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ABSTRACT

Due to significantly reduced interior noise as a result of reduction of noise from internal combustion engine and tyre-road contact
noise and the use of lightweight composite materials for thecar body, disc brake squeal has become increasingly a concern to
automotive industry because of the high costs in warranty related claims. While it is now almost standard practice to usethe
complex eigenvalue method in commercial finite element codes to predict unstable vibration modes, not all predicted unstable
vibration modes will squeal and vice versa. There are very few attempts to calculate the acoustic radiation from predicted unstable
vibration modes. Guidelines on how to predict brake squeal propensity with confidence are yet to be established. In this study,
three numerical aspects important for the prediction of brake squeal propensity are examined: how to select an appropriate mesh;
comparisons of methods available in ABAQUS 6.8.-4 for harmonic forced response analysis; and comparisons of boundary
element methods (BEM) for acoustic radiation calculationsin LMS VL Acoustics and ESI VA. In the mesh study, results indicate
that the mesh has to be sufficiently fine to predict mesh independent unstable modes. While linear and quadratic tetrahedral
elements offer the best option in meshing more realistic structures, only quadratic tetrahedral elements should be used for solutions
to be mesh independent. Otherwise, linear hexahedral elements represent an alternative but are not as easy to apply to complex
structures. In the forced response study, the modal, subspace and direct steady-state response analysis in ABAQUS are compared
to each other with the FRF synthesis case in LMS/VL Acoustics. Results show that only the direct method can take into account
friction effects fully. In the numerical analysis with acoustic boundary elements, the following methods are comparedin terms
of performance and accuracy for a model of a sphere, a cat‘s eye radiator, a pad-on-plate and a pad-on-disc model: a plane wave
approximation, LMS‘s direct (DBEM) & indirect BEM (IBEM), LMS‘s indirect fast multipole BEM (IFMM) and fast multipole
BEM with Burton Miller (DFMM) implemented in ESI/VAOne. Theresults suggest that for a full brake system, the plane wave
approximation or ESI‘s DFMM are suitable candidates.

INTRODUCTION

Disc brake squeal is of major concern to the automotive industry as
well as customers. It appears in the audible frequency rangeabove
kHz [1, 2]. Below 1kHz, structure-borne noises are dominant, as in
brake moan and groan, but airborne noises such as brake judder [3]
are also present. Low-frequency squeal is defined as noise which oc-
curs below 5kHz and below the first rotor-in-plane mode whilehigh-
frequency squeal usually appears above 5kHz [4]. The most compre-
hensive review papers on brake squeal are: Kinkaid et al. [1] which
covers analytical, numerical and experimental methods, including
squeal mechanisms discovered; the work by Akay [2] which dis-
cusses the contact problem and friction-induced noise; andthe con-
tribution made by Ouyang et al. [5] where the advantages and limi-
tations of the complex eigenvalue method and the transient time do-
main analysis using the finite element method are presented.Other
literature reviews have been written by [6] and, more recently, [7]
and [8] which discuss various methods for analysing brake squeal in-
cluding probabilistic methods to incorporate uncertainties and their
implications for practical industry applications. The theory and ap-
plication of numerical methods in acoustics and their developments
have been reviewed by Marburg and Nolte [9]. An excellent com-
parison between the acoustic finite element method (FEM) andthe
acoustic boundary element method (BEM) is presented in [10]. In
Thompson [11] and Harari [12], the focus is rather on the time-
harmonic acoustic FEM. A good book on the acoustic BEM is writ-
ten by Wu [13] and it explains the direct (exterior, interior) boundary
element method (DBEM) and indirect boundary element methods
(IBEM, including the collocation method, Galerkin approach) to-
gether with ready to use 2D/3D BE code using a continuous element
formulation. In contrast, discontinuous elements where the FE nodes
are not congruent with the BE nodes, can have some advantagesand
have been investigated in [14]. In the past, methods for analysing

and predicting disc brake squeal have been focussed predominantly
on analytical models to consider some fundamental friction-induced
mechanisms and numerical methods for analysis of vibrationmodes
in the frequency domain. Interestingly, the FE time-domainmethod
has mostly been neglected due to its high computational costand the
numerical prediction of acoustic radiation has largely been ignored
as only the radiation of brake rotors [15] or simplified annular discs
[16–19] have been analysed in the absence of friction. Only recently,
an analysis was presented in which the FEM was used to calculate
the unstable vibration modes by means of the complex eigenvalue
analysis (CEA) and the BEM was used to determine the acoustic
radiation [20].

