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ABSTRACT 

In the practice, the performance of speech recognition systems is affected by speech signals being corrupted with 

various background noises in the environment. In this paper, we propose a new word graph combination (WGC) ap-

proach for speech-in-noise recognition. The aim of this work is to develop a method that would ensure robust speech 

recognition under various noise conditions, and in particular, under the adverse effect of environmental and impulsive 

noise. For this purpose, we developed a word graph combination (WGC) technique in which both continuous-mixture 

hidden Markov models (CMHMMs) and discrete-mixture hidden Markov models (DMHMMs) are being used as 

acoustic models. It has been previously verified that a DMHMM-based system can ensure significant improvements 

in the speech recognition performance under impulsive noise conditions. We also showed that the CMHMM-based 

system indicated better performance in high SNR conditions and environmental noise conditions. On the grounds of 

the above mentioned findings, we adopted a system combination approach in which both a DMHMM and a 

CMHMM are used. With the proposed method, complementary effects can be anticipated because the CMHMM and 

the DMHMM exhibit different error trends. Among the existing combination methods, which include recognizer out-

put voting for error reduction (ROVER) and confusion network combination (CNC), in our work, we selected the 

technique of WGC. Unlike conventional combination approaches, like ROVER and CNC, the timing information for 

all word hypotheses is well preserved in the WGC. In the speech recognition experiments we performed, the pro-

posed system showed better performance than the ROVER-based system or the baseline system. In particular, this 

new system showed comparatively higher performance under mixed noise conditions. 

INTRODUCTION 

In this study, we aim to improve speech recognition under 

noisy conditions by using the word graph combination 

(WGC) technique [1]. In the past studies, a multitude of tech-

niques has been proposed, all of which are based on a combi-

nation of systems exhibiting different error trends. These 

include recognizer output voting for error reduction 

(ROVER) [2] and confusion network combination (CNC) [3], 

which are both popular techniques. The system combination 

technique was originally proposed as a means of combining 

systems from multiple sites [4]. More specifically, the aim of 

this combination was to improve speech recognition per-

formance by combining the results from individual systems 

developed by different organizations. In contrast, we tried to 

improve the speech recognition performance by combining 

several acoustic models which are all characterized by differ-

ent error trends. 

Some of our previous work was focused on improving the 

performance of speech-in-noise recognition through the com-

bination of outputs from continuous-mixture hidden Markov 

model (CMHMM) and discrete-mixture hidden Markov 

model (DMHMM) by ROVER [5]. The previous work used 

the differences of the error trends in the results of CMHMM 

and DMHMM. DMHMM uses a mixture of discrete distribu-

tions which have a high degree of flexibility, and are ex-

pected to represent complicated shapes such as noisy condi-

tions. As a consequence, under impulsive noise conditions, 

DMHMM shows a higher recognition rate than CMHMM [6]. 

Moreover, speech recognition error trends differ between 

CMHMM and DMHMM because of differences in the acous-

tic conditions, for example the signal-to-noise ratio (SNR) 

and the type of noise. Therefore, this new approach of using 

both CMHMM and DMHMM as acoustic models can im-

prove the speech recognition performance in various noise 

environments. 

This work consists of combining the CMHMM and the 

DMHMM using the WGC technique. The difference between 

ROVER and WGC lies in the combination of the speech 

recognition results, or the combination of the intermediate 

results. On the other hand, an advantage of WGC over 

ROVER is that it supports rescoring on the integrated hy-

pothesis space. Furthermore, the timing of words is kept ex-

plicit in the structure of the word graph. Therefore, WGC can 

expect to provide for a significantly improved speech recog-

nition performance when compared to the ROVER system. 

In order to verify the effectiveness of the proposed method, 

we performed speech recognition experiments under various 

noise conditions. In the experiments, we used three types of 

noises: environmental noise signals which were either sta-

tionary or slow-varying, impulsive noise in which the power 

and spectral features may radically change within a very 

short time, and mixed noise where the environmental noise 

and the impulsive noise were mixed artificially. 
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ACOUSTIC MODELS 

In this paper, CMHMM and DMHMM are used as acoustic 

models for system combination. This section provides a de-

tailed description of these models. 

Continuous-mixture hidden Markov models 
(CMHMMs) 

In speech recognition, CMHMMs have been widely used as 

acoustic models, in which the output probability density is 

modeled by a mixture of Gaussian distributions as follows: 

( ) ( ) .,∑ ∑=
m

mmtimti wb µoo Ν           (1) 

Here, ( )mmN ∑,µo  is a Gaussian distribution with mean mµ  

and covariance 
m∑ , while imw  is the mixture weight of the 

mth distribution. In this paper, the diagonal covariance was 

used in consideration of computational cost. 

