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ABSTRACT 

In attempting to experimentally characterize an acoustic system with a progressive, non-essential nonlinearity that is 
driven by a small amplitude excitation as a nominally equivalent linear time-invariant (LTI) system, the relevant met-
ric of measurement quality is the signal-to-noise-and-distortion (SINAD) ratio associated with the data rather than 
merely the signal-to-noise ratio (SNR) of the measurement. This sort of measurement involves an inherent trade-off 
between noise and distortion. At small drive levels, noise is problematic; whereas at larger drive levels, nonlinear dis-
tortion rather than noise limits the quality of the approximation. Although the noise can be independently character-
ized in a signal-free measurement, the distortion is not similarly accessible and must be neglected, assumed, or ap-
proximated. It is proposed that a reasonable empirical approximation to the SINAD can be achieved by applying a lin-
ear pulse compression to measured data such that the pulse response of the system along with some noise may be 
temporally separated from a significant portion of the measured noise and distortion. The approximate SINAD ratio, 
which is referred to as the apparent signal-to-noise ratio (ASNR) can then be formed with the ratio of energies com-
puted for each of these separated components. This scheme was tested on both numerical and experimental systems 
and found to yield a suitable surrogate for the SINAD, which could be used to evaluate the relative merits of various 
candidate probing signals. 
 

BACKGROUND 

Several authors have suggested that particular time-domain 
probing signals are advantageous for the characterization of 
LTI systems in comparison with logical alternatives [1, 2, 3, 
4]. These comparisons have focused on either observations of 
the characteristics of the signals under consideration or on 
idealized assumptions of the system under study.  A general-
ized scheme for evaluating the relative merits of a particular 
drive signal and an optimal signal level has not been pro-
posed, and relevant experimental comparisons have not been 
made. This is largely due to the difficulty involved in directly 
measuring the appropriate metric of performance: the SINAD 
ratio. 

Four features are appropriate for a candidate probing signal. 
First, the signal must be of sufficient duration to sample the 
reverberation of the system under study. In the case of tran-
sient or impulsive signals, this implies that the signal (or 
signal record) include sufficient quiet time. In the case of 
periodic signals, it implies that the period must be longer than 
the reverberation time. Here reverberation time is considered 
in a qualitative sense as indicating the time required for the 
response of the system to decay to a level of relative insig-
nificance for the purpose of the system’s characterization 
rather than the time required for a specific level of decay. 
Second, the bandwidth of the probing signal must be suffi-
cient for the characterization task, which is in-turn dependent 
on a subjective notion of characterization as all analytical 

representations of physical systems are approximations or 
abstractions.  Third, the peak level(s) and/or energy of the 
signal must be sufficiently low that the system’s behaviour is 
linear to the extent that it is required to be so for the purposes 
of the characterization and sufficiently high that the response 
can be distinguished from ambient noise. Although this trade-
off might be easily resolved by arbitrarily extending integra-
tion times, there is a fourth requirement that the signal or the 
period in which it is sampled must be sufficiently short in 
time that the system under study does not vary from the state 
in which it must be characterized or, in more pragmatic 
sense, that the information acquired is still relevant.  

For an approximation to the SINAD to be useful, it need not 
give the same numerical result provided that it can be used to 
correctly identify the optimal level for a particular signal and 
correctly rank the merit of a given signal with regard to oth-
ers. 

INTRODUCTION 

A linear pulse compression [5] can be generally represented 
in the time domain as: 
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where DFT and DFT-1 represent the discrete Fourier trans-
form and its inverse, v’(t) and r’(t) represent the measured 
drive signal and response, and v(t) and r(t) represent the com-
pression pulse shape and compressed response respectively. 
Provided that appropriate characteristics are selected for the 
signals and transforms, r(t) is the response that would have 
been observed from a linear system if it had been subjected to 
the drive v(t). This is a generalized formulation that reduces 
to the commonly used case of cross-correlation of the sys-
tem’s input and output when v(t) is chosen to be the autocor-
relation of v’(t). 