The aim of this paper is, therefore, to introduce the acoustic BEM
to predict disc brake squeal in order to complement existingknowl-
edge focussed on structural analysis of FEM models by means of
CEA [21]. The finite element methods for structural analysis and
boundary element methods for acoustic analysis and the commer-
cial software in which these methods are implemented are given
in Table 1. Figure1 depicts the four models used in this study for
performance testing (in terms of their accuracy and computer run-
ning times): a sphere, a cat’s eye radiator [22], a pad-on-plate model
and a simplified brake system in the form of a pad-on-disc system
[20]. Two different contact formulations available in ABAQUS are
studied, specifically investigating the contact openings between the
pad and the disc. A mesh study using tetrahedral and hexahedral
elements for the simplified brake system (pad-on-disc model) is un-
dertaken to explore the convergence behaviour of unstable vibration
modes calculated by the CEA available in ABAQUS 6.8-4. In Fig-
ure1 (d), tetrahedral elements are shown. Then after a suitable mesh
is chosen for structural FE analysis, a method for generating surface
velocities for subsequent acoustic radiation calculations using BEM
is selected by examining the forced response of pad-on-plate/-disc
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systems obtained from the modal, the subspace projection and di-
rect steady-state method available in ABAQUS 6.8-4. This isfol-

Table 1: Software and treatment of non-uniqueness/internal reso-
nance problem (CHIEF (C), Impedance (I), Burton-Miller (BM))

FE-Software
Method (✗) Modal Subspace Direct
ABAQUS 6.8-4 ✗ ✗ ✗

BE-Software
Method(✧) Direct Indirect Fast Multipole ERP
LMS/VL 8B ✧C ✧I ✧I ✧
ESI/VAOne 2009 ✧B
AKUSTA ✧B

lowed by a comparison of the acoustic power calculations forthe
sphere, the cat‘s eye radiator, and the pad-on-plate/-discmodels us-
ing the commercial BE tools of LMS/VL Acoustics and ESI/VA
(FMM) and the code AKUSTA developed at the Technical Univer-
sity Dresden. Firstly, the sphere and the cat‘s eye radiatorare used
to evaluate the performance of acoustic BE codes in terms of how
capable and suitable different methods are for overcoming the non-
uniqueness/internal resonance problem [9]. Secondly, for the pad-
on-plate/disc model, the numerical effect on acoustic calculations
of having two bodies in direct contact or by using a wrapping mesh
is studied. The effect on acoustic radiation of a possible lift-off of
the pad due to contact variations and the application of chamfers is
studied to determine the possibility of a horn effect. Basedon the re-
sults presented in terms of accuracy and computing times required,
recommendations for developing a FE/BE model to analyse disc
brake squeal are given. For both the structural and acousticstudies,
a Hewlard Packard HP xw4600 workstation with an INTELQ6600
quad core CPU, 8GB of RAM and Windows Vista 64-bit is used to
run all simulations.

MODEL DESCRIPTIONS

The four models used in this study (Figure1) and described below.
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Figure 1: Test cases: (a) Sphere; (b) Cat’s eye radiator;(c)Isotropic
pad-on-plate; and (d) Isotropic pad-on-disc

Sphere The sphere is used as a test case for the non-uniqueness
problem in acoustic analysis [23, 24, 9] in order to validate how the
direct boundary element method (DBEM) using CHIEF points and
the indirect boundary element method (IBEM) using an impedance,
are able to overcome the non-uniqueness/internal resonance prob-
lem. It is a simple structure in the form of a monopole radiator with
an imposed surface velocity of 1m/s. The material properties of the
sphere can be arbitrarily chosen, as the surface velocity isimposed
on the structural mesh, without having generated surface velocities
in a forced response case. The sphere has 96 hexahedral plus 12 tetra-
hedral elements with a diameter of 0.5m. In LMS/VL a surface mesh
consisting of 204 quadrilaterial elements is generated which corre-
sponds to more than 6 elements/wavelength at 3kHz. The results us-

ing the DBEM and the IBEM of LMS/VL Acoustics are compared
with those from the analytical solution of this model.