Discrete-mixture hidden Markov models (DMHMMs) 

The DMHMM is a type of discrete hidden Markov model 

(DHMM) that was originally proposed by Takahashi et al. to 

reduce computational cost in decoding processes [7]. More 

specifically, two types of the DMHMMs have been proposed. 

In the first scalar-based quantization is being used [7] and 

subvector-based quantization in the second [8]. In this paper, 

we have employed subvector-based DMHMMs. In the sub-

vector-based method, the feature vector is partitioned into S  

subvectors, [ ]Ststtt oooo ,...,,...,1=  and vector quantization 

( VQ ) codebooks are provided for each subvector. Subse-

quently, the feature vector to  is quantized as follows: 

( ) ( ) ( ) ( )[ ]StSststt qqqq oooo ,...,,...,11= ,                             (2) 

where ( )stsq o  is the discrete symbol for the sth subvector. 

The output distribution of the DMHMM, ( )tib o , is given by 

the expression: 

( ) ( )( )∑ ∏=
m s

Stssimimti qpwb oo ˆ ,                              (3) 

where imw  is the mixture coefficient for the mth mixture in 

state i , and ( )( )Stssim qp oˆ  is the probability of the discrete 

symbol for the sth subvector. 

In the remainder of this section, we describe the method used 

for the estimation of the DMHMM parameters based on the 

maximum a posteriori (MAP) criterion. An estimate of the 

maximum likelihood (ML) of the discrete probability ( )kpsim
 

is calculated with the use of the following expression: 
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where k  is the index of the subvector codebook and imtγ  is 

the probability of the mth mixture component being in state i  

at time t . If we assume that the prior distribution is repre-

sented by the Dirichlet distribution, the estimate of the 

DMHMM ( )kpsim
ˆ  based on the MAP criterion is given by 

the following expression: 
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where ( )kpsim

0  is the constrained prior value of the discrete 

probability and τ  indicates the relative balance between the 

corresponding prior value and the observed data. In our ex-

periments, τ  was set to 10.0 based on the results of com-

parative experiments. Although both the mixture coefficient 

and transition probability can be estimated by means of the 

MAP criterion, only the output probability is being estimated 

in this paper. 

Compensation of DMHMMs 

To improve the noise robustness of speech recognition, a 

compensation method for discrete distributions is applied. It 

is more likely that a significant reduction of the output prob-

ability will appear under severe mismatch conditions caused 

by unknown noise. This method can alleviate the adverse 

effect of the unknown noise during the decoding process. If 

one of the subvector probabilities, ( )( )stssim qp oˆ , in Eq. (3) is 

close to 0, the output probability, ( )tib o , will also be close to 

0. In this case, noise will have a detrimental effect on the 

decoding process, even if the time length of exposure to noise 

is short. In the compensation of DMHMMs, a threshold is set 

for the discrete probability, and the detrimental effect of 

noise is reduced. The compensation method can be described 

as follows: if in Eq. (3) ( )( ) dthqp stssim <oˆ , the output prob-

ability is set to dth, where dth is the threshold value for the 

subvector. The threshold was set to 0.00025 in this paper. 

WORD GRAPH COMBINATION (WGC) 

Overview 

In this section, we describe the system combination approach 

proposed for speech-in-noise recognition. It aims to raise the 

speech recognition rate by combining the output of CMHMM 

with that of DMHMM. The system combination approach 

has been proven to result in significant improvements if the 

speech recognition results are substantially different between 

systems. Since the speech recognition results from 

DMHMMs and CMHMMs are different between each other 

under noisy conditions, the performance is expected to im-

prove. The procedure followed for WGC is provided below. 

1. An input speech is decoded using two acoustic models 

(AM1, AM2), and a bigram language model. Then, two 

word graphs, WG1 and WG2, are obtained by the de-

coding process. 

2. The two word graphs (WG1, WG2) are combined to 

form one single word graph, 
CWG . 

3. The word graph 
CWG  is rescored using the two acoustic 

models and a trigram language model. In this step, the 

two scores obtained by AM1 and AM2 are merged to 
obtain one single score. Further details of the scoring 

process are available in the next section. 

The procedure of the WGC is shown in Figure 1. 
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Figure 1. Block diagram of the WGC technique. 