When Eq. 1 is applied to a system with observable nonlin-
earities, processing artefacts will result. These will not occur 
entirely at times representative of the system’s actual re-
sponse to v(t). A simple way of viewing this is that the sys-
tem-generated harmonics of a particular spectral component 
of v’(t) will be incorrectly phased in the compression based 
on the corresponding fundamental components of v’(t). These 
are temporally separate in a spectrographic sense because 
v’(t) is not impulsive. Thus the artefacts will also tend to be 
temporally separated from the actual response in r(t). The 
separation can be very large if the period of v’(t) is much 
longer than the pulse width of v(t), and can be separated from 
any components of the system’s response if the period is 
longer than the reverberation time of the system. This does 
not mean that one of these separate parts accurately repre-
sents the linear response of the system. It is merely coinci-
dent with this response rather than identical to it. In contrast, 
the artefacts are entirely related to the nonlinear response.  

Figure 1 depicts the temporal nature of these artefacts when 
they are produced by the quadratic-spring system described 
in the next section. In each of the four cases shown the sys-
tem and the compression signal are identical. The linear re-
sponse is therefore also identical. The portion of the response 
that is coincident with the linear response has been clipped at 
the far left side of this figure in order to emphasize the much 
smaller artefacts. The artefacts shown in this figure are repre-
sentative of those that were produced by the 11 probing sig-
nals that were considered in the two subsequent sections. 

Figure 1.  Typical nonlinear compression artefacts 

MODELLED RESPONSES 

In order to assess the viability of the proposed technique a 
simple system was considered: a parallel combination of a 
linear and a quadratic spring with force as the input variable 

and displacement as the output variable. The exact analytical 
solution for the system’s response was therefore given by the 
quadratic formula and is represented in Eq. 2 and Eq.3.  
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Because this system has infinite bandwidth, the input was 
coupled to a 4-pole Butterworth filter with a corner frequency 
at ¼ of the Nyquist frequency to restrict this. The reason for 
including this additional complexity was that several of the 
candidate probing signals that were studied were discontinu-
ous and therefore also had infinite bandwidth. This creates a 
difficulty in that, without bandwidth restrictions, the system’s 
nonlinearity will exactly mimic the response of a different 
linear system at any specific drive level using the discontinu-
ous drive.  

Although, there was no relevant temporal scale for this sys-
tem the same timescale was used as for the experimental 
results described in the following section. All of the drives 
and responses were sampled at 16 kHz. All of the probing 
signals covered a band of at least 50 Hz to 2 kHz. The same 
compression pulse was used for each of the simulations. This 
is given by: 
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where v is the source drive signal, A is an appropriate ampli-
tude coefficient, fc is the pulse centre frequency (450 Hz), 
and tc is the time at which the waveform is centred (5 mS). 
The amplitude spectrum of this is given by a similar function: 
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where ω is the radian frequency. The selection of compres-
sion pulse is indicative of the goals of system characteriza-
tion both temporally and spectrally. In this case the choice 
seems somewhat arbitrary as it was intended only to match 
the characterization goals of the experimental system. The 
ASNR was formed from the ratio of energy in the first 12.5 
ms to the energy at all later times. 

Eleven probing signals were used. All of them were periodic 
(i.e. circular). These signals fall into two classes. The first of 
these are the seven analog signals which were generated from 
analytical expressions. These include (1) a linearly-swept-
frequency (LSF) flat amplitude chirp, (2) a randomly phased 
spectrally flat multisine, (3) an LSF chirp with an amplitude 
envelope corresponding to the Gaussian compression pulse, 
(4) a flat amplitude chirp with a time-dependant phase that 
produced a Gaussian spectrum corresponding to the compres-
sion pulse, (5) a spectrally flat multisine with phasing nu-
merically adjusted to minimize its crest factor (CF), which is 
the ratio of the signals peak value to its RMS value [6], (6) a 
multisine with a Gaussian spectrum and numerically opti-
mized phasing and (7) a multisine with phases drawn from 
the discrete transform of a  214-1 bit maximum length se-
quence (MLS). The second class of signals are the four sig-
nals made up of binary sequences with zero-order-hold inter-
polation filters. These signals contained only values of ±1 by 
definition and were thus discontinuous regardless of the den-
sity of their sampling. The first of these signals was formed 
using a base band 214-1 bit MLS. This was sampled at 4 kHz 
resampled at 16 kHz such that each bit was represented as 
four identical values. All of the other signals were suffi-
ciently sampled at 16 kHz by definition. The fundamental 
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period of the two MLS-based signals was 4.096 seconds. For 
all of the other signals it was 4.000 seconds. The other three 
binary signals were formed by applying a signum function to 
three of the analog signals: the LSF Chirp, the Gaussian-
phased chirp, and the numerically optimized multisine.  