Cat‘s Eye (Benchmark A ) The second model is a cat’s eye, as
investigated in [25] based on that of [9], which serves as the first
performance benchmark model (A ). The cat‘s eye‘s spherical sur-
face consists of a one octant cut-out, as shown in Figure1(b). The
spherical surface has a velocity boundary condition of 1m/s im-
posed whereas the element faces of the cut-out octant obtains zero
velocity. As in the case of the sphere, arbitrary material properties
can be chosen. The solid structure has 8129 linear tetrahedral and the
surface mesh has 973 triangular elements. The characteristic length
of the elements, is 3cm which corresponds to at least 6 elements per
wavelength below 2kHz and at least 4 elements per wavelengthup
to 3kHz [26]. Four to six elements is recommended practice [27]
but for complex geometries at shorter wavelengths and lowerorder
elements, it is recommended to take 10 or more elements per wave-
length [28]. For the DBEM, 480 CHIEF points are applied. The di-
ameter of the sphere is reduced from 1m (see [9]) to 0.5m and the
frequency range is increased from 1.5kHz to 3kHz. Here, the focus
is on calculating the acoustic power as a global measure whereas, in
[9], the sound pressure at some locations in the fluid was calculated.

Pad-on-plate The pad-on-plate model, as shown in Figure1(c),
is a simplification of the pad-on-disc model: a plate structure (a)
does not give any splitting modes; (b) requires shorter run times be-
cause the matrices have smaller bandwidths than annular structures;
(c) fewer elements are required over a (d) smaller frequencyrange
(2.5−6.5kHz instead of 1−7kHz). It is a minimalist structure with
imposed contact and friction and is, therefore, often encountered as
a benchmark model in studies of analytical friction oscillators [29].
Here, the pad-on-plate model serves as a bridge to a simplified brake
system composed of one pad in contact with a disc. Young‘s mod-
ulus, Poisson‘s ratio and density of the plate/pad are assumed to
be 210/180GPa, 0.305/0.300 and 7743.8/8024.78kg/m3, respec-
tively. In total, 6312 hexahedralC3D8I elements, with incompatible
modes properties for improved bending behaviour (incompatible de-
formation modes are added internally to the elements which increase
the degrees of freedom from 8 to 13), are used for the structural anal-
ysis, resulting in 4198 quadrilateral acoustic elements. The acous-
tic elements are surface elements forming the acoustic meshand
do not necessarily have the same coincident nodes as the structural
mesh [14]. The boundary element mesh consists of 4198 (LMS/VL)
or 4523 (ESI/VAOne) triangular elements, respectively with a min-
imum of 10 elements per wavelength for a frequency up to 6.5kHz.
The plate moves with 1m/s in thex− direction (Figure1), with
p = 1kPa applied to the pad.

Pad-on-disc (Benchmark B) The annular disc (case iron) in con-
tact with a steel pad serves as a second benchmark model (B) for the
validation of various numerical models for the purpose of analysing
disc brake squeal (Figure1(d)). Young‘s modulus, Poisson‘s ratio
and density of the disc/pad are 110/210GPa, 0.28/0.30 and 7800/
7200kg/m3, respectively. Further, the disc rotates with a velocity of
10rad/s, and a constant pressure of 1000N/m2 is applied uniformly
to the back of the pad. The pad‘s outer edges are constrained in the
U1 andU2 directions, which are orthogonal to the disc‘s plane. The
disc‘s inner edge is constrained in all three global coordinates. As
mentioned in [19, 20], an annular disc structure can reproduce major
vibration characteristics of a real brake rotor, such as out-of-plane
bending motion, which are especially efficient in radiatingsound
[30]. Unless otherwise mentioned, in structural simulations,the fric-
tion coefficient is set to a constantµ = 0.5 in a finite sliding regime;
the pressurep = 1kPa; and, in acoustic simulations, the speed of
sound is set toc = 340m/s and the fluid‘s density toρ = 1.3kg/m3.

