is the well-known Tikhonov regularization:

χ(x) =
(

G†
RGR + γ I

)−1
G†

Rusc(ω,s,r), (18)
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with γ being an operator controlling the strength of the regular-
ization Hansen (1998).

Tikhonov regularization minimizes the energy of the estimated
image. A common criticism of such a type of regularization is
the smoothness of the results produced. The parameter γ has
to be carefully chosen to find an optimum between an overly
smoothed result and the unwanted amplification of measure-
ment noise.

An image obtained by inversion with Tikhonov regularisation
is shown in Fig. 5. Inversion compensates for the difference in
sensitivity of the array with respect to horizontally and vertically
oriented defects. All three defects can be recognized. However,
even with smoothing regularization, the noise present in the
data is amplified and causes severe artifacts, some of which
could be regarded as false positives.
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Figure 5: Imaging result obtained by inversion with Tikhonov
regularization. The object can be recognized, but severe artifacts
caused by measurement noise are visible as well.

Instead of using general mathematical regularization methods,
a more useful image can be obtained by means of a regularizer
relying on a priori knowledge on the typical structure of the
image to be expected. In the following, two regularizers of
this kind, namely a sparseness constraint and a total variation
constraint, are presented and compared.

Sparseness constraint

The assumption of sparseness is useful if the imaging result is
expected to contain only a few localized defects, whereas the
biggest part of the image shows no deviation from the standard
medium properties. There are different methods of promoting
sparseness in an inversion scheme. In this work, the approach of
Sacchi and Ulrych is adapted (Sacchi et al. 1998). The additive
regularization term is chosen to be position-dependent. Stronger
regularization is thereby applied to regions for which there is
little information from the data:

χ(x) =
[
G†

RGR + γ Q(x)
]−1

G†
Rusc(ω,s,r), (19)

with the operator Q(x) having the following form:

Q(x) = 1+
|χ(x)|2

2σ2 . (20)

This operator can be derived by assuming the amplitudes of the
image values to obey a Cauchy distribution. The parameter σ

is used to control the amount of sparseness. Both regularization
parameters γ and σ can be chosen automatically based on the

expected sparseness (Zwartjes 2005) and the maximum ampli-
tudes in the image (Hörchens 2010). Both the regularizing term
Q and the estimate of the contrast χ are then updated alternately
in an iterative scheme.

Figure 6 shows the image obtained with sparse inversion. It
can be seen that the noise is significantly better damped in
comparison to the image generated using Tikhonov inversion as
shown in Fig. 5. The point-like defect is recovered with superior
resolution. The extended inhomogeneities, however, are less
visible. For the defect on the top, only the two tips can be seen.
The information on extended defects that is only weakly present
in the measurements is suppressed for the sake of fulfilling the
sparseness constraint.
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Figure 6: Imaging result obtained by inversion with sparse
regularization. Point-like structures and tips of extended defects
are retrieved better than regions of constant contrast.

If it is known in advance that the inhomogeneities to be de-
tected are point-like, the sparse regularizer can help to achieve
excellent resolution. However, if smooth variations in material
properties or less severe defects are present, it is likely that
these are suppressed in favor of point-like structures. Therefore,
it is possible that defects are missed, despite the fact that there
is actually evidence for their presence in the measured data.

Total variation constraint

A less presumptive method is given by minimizing the total
variation of the obtained image. The regularizing functional
E to be minimized is based on the magnitude of the image
gradient and has the following form:

E =
∞∫
−∞

|∇χ(x)| dx. (21)

In the present work, an iterative inversion scheme presented by
Abubakar et al. is applied (Abubakar et al. 2004). In this scheme,
the total variation constraint is included as a multiplicative term,
such that no extra regularization parameters have to be chosen.
The total variation constraint allows for slow variations and
sharp transitions while at the same time reducing the influence
of measurement noise on the resulting image. This kind of
regularization can be characterized as more appropriate for
general defect detection than the sparseness constraint.

The imaging result obtained by inversion with regularization
by total variation is shown in Fig. 7. The inhomogeneities can
clearly be seen, and noise is suppressed to a sufficient extent.
The main difference to the true contrast as depicted in Fig. 3 is
the incorrect estimation of the severity of the defects as can be
seen from the color scales in both figures.
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Figure 7: Imaging result obtained by inversion with minimum
total variation as regularization constraint. A good balance be-
tween the suppression of noise and the retrieval of the shapes
of the inhomogeneities is found.

IMAGING BEYOND THE BORN APPROXIMATION

An alternative to the inclusion of assumptions on the structure
of the image to be expected is the usage of a more sophisticated
physical imaging model. If the Born approximation is aban-
doned, multiple scattering present in the measurement data can
be used for the generation of the image, thereby improving the
accuracy and resolution of the result (Simonetti 2006).