Nonlinear compression artefacts for all of these signals were 
similar to one of the forms depicted in figure 1 with the 
source of probing signal phase determining this form. For 
linearly phased signals, artefacts were similar to those de-
picted in the first (blue) curve. Gaussian phasing produced 
artefacts like those in the second (green) curve. MLS-based 
phasing produced artefacts like those in the third (red) curve. 
Random phasing or numerically optimized phasing, which 
was seeded with a randomly phased starting point, produced 
artefacts like those in the fourth (cyan) curve. 

Figure 2 shows a comparison for the exact SINAD, which 
was computed by subtracting the response of the system with 
the nonlinear spring and noise disabled to the compression 
pulse from the pulse-compressed response of the noisy 
nonlinear system, to the ASNR that was computed from the 
ratio of the time-separated components in the nonlinear re-
sponses. In this case and all of the modelled responses the 
value of K2 was 1% of the value of K1. Identical white noise 
was added to all of the responses at a level that was selected 
to place the optimal drive level within the dynamic range of 
the simulation. The probing signal represented in the figure is 
the LSF flat amplitude chirp. Its driving levels spanned a 
range of 30 dB in 1 dB steps with an upper limit of system 
collapse (i.e. the system does not recover from the peak com-
pressive component of the probing signal). The two curves 
have been shifted vertically to match at the lowest drive level 
(-30 dB). 

 

Figure 2. System output relative to noise and distortion 

It is apparent from the figure that the ASNR and the actual 
SINAD are in good agreement with regard to both the extent 
of linear response and the optimal drive level (-9dB). This 
agreement is typical for all of the probing signals that were 
tested although the other sets of curves were shifted horizon-
tally and vertically with respect to the set shown in the figure. 
The ASNR slightly overestimates the optimum drive level 
(by less than the 1-dB step size). This is also typical. The 
reason for this is that the nonlinear distortion and noise that 
are coincident with the response following a compression are 
neglected in the ASNR, which therefore consistently underes-
timates the total noise and distortion. The consistency and 
small size of this underestimate should make it easily cor-
rectable or negligible.  

Figure 3 depicts the relative merits of the four binary probing 
signals for the characterization of the modelled system. Each 
bar indicates the peak Y value of a curve similar to those 
shown in figure 1 scaled to the highest peak for each of the 
eleven signals. Three values are depicted for each drive sig-
nal. The first of these, the uncompressed SINAD which is 
shown in red, represents the peak SINAD computed directly 
from the probing signal: the energy in the simulated response 
divided by the difference between the actual response and the 
noiseless linear response to the probing signal. The second 
bar, the peak SINAD which is shown in blue, represents a 
similar ratio where the pulse compression is included in both 
responses. The third bar, which is shown in green, represents 
the peak ASNR which was computed from the energy ratio of 
the time-separated components. 

 

Figure 3. Performance of binary signals in modelled system 

It is clear from the figure that the ASNR and SINAD are in 
agreement with regard to ordering these four signals based on 
their merit. There are quantitative disagreements between 
these metrics (particularly for the two best signals) with re-
gard to the actual figures of merit. These are on the order of 1 
dB. The uncompressed SINAD does not agree with the other 
two metrics with regard the ordering and merely sorts the 
four signals based on their crest factors evaluated after the 
low-pass filter (all the signals were binary and had CF≡1 
before the filter) these range from CF=1.40 to CF=1.53. The 
disagreements are therefore indicative of the suitability of 
each signal for both the system and for the characterization 
task as it has been defined rather than for the system alone. 

Figure 4 depicts the response of the system to the seven ana-
log signals using the same convention and vertical scale as 
figure 3. 

 

Figure 4. Performance of analog signals in modelled system 
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It is apparent that all of these signals, which had lower crest 
factors than the binary signals both in their archetypal form 
and after the system’s low-pass filter, are inferior to the best 
binary signal by 4dB to 11dB. It is interesting to note that 
comparing the analog to the binary signals shows no clear 
relationship between the origin of the probing signal’s phase 
and its merit. The best binary signal was based on a Gaussian 
phasing whereas the best analog signal was derived from an 
MLS. It is also interesting to note the extent to which the 
superiority of the analog signals is not well predicted by their 
crest factors.  The best analog signal had CF=2.68 pre-filter 
and CF=2.45 post-filter compared to 1.41 and 1.45 for the 
optimized Gaussian multisine. As with the binary signals, 
post-filter crest factors correlate well with the uncompressed 
SINAD. In this regard, it is interesting that the best analog 
signal has no prescribed relationship with either the Gaussian 
spectrum of the compression pulse or the flat spectrum of the 
additive noise, but has a greater affinity for this compression 
task than the signals that were based on it. 