MAJOR PARAMETERS TESTED

Four element types, boundary conditions, sliding definition and con-
tact for structural vibration analysis implemented in ABAQUS are
described here. For more detailed description, see [31, 32].
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Mesh and Element Convergence Study

It is essential that a sufficiently large number of an appropriate el-
ement type is used to approximate a structural continuum so that
the physical results are mesh-independent. Since problemswith fric-
tional contact impose a highly non-linear problem, rangingfrom
micro- to macroscopic effects [33, 34], the number of elements in
the actual contact zone is a critical factor [32]. Thus the disc and
plate have a partitioned area around the contact zone which allows
for a locally refined mesh. But, how is the accuracy of complex
eigenvalues affected by the mesh quality and element type? Whereas
the frequency error due to mesh resolution can be estimated by means
of a normal modes analysiswithout considering the instability of
the modes, complex mode shapes have to be calculated to explore
the convergence behaviour of unstable modes. In this study,4 el-
ement types are assessed: (1) linear tetrahedral fully integrated el-
ements (C3D4); (2) quadratic tetrahedral fully integratedelements
(C3D10M) modified to reduce shear/volumetric locking; (3) linear
hexahedral reduced integrated elements (C3D8R) with hour-glass
control; and (4) linear hexahedral incompatible modes fully inte-
grated elements (C3D8I). Whereas linear and quadratic tetrahedral
elements have the advantage of being easier to apply to a realstruc-
ture, numerical convergence is better for (3) and (4) due to super-
convergence points. Quadratic hexahedral 20-node elements, (too
costly/difficult to apply to real geometry) are not evaluated.

Tetrahedral Elements C3D4/C3D10M C3D4 is a linear, first order
fully integrated element. To calculate both stress and displacement
values, only one integration point with a constant value is used, but
three integration points are used on elements where the pad is loaded.
Tetrahedral elements are very stiff, due to their lack of integration
points, which is associated with problems of so-calledshear lock-
ing and volumetric lockingwhich is a prevalent problem for fully
integrated elements. Shear locking gives rise to parasiticstresses.
Volumetric locking, due to almost incompressible materialproper-
ties, occurs only after severe straining of the structure; spurious pres-
sure stresses make the structure too stiff and, in particular, influence
bending behaviour, resulting in a smaller number of unstable modes.
With a fine mesh, the structure is very stiff and calculated frequen-
cies may lie several hundred Hz above the frequency obtainedby us-
ing other elements. Moreover, the calculation converges slower than
a mesh composed of hexahedral elements due to its lack of super-
convergence points [35]. To produce accurate results, the mesh has
to be very fine and it has to be ensured that numerical locking is
absent. An advantage of tetrahedral elements is that most meshing
works well with them when it comes to complex structures likea
brake rotor. To overcome the effect of shear and volumetric locking,
a 10−node quadratic tetrahedral element (C3D10M) is available;it
requires longer computer run times but provides the ease of using
the ABAQUS mesher for complicated geometry.

Hexahedral Elements C3D8R/C3D8I C3D8R is a linear reduced
integrated hexahedral 8−node brick element with second-order ac-
curacy and has fast converging behaviour. Reduced integration Gauss
points are BARLOW points [36] which give very accurate strains,
calculated as averaged element strains. Reduced integration for hex-
ahedral elements has the advantage that no locking will occur and
that the computational costs are much lower due to less integration
points used. However, a drawback of reduced integration is that the
stiffness matrix is rank-deficient which results in spurious modes
due to numerical singularities, so-calledhour-glass modes. When
hour-glassing appears, more modes than usual can be observed, pre-
dominantly in the low-frequency regime. C3D8I is a fully integrated
linear 8−node brick element, with second-order accuracy and an ad-
ditional so-calledincompatible modesproperty, is applied. The in-
compatible modes improve bending behaviour due to parasitic shear
stresses and preventshear and volumetric locking. If the elements
are almost rectangular in shape, their performance approximates the
performance of quadratic elements; reduced integration isnot neces-
sary and hour-glassing does not appear. However, the computational
costs are approximately 3.5 times higher [37], especially for meshes
which involve a large number of elements.