 

Algorithm of WGC 

Suppose that there are N  word graphs, 
1W ,

2W ,...,
NW , to be 

combined. If two arcs, 
1q  in 

1W  and 
2q  in 

2W , are equal, 

the two word graphs, 
1W and 

2W , can be combined as fol-

lows: 
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UU
   (6) 

Two equal arcs are defined as equal when they have the same 

word ID, start time and end time. A detailed description of 

the algorithm behind WGC has been provided by Chen and 

Lee [1]. 

Scoring methods 

In this section, two types of scoring methods are described. 

They are denoted by the terms "average score" and "weighted 

score". According to the "average score" method, the merged 

score 
mP ′  for the mth edge is given by the expression: 

,
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P                                                               (7) 

where N is the number of systems, and 
k

mp  is the score for 

the mth edge in system k . In this study, N has been set to two. 

The "weighted score" of mth edge is calculated as follows: 

( ) ,1 21 　mmm PPP αα +−=′                                                  (8) 

where 
1

mP  is the score calculated by CMHMMs, and 
2

mP  is 

the score provided by DMHMMs, while α  indicates the 

balance between CMHMMs and DMHMMs. 

EXPERIMENTAL SETUP 

We used the "Japanese Newspaper Article Sentences" 

(JNAS) as training and test data. More specifically, two sets 

of training data were used; one for clean training, and the 

other for multi-condition training [9]. The training data set 

consists of 15,732 Japanese sentences uttered by 102 male 

speakers. For clean training, no noise had been added to the 

data. On the other hand, for multi-condition training, all these 

utterances were divided into 20 subsets. No noise was added 

to four subsets. In the remainder of the data, noise was artifi-

cially added. Four types of noise–train, crowd, car and exhi-

bition hall–were selected and added to the utterances at a 

SNR of 20, 15, 10 and 5 dB. We used four types of acoustic 

models; clean condition CMHMMs (CC CMHMM), clean 

condition DMHMMs (CC DMHMM), multi-condition 

CMHMMs (MC CMHMM) and multi-condition DMHMMs 

(MC DMHMM) in our speech recognition experiments. The 

training method employed for each one of these acoustic 

models is explained below. The CC CMHMMs were trained 

by ML estimation using the clean training data. The CC 

DMHMMs were trained by MAP estimation using clean 

training data. The initial models used for their training were 

derived from the conversion of the CC CMHMMs into 

DMHMMs. The MC CMHMMs were trained by ML estima-

tion using multi-condition training data and CC CMHMMs 

were used as initial models. The MC DMHMMs were trained 

by MAP estimation using multi-condition training data. In 

this case, the initial models were obtained by converting MC 

CMHMMs into DMHMMs. The three types of test sets used 

were as follows. 

• Test set for environmental noise  

Four types of noise–station, factory, street crossing and 

elevator hall–were added to 100 sentences uttered by 10 

male speakers at a SNR of 20, 15, 10 and 5 dB. These 

noises were different from those of the training data. 

• Test set for impulsive noise  

The impulsive noise signals were added to 100 sen-

tences uttered by 10 male speakers. Three types of im-

pulsive noise were selected from the Real World Com-

puting Partnership (RWCP) database [10], namely: 

whistle3 blowing a whistle; 

claps1 handclaps; 

bank hitting a coin bank. 

These noise signals were added to speech data at inter-

vals of 1 sec and a SNR of 0 dB. The SNR was calcu-

lated as the average power of the speech data divided by 

the maximum power of the impulsive noise. The maxi-

mum power was determined from power values that 

were calculated from the impulsive noise data every 30 

msec. 

• Test set for mixed noise  

Noise signals from above two test sets were mixed arti-

ficially to make a new test set. Four types of noises were 

prepared at a SNR of 10 dB as environmental noises. 

These noises were mixed with three impulsive noises. 

Thus, twelve types of noises were used for evaluation of 

the proposed system. 

The speech analysis conditions are summarized in Table 1. 

The structure of CMHMM and DMHMM was 2000-state 

HMnet (set of shared state triphones), and the number of 

mixture components was 16. Table 2 summarizes the subvec-

tor allocation and the codebook size for DMHMM. Although 

∆  and 2∆  have been omitted from the table, all the code-

books were designed in the same manner. A two-pass search 

decoder using a bigram and a trigram was used in speech 

recognition. Decoding was performed in the first pass by 

means of a one-pass algorithm, in which a frame-

synchronous beam search algorithm and a tree-structured 

lexicon were applied. The bigram and trigram models were 

trained using 45 months of newspapers article sentences. The 

trained language models had 5 K word entries. 