Contrast source inversion

The main problem is given by the fact that the total wave field
in the plate is not known in advance. Therefore, the total wave
field must be estimated along with the contrast. To this end,
the contrast source inversion (CSI) method is applied (van den
Berg et al. 1999). Contrast source inversion starts out from a
rough estimate of the contrast sources, the total field, and the
contrast. Such an estimate can be obtained by backpropagation:

w0(ω,s,x) = G†usc(ω,s,r), (22)

u0(ω,s,x) = uinc(ω,s,x)+Gw0(ω,s,x), (23)

χ0(x) =
1

Nω

Nω

∑
ω=1

∑
Ns
s=1 w0(ω,s,x)u∗0(ω,s,x)

k4
0 ∑

Ns
s=1 |u0(ω,s,x)|2

, (24)

with the superscript asterisk denoting the complex conjugate.
The estimate of the contrast given by Eq. 24 can be obtained
by inverting the definition of the contrast sources (Eq. 9) in a
least-squares sense, with the information available at different
frequencies weighted equally (Hörchens 2010).

In subsequent iterations, two error functionals are minimized:

1. The receiver signals must be caused by the contrast
sources:

ER =
Nω

∑
ω=1

‖usc(ω,s,r)−GRw(ω,s,x)‖2
R

‖usc(ω,s,r)‖2
R

, (25)

with ‖·‖2
R being the L2-norm with respect to the receiver

signals.
2. The incident and the scattered field must add up to the

total field:

ED =
Nω

∑
ω=1

∥∥k4
0 χ uinc−w+ k4

0 χ Gw
∥∥2

D∥∥k4
0 χ uinc

∥∥2
D

, (26)

with ‖·‖2
D being the L2-norm with respect to the domain

of the wave field. In this equation, the explicit depen-
dency on variables has been dropped for the sake of a
short and clear notation.

The above functionals are minimized by a conjugate gradient
scheme, in which updates for the different variables are obtained
in the following order:

1. First, an new estimate of the contrast sources w(ω,s,x)
is calculated.

2. In a second step, the total field u(ω,s,x) is updated based
on the current estimate of the contrast sources.

3. Subsequently, a new estimate of the contrast χ(x) can
be obtained from the current total field and the contrast
sources.

The image obtained by contrast source inversion is shown in
Fig. 8. The inhomogeneities are significantly better retrieved
than by inversion under the Born approximation (Fig. 5). By
taking multiple scattering into account, the imaging model is
able to make use of the full potential of the measured data.
Under the Born approximation, the part of the wave field due
multiple scattering cannot be explained by the simplified model
and ends up as noise causing imaging artifacts.
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Figure 8: Imaging result obtained by contrast source inversion.
The inclusion of multiple scattering has a positive effect on the
obtained resolution and the suppression of noise.

It can be stated that the inclusion of multiple scattering acts
as a kind of regularization. However, in contrast to methods
presented above, it is not based on assumptions on the typical
image structure. On the contrary, contrast source inversion uses
the evidence already present in the data to achieve a better
imaging result.

It is, of course, possible to combine contrast source inversion
with additional regularization. Figure 9 presents the imaging
result obtained by contrast source inversion with regularization
by total variation. The inhomogeneities are even better retrieved
than in Fig. 8.

However, even with an imaging model including multiple scat-
tering, the severity of the defects is underestimated as can be
seen by comparing the color scales of Figs. 3 and 9. The strength
of the contrast is more easily reconstructed if measurements
are taken all around the region of interest, and not only on a
semicircle. In the case that a full circular array is used, Fig. 10
shows that the not only the shape, but also strength of the inho-
mogeneities is correctly retrieved.
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Figure 9: Imaging result obtained by contrast source inversion
with additional regularization by total variation, compare to
Fig. 8.
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Figure 10: Imaging result obtained by contrast source inversion
with additional regularization by total variation for a full circular
setup of sources and receivers around the imaging domain. The
quality of the image is further improved, and the strength of the
contrast is retrieved correctly.

CONCLUSIONS

Several methods for imaging in flexural wave fields have been
presented. As a preliminary tool, dispersion compensation can
provide a first estimate of the position of primary and secondary
sources. A better insight is obtained by using techniques for the
generation of two-dimensional images. Based on an imaging
model, several methods have been presented and compared.

As the only non-iterative method, backpropagation enables the
rough assessment of the object under investigation. Better re-
sults can be achieved by inversion, which has to be regularized
in order to obtain useful results. The sparse regularization con-
straint has been shown to be too presumptive to be applicable
to defect detection in general, while minimization of the total
variation has led to satisfying results.

If the Born approximation is abandoned and an imaging model
including multiple scattering is used, images with high resolu-
tion and low noise level can be generated. Additional regulariza-
tion can be shown to be useful, but not essential for the image
quality. In order to obtain quantitatively correct estimates, a
setup of sources and receivers surrounding the imaging region
has to be preferred.
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