MEASURED SEISMIC RESPONSES 

An experiment was conducted in which the eleven probing 
signals previously described were used as the inputs to a 
seismic system that was constructed to image shallow-buried 
landmines [7]. These signals were used as voltage inputs for 
an audio amplifier that drove an electrodynamic shaker cou-
pled to the surface of a large tank filled with damp com-
pacted sand. The response of this system was the output of a 
vertically oriented accelerometer, which was buried at one of 
four fixed distances from the source. The closest accelerome-
ter was directly below the foot coupling the source to the 
ground, and the furthest was 1.6 m away. The configuration 
of this experiment has been described in a previous paper [8]. 
In a linear sense, this is a theoretically complex system with 
multiple modes of propagation and multiple paths of propa-
gation between the source and the receiver.  Nonlinearity 
further complicates the system such that a predictive numeri-
cal model is not practical. Previous experiments have docu-
mented various manifestations of nonlinearity in this system 
including spall, nonlinear dispersion, and dynamic fluidiza-
tion, in both the propagation path and the source-to-surface 
coupling. 

The noise in the experiment was ambient and uncontrolled. 
The tank is built into the foundation of a building, and most 
of the observed noise is from building activities coupled 
through the structure. Although noise was sampled simulta-
neously on all four accelerometers, it undoubtedly varied 
between adjustments to probing signal levels and probing 
signal types. This may explain some variability in the data 
which was not apparent in the model, where identical noise 
was used in each simulation. Although similar in there over-
all shape, the experimental ASNR curves showed some fine-
scale roughness that is unlike the curve in figure 1. This was 
probably due to the variability of the measured noise. There 
was no experimental way to directly measure the SINAD that 
the ASNR was used to approximate. 

Table 1 indicates the computed peak ASNR values for each 
of the four transfer functions (accelerometer locations) and 
each of the 11 probing signals. This was determined by in-
crementing the drive signal amplitude over a 47-dB dynamic 
range in 3-dB steps.  The table has been ordered by signal 
merit determined at a range of 1m from the source, although 
there is a clear reordering of signals from the other locations. 

It is apparent from the table that there is very little resem-
blance to the ordering of probing signals for the modelled 
system. This is reinforces the idea that signal merit is system-
dependent and is not intrinsic to particular signals regardless 

of their application. There is no clear demarcation between 
the analog and binary signals in the physical system, although 
the latter obviously improve at closer ranges. This suggests 
that the nonlinearity of the source-to-surface coupling, which 
is a force (driving current)-to-displacement response, is better 
modelled by lumped-element nonlinearity than are the 
nonlinearities associated with the wave propagation.  

Table 1.  Measured ASNR for a seismic system 

 

The LSF chirp yields the best performance at all ranges, al-
though the magnitude of its advantage over the best of the 
binary signals is negligible at very short range. There is no 
obvious feature of this signal or precedent in the previously 
modelled responses to account for its superiority. Both its 
spectral content and crest factor are comparable to the opti-
mized-flat-multisine probing signal which shows a deficit of 
more than 4dB at longer ranges. This, along with the mod-
elled responses, points to the importance of probing signal 
phase (independent of its impact on a signal’s crest factor) in 
determining merit. 

TIME-VARYING SYSTEMS 

It is difficult to assess the effectiveness of probing signals for 
the interrogation of slowly time varying systems because the 
source(s) of system variability on longer timescales are not 
often controllable.  In the previous two examples, where time 
invariance was assumed, there were three time scales relevant 
to the characterization problem: the minimum timescale im-
plied by the bandwidth of the probing signal, the reverbera-
tion time of the system, and the total interrogation time. To 
correctly assess the impact of nonlinearities on the approxi-
mate linear characterization of the system, it was necessary 
that the interrogation time be significantly longer than either 
of the other timescales. If the system is time varying, this 
variation introduces a fourth relevant time scale, which can-
not be neglected unless it is much greater than the total inter-
rogation time. 