Boundary Conditions

Constrained Nodes For the pad’s boundary conditions, all 4 top
corner nodes are fixed in-plane but is allowed to move out-of-plane.
For the pad-on-disc system, this constraint reduces the frequencies
of those modes related to the pad in the range of 0kHz to 7kHz.
In this study, models with this type of boundary condition (BC)
are calledcompliant (I ). Another type of boundary condition for
the pad-on-disc system, has the four top corner nodes as wellas
10% of the top edges next to the corner nodes constrained suchthat
certain in-plane pad modes are not found below 7kHz, and is re-
ferred to as thestiffenedtype. In Figure2, the results from a mesh
with C3D8I elements are depicted. The unstable mode is denoted
by (m,n, l ,q), where m andn are the number of out-of-plane nodal
circles and diameters respectively andl and q are the number of
in-plane nodal lines in the radial and tangential directions respec-
tively [17]. In terms of the number of unstable modes predicted, the
system with stiffened BC converges faster than that with compli-
ant BC (see Figure2). For analysis of brake squeal that involves
mode-coupling only, stiffened BC is used to eliminate pad modes in
the frequency range of interest below 7kHz. For analysis of brake
squeal that involves both mode-coupling and pad-mode instabilities
[38, 39], compliant BC have to be used. It has been found that stiffer
lining materials are more sensitive to changes in stiffness(see also
[40]) introduced by alterations in the friction coefficient, the mesh
(element type and mesh density) and the material due to the exis-
tence of pad modes. Thus meshes for steel linings with compliant
BC are studied here. Once the solution for a mesh with stiff lining
materials and compliant BC is mesh independent, the BC can be
stiffened or softer lining materials can be applied, and thesolution
will still converge. An investigation of these pad modes, their effects
on instabilities and sound radiation will be treated in [38, 39, 41].
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Figure 2: Mesh convergence for systems with "∗" compliant and
"◦" stiffened boundary conditions. The arrows indicate mesh-
convergence for the compliant and stiff boundary condition.

Contact and Sliding Definition In this study,surface-to-surface
contact, (no need of matching meshes) is chosen. Theautomatic
shrink fitprocedure is enabled to ensure that the two surfaces are in
contact before the analysis is run. In Abaqus, as interaction property,
for tangential behaviour, thepenalty methodwith a constant friction
coefficient is used; and, for normal behaviourhard overclosure, with
allowable separation, is chosen. The penalty method allowsfor some
elastic slip of the two surfaces when they should be sticking[31]. A
hard overclosure of the two contacting surfaces allows for limited
penetration set here to 0.5mm. Two sliding definitions are available
in ABAQUS: thesmallandfinite sliding. The former is traditionally
taken in the CEA as it is not as demanding on computer run times
because only relatively little sliding of the surfaces in contact is as-
sumed. The finite sliding allows any arbitrary motion (separation,
sliding, rotation) of the surfaces. For the small sliding formulation,
the same slave node will interact with the same area (radius of ele-
ment length) of the master surface throughout the analysis [42]. In
the finite sliding formulation, connectivity of the slave nodes to the
master surface changes with relative tangential motion. Differences
between the two contact algorithms are exemplified in Figure3. A
mesh of 15,665C3D8Relements withµ ∈ [0.05,0.65] and stiffened
BC is taken. The values of the real part of the complex eigenvalues
with small sliding contact are found to be higher than those with fi-
nite sliding. It can be observed that the frequencies for theunstable
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modes with small sliding contact are slightly lower than those with
finite sliding and the critical friction coefficients are different.