In the case of ROVER, 50 different outputs are combined. 

These 50 outputs were obtained by varying parameters such 

as language weight and word insertion penalty. More specifi- 
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Table 1. Speech analysis conditions 

Sampling   

frequency 

16 kHz 

Quantization 16 bit 

Frame length 32 msec 

Frame period 8 msec 

Analysis window Hamming window 

Feature vector MFCC (1-12), log power+∆ +∆∆  

 (total of 39 dimensions) 

Normalization CMN 

 

Table 2. Codebook size for each subvector 

Parameter logP C1 , 

C2 

C3 , 

C4 

C5 , 

C6 

C7 , 

C8 

C9 , 

C10 

C11 , 

C12 

CB size 64 64 64 64 64 64 64 

 

Table 3. Values of language weight and word insertion pen-

alty for each acoustic model and noise condition 

language weight 12 ~ 24 CMHMM 

insertion penalty -8 ~ -64 

language weight 12 ~ 24 

Environmental 

noise 

DMHMM 

insertion penalty -8 ~ -48 

language weight 21 ~ 33 CMHMM 

insertion penalty -48 ~ -80 

language weight 18 ~ 34 

Impulsive 

noise 

DMHMM 

insertion penalty -40 ~ -72 

language weight 16 ~ 28 CMHMM 

insertion penalty 0 ~ -72 

language weight 14 ~ 30 

Mixed noise 

DMHMM 

insertion penalty -14 ~ -66 

 

cally, five different values were used for the language weight 

and five values for the word insertion penalty. Namely, 5 × 5 

= 25 types of parameter sets were prepared for both the 

CMHMMs and the DMHMMs. In the end, a total of 50 out-

puts were combined. The values of language weight and in-

sertion penalty in each noise condition and acoustic model 

are summarized in Table 3. These parameters were set based 

on the results of prior experiments. 

RESULTS AND DISCUSSION 

Speech recognition experiments under environ-
mental noise conditions 

The experimental results of the combination of the MC 

CMHMM with the MC DMHMM under environmental noise  

 

Table 4. WERs (%) under environmental noise conditions 

 Before combination Structure combination 

SNR 
(dB) 

MC 
CMHMM 

MC 
DMHMM 

MC 
CMHMM 

MC 
DMHMM 

∞ 6.21 5.69 5.80 5.38 

20 7.79 8.10 7.87 7.87 

15 11.52 11.59 11.49 11.34 

10 24.43 23.50 22.59 21.64 

5 52.23 49.79 50.67 48.50 

Ave. 22.94 22.21 22.13 21.34 

 Score combination 

 Without 
weighting 

α =0.9 

ROVER 

∞ 5.80 5.59 5.49 

20 7.89 7.97 7.61 

15 11.36 11.44 11.44 

10 21.87 21.30 23.42 

5 48.86 47.90 50.60 

Ave. 21.51 21.18 22.22 
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Figure 2. Relation between the parameter α and the WER 

(%) under environmental noise conditions 

 

conditions are summarized in Table 4. Here, the word error 

rate (WER) is provided for each model used. The term 

“structure combination” means that the structures of two 

word graphs were combined, but not the scores. On the other 

hand, “score combination” means that both the structures and 

scores were combined. The speech recognition results of 

ROVER are provided for comparison. 

Based on the results, we concluded that both the structure and 

the score combination are effective. In the case of score com-

bination, the performance achieved with weighting was 

slightly better than without weighting. The best performance 

can be obtained at α = 0.9 (see Figure 2). The reason why a 

large weight should be applied to the DMHMM is that the 

performance obtained with the use this model was better than 

CMHMM without combination. Moreover, the performance 

obtained with the proposed system was better than the 

ROVER system. On the ground of the above mentioned re-

sults, we concluded that the WGC approach is effective. 
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Table 5. WER (%) under impulsive noise conditions 

 Before combination Structure combination 

Noise CC 
CMHMM 

CC 
DMHMM 

CC 
CMHMM 

CC 
DMHMM 

bank 10.46 8.49 8.59 8.28 

claps1 12.53 9.21 12.73 10.04 

whistle3 37.89 26.71 32.19 26.40 

Ave. 20.29 14.80 17.84 14.91 

 Score combination 

 Without 
weighting 

α =0.9 

ROVER 

bank 8.59 8.59 9.83 

claps1 11.08 9.63 11.39 

whistle3 27.12 26.19 34.89 

Ave. 15.60 14.80 18.70 
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Figure 3. Relation between the parameter α  and the WER 

(%) under impulsive noise conditions 

 

Speech recognition experiments under impulsive 
noise conditions 

The experimental results from the combination of the CC 

CMHMM with the CC DMHMM under impulsive noise 

conditions are summarized in Table 5. The relation between 

the parameter α  and WER obtained with the score combi-

nation method is shown in Figure 3. We used clean condition 

models, because the duration of all the noise segments was 

very short and each utterance was almost entirely free of 

noise under impulsive noise conditions. 