This problem was examined in the context of an ultrasonic 
vibrometry system that is the subject of a forthcoming paper. 
Here long timescale variations are produced by audio-
frequency shear waves, which propagate very slowly (~5 
m/s) in the medium of interest (a tissue-mimicking phantom). 
The waves are produced by a shaker that is mechanically 
coupled to the surface of the phantom. The characterization 
goal, in this case, is determining the instantaneous pulse re-
sponse of the medium to incident ultrasound i.e. the location 
of each scattering site along the beam of an interrogating 
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ultrasonic transducer. This is equivalent to reproducing the 
pulse response of the system to the most temporally discrete 
pulse that the ultrasonic bandwidth would permit. In the case 
of the system that was under study, the ultrasonic bandwidth 
spanned fc= 2πωc=2.5 MHz ± 400 kHz and the response to a 
drive pulse of the form 

    ( ) ( )( ) ( )22
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was sought. Low-frequency motion was generated in the 
range of 20 Hz to 250 Hz. The period of the ultrasonic inter-
rogation signal was 500 µs, which was slightly longer than 
the reverberation time of the phantom. The total interrogation 
time was 0.5 s (i.e. 1,000 cycles). Post-processing involved 
the sequential compression of 500 µs segments of the back-
scattered ultrasonic signal. Thus, there was a significant 
change in the medium during each interval of its interroga-
tion. Since the low-frequency source could be phase locked 
to the ultrasonic signal, it was possible to investigate the 
effects of this change with different probing signals. 

In the experiment three probing signals were used. Drive 
levels for each were determined by reducing the drive in 6 dB 
increments until there was no perceptible change in the proc-
essed data other than noise, and then increasing the averaging 
time to make the effects of the noise negligible. This required 
averaging for up to 17 minutes (2,000 shear-wave cycles). 
Three different probing signals were tested. The first was the 
compression pulse itself, which was used as the baseline for 
“truth”, the best achievable result if noise could be neglected. 
This “truth” included errors from sources unrelated to the 
selection of probing signal, and thus did not represent a per-
fect characterization of the medium. The other two signals 
were an LSF chirp and a randomly phased multisine. Their 
spectral content and crest factors were nominally the same, 
thus the only discrepancy from “truth’ resulted from the ef-
fects of the time variance on the signal. 

Figure 5 depicts the discrepancies in arrival times of a low-
frequency shear pulse determined using the three probing 
signals, where these were computed by a cross-correlation of 
the computed displacements with the low-frequency drive 
signal. The blue dots were computed by subtraction the arri-
val times computed from the “truth” measurement from those 
computed from the chirp measurement. The red dots were 
computed by subtracting this from the times computed from 
the multisine measurements. The spatial region indicated on 
the horizontal axis (5 to 20 cm) was the region over which 
the effects of noise could be neglected when 17 minutes of 
averaging was used for the “truth” measurement. 

 

Figure 5. Timing errors for two different probing signals 

It is clear from the figure that different errors result from the 
different probing signals and that the chirp signal is superior 
to the multisine in this regard. This is probably due to the fact 
that the chirp’s spectral and temporal centres, in a spectro-
graphic sense, are coincident. This example illustrates the 
importance of the phasing of a probing signal when the ap-
proximating a system as time invariant, regardless of nonlin-
earity. 

CONCLUSIONS 

Errors in LTI system characterization and approximation 
have been explored in three different contexts. In a very sim-
ple modelled system with nonessential nonlinearity, an easily 
accessible metric, the ASNR, was found to be a suitable sur-
rogate for the normally inaccessible SINAD both in deter-
mining optimal drive level and the relative merit of different 
probing signal types. In a complicated experimental system, 
the ASNR was used to compare the merits of various probing 
signals. This comparison revealed the importance of a sig-
nal’s phasing in determining its merit independently of the 
effect of this on the signal’s crest factor. The comparison also 
suggested that signal merit is system-dependent and cannot 
be judged outside of this context. In a second experimental 
system the relevance of phasing in determining signal merit 
when confronting slow time variance was revealed. 

This work is ongoing.  More complex modelled systems need 
to be studied in order to determine the robustness of the 
ASNR as a surrogate for the SINAD. Similarly, different 
experimental systems, which can be used to directly validate 
these models, need to be studied. Time variance also needs to 
be addressed in a more systematic way with a greater variety 
of probing signals and a more accessible baseline truth.  
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