In Figure5, the contact opening at around 4060Hz is depicted. The
small sliding contact formulation in Figure5(a) shows for this fre-
quency no lift-off and the contact remained closed. The finite sliding
contact condition in Figure5(b), however, shows much higher devi-
ations of up to 1.5mm; the elements in the contact zone lift up and
penetrate and areas without contact appear to have openingsof more
than a millimetre, illustrating more realistic effects on the structural
dynamics. Even though the dynamic effects like the impulse of a
lift-off and re-attachment are not modelled with CEA, in thetime
domain, it represents a very severe discontinuity and a switching
mechanism [43]. The effects of acoustic radiation might also be im-
portant and will be discussed in a later section.

Mesh Study

Firstly, a model of the pad-on-disc system with linear tetrahedral
fully integrated elements is used for the mesh study. Secondly, again
tetrahedral elements, but with quadratic shape functions (10 nodes)
and modified bending behaviour are used. After that, hexahedral
8−node elements with reduced integration and enhanced hour-glass
stiffness (see ABAQUS manual 6.8.-4 [31]), are studied. Finally,
hexahedral ’incompatible modes’ elements, which allow forbetter
bending behaviour are investigated. For each element type,various
meshes are used and the difference in predicted frequenciesof three
prominent out-of-plane split modes withn = 3,4 and 5 nodal diame-
ters, between a given mesh and the finest mesh is evaluated (normal
mode analysis). The total number and the number of unstable modes
extracted (complex modes analysis) are also included in Figure 4.
For the linear tetrahedral elements (Figure4 (a)), it is obvious that
the number of unstable modes does not converge as the only unstable
mode is the(0,5,0,0)-disc mode which even becomes stable again
for a finer mesh. Also, the total number of extracted normal modes
alternates between 18 and 19. The smaller the average element size
chosen, the more compliant the structure becomes. In Figure4 (b),
quadratic tetrahedral 10-node elements are evaluated for finite slid-
ing contact. The solution converges to two unstable modes, that is,
then= 3 andn= 5 modes. Also, the errors in frequency of the three
dominant out-of-plane modes of the disc are significantly lower for
coarser mesh compared with those of the linear tetrahedral elements.
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Figure 3:(a)and(b) give the development of real parts over friction
coefficientµ. In (c) and(d), the modes frequency is depicted for the
-♦- finite and the-o- small sliding definition

The frequencies of then = 3,4 and 5 modes of the finest mesh for
quadratic tetrahedral elements (C3D10M) are around 200Hz lower
than those for the linear tetrahedral elements (C3D4). In Figure4(c),
8-node reduced integrated linear elements are used for two differ-
ent contact formulations: small and finite sliding. The solution con-
verges to two unstable modes from a total of 26 extracted modes.
The first is, again, a(0,5,0,0)−mode at around 6kHz and the sec-
ond a(0,4,0,0)-mode at around 4050Hz. However, for the coarser
mesh, the total number of modes extracted is too high and exceeds

even 300 which is due to artificial hour-glassing effects: the mesh
is distorted in an uncontrolled way due to zero strain value at the
only integration point, resulting in overprediction of modes and an
overly compliant mesh. For the finite sliding contact, the number
and kind of unstable modes no longer change after a mesh with
5642 elements although, still, hour-glassing can be observed; and,
for the small sliding regime, the unstable modes converge only af-
ter the 7th step. By comparing the number and quality of unstable
modes as well as the frequency errors, it can be observed thatthe
number of unstable modes converges for a mesh with total number
of at least 6,000 elements for the finite sliding contact and, 11,000
for the small sliding contact, with an error in frequency of less than
3% and 2%, respectively. For theincompatible modeselements
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Figure 4: (colour online) Mesh study: (a) linear tetrahedral; (b)
quadratic tetrahedral; (c) hexahedral, reduced integrated; and (d)
hexahedral, instantaneous modes elements

(Figure 4 (d)), the solution no longer shows hour-glassing effects
and converges with mesh I-4 which has 15,600 elements (stiffened
BC:5,600). The(0,n= 3,0,0) and(0,n= 5,0,0) modes become un-
stable (stiffened BC:n = 4,n = 5). The error estimate in frequency
is low and does not exceed 4%.