Based on the experimental results, we concluded that with the 

CC DMHMM before combination and the CC DMHMM 

after the score combination we can obtain approximately the 

same WER value (14.80%). Under impulsive noise condi-

tions, the WGC method did not result in any improvement in 

the speech recognition performance. This was attributed to 

the difference in performance obtained with CMHMM and 

that of DMHMM before combination. If the system could 

have known in advance that the noise is impulsive, it would 

be recommended to use CC DMHMMs. However, the system 

generally can not predict the noise conditions. Therefore, the 

use of the WGC approach is suitable even if the speech rec-

ognition performance does not improve under impulsive 

noise conditions. 

 

Table 6. WER (%) under mixed noise conditions 

 Before combination Structure combination 

Noise MC 
CMHMM 

MC 
DMHMM 

MC 
CMHMM 

MC 
DMHMM 

bank          31.42 30.38 30.56 28.91 

claps1          34.14 32.92 33.90 31.37 

whistle3          52.56 54.19 50.88 50.52 

Ave. 39.37 39.16 38.45 36.93 

 Score combination 

 Without 
weighting 

α =0.8 

ROVER 

bank          29.19 28.73 29.94 

claps1          32.14 31.55 32.74 

whistle3          49.51 50.16 51.71 

Ave. 36.95 36.81 38.13 
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Figure 4. Relation between the parameter α and the WER 

(%) under mixed noise conditions 

 

Speech recognition experiments under mixed noise 
conditions 

The experimental results from the combination of the MC 

CMHMM with the MC DMHMM are summarized in Table 6. 

The relation between the parameterα  and WER is shown in 

Figure 4. Each result represents an average WER of the four 

mixed noises combined every time with one of the impulsive 

noises. 

Under mixed noise conditions, both the structure combination 

and the score combination are effective as well as environ-

mental noise conditions described in the previous section. By 

comparison, the WGC approach was more effective under 

mixed noise conditions than under environmental noise con-

ditions. Based on these findings, we concluded that the WGC 

technique is effective in various noise environments. 

SUMMARY OF SPEECH RECOGNITION 
EXPERIMENTS 

The experimental results for the three different speech recog-

nition modes (before combination, structure combination and 

score combination) are summarized in Table 7. Based on 

these results, we concluded that both the structure combina-

tion and the score combination are effective. In particular, the  
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Table 7. Summary of WERs (%) for three recognition modes 

Before combination 

Noise CMHMM DMHMM 

Environmental 
noise 

22.94 22.21 

Impulsive noise 20.29 14.80 

Mixed noise 39.37 39.16 

Structure combination 

Environmental 
noise 

22.13 21.34 

Impulsive noise 17.84 14.91 

Mixed noise 38.45 36.93 

Score combination 

 Without weight-
ing 

With weighting 

Environmental 
noise 

21.51 21.18 (α =0.9) 

Impulsive noise 15.60 14.80 (α =0.9) 

Mixed noise 36.95 36.81 (α =0.8) 

 

best possible performance could be achieved by using the 

score combination with the score weighting method. 

CONCLUSIONS 

In this paper, we propose a WGC method in which acoustic 

models that exhibit different error trends can be combined in 

order to improve the performance of speech-in-noise recogni-

tion. Based on experimental results obtained under environ-

mental noise conditions and mixed noise conditions, we con-

cluded that the WGC method can ensure significant im-

provements in the performance of speech recognition. More 

specifically, better speech recognition performance could be 

obtained with the proposed combination method than with 

ROVER, the conventional combination method. While our 

experimental results suggest that the WGC approach is effec-

tive under various noise conditions, the combination of 

weighted scores is also effective. The next step in this line of 

research would be to combine the ROVER with the WGC 

method in order to achieve further improvements. In addition, 

we have started working on the automatic estimation of the 

weighting coefficients used in the score combination. 
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