FORCED RESPONSE STUDY

To find the most suitable methods for generating surface velocity,
three procedures available in ABAQUS are evaluated: the modal
method which relies on a linear description of the modal space and
does not take into account unsymmetrical contributions to the stiff-
ness matrix; the subspace projection method which is based on a
reduced modal space with complex modes, by incorporating effects
due to friction-induced stiffness, friction damping and rotation ef-
fects; and the direct steady-state analysis which directlycalculates
the forced response based on the system‘s degrees of freedom. The
last method is the most accurate but also takes around 10 times
longer than the subspace projection method [20]. Next, the influence
of different types of excitation on the forced response is studied. Fig-
ure 6 compares the point receptance due to (a) a point force with
that due to (b) an equivalent uniform pressure, for three calculation
methods are used with a mesh of 15,665 C3D8R elements: modal,
subspace and direct. The responses of a disc alone, a disc with pre-
stressed contact (µ = 0.0) and no rotation and a disc with rotation
and in frictional contact with a pad are given. For a point force, it is
obvious that the response of the disc alone differs from thatof the
coupledpad-on-disc system. The disc’s response is higher at some
frequencies between the dominant frequencies because of the differ-
ence in the nature of the excitation. The pad is excited by a sweeping
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force, which transfers its energy through the pad to the contact area
of the disc in the form of pressure excitation. On the other hand,
for the disc alone, it is directly excited by a concentrated force and
an indirect pressure effect is not available. However, the dominant
frequencies match, indicating the dominant character of the disc for
the pad-on-disc system. Further, the pre-stressed structure behaves
similarly to the system with friction and only very small differences
in the response withµ = 0.05 can be observed. Clearly, additional
modes, which lie around 2 and 2.2kHz, correspond to pad modes
with predominantly in-plane motions. The positions of these modes
are determined by (1) boundary conditions (such as contact), (2)
material properties and (3) the element type used. Closer analysis
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Figure 5: (colour online) Contact opening depicted in coordinates
of z−displacement for (a) small sliding and (b) finite sliding defini-
tion for pad-on-disc system with friction coefficient ofµ = 0.5 at
frequency of 4059Hz (finest mesh Figure4(d)).
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Figure 6: (colour online) Forced response cases: (a) concentrated
force on centre node of the pad; and (b) uniform pressure on top
surface of the pad for model IV: (i) modal method, (ii) subspace
projection method and (iii) direct harmonic response

shows that a pad mode becomes active at 2kHz and 2.2kHz in mostly
the radial and tangential directions, respectively. Thesemodes have
out-of-plane components coupled with a ’vibrational active’ (Chen
[44]) (0,3,0,0) disc mode which lies at around 2.39kHz. In [45]
by means of a time domain simulation of the same simplified brake
system, the pad modes cause higher vibration amplitudes at this fre-
quency, which is not predicted by CEA. For the point receptances
(Figure6), this is also discernible from the disc‘s response which
does not show peaks at these frequencies. Then, when friction is
applied, the changes in displacement become visible, especially at
frequencies of these pad modes. In the investigation of the surface
mobility due to contact area excitation by Dai [46], an additional
moment in the contact area is found to be responsible for additional
modes which is confirmed here by additional peaks in the pointre-
ceptance. Further, due to the in-plane character of these modes, feed-
in energy due to the self-exciting characteristics maximises and in-
creases the response of the system at these frequencies. This effect
is highlighted in the subspace method and the direct harmonic re-
sponse as these two methods support asymmetrical stiffnesseffects

due to friction while linear modal solutions are unable to resolve
these effects. In Figure6(b), the structure is analysed by a harmoni-
cally varying uniform pressure of 1kN. In order to simulate pressure
on the disc alone, the contact area of the pad is partitioned on the
disc and pressure is applied to only this region. This time, the disc
alone is directly pressurised, the response of the disc alone is compa-
rable in terms of excitation with the forced response of the pad-on-
disc system and in general, lower at the dominant frequencies than
that of the system with friction. Whereas the modal approachand
the subspace projection method do not differ significantly from the
concentrated force, the direct steady-state method shows far more
obvious differences: a lifting up of the response spectrum is not only
observed at frequencies of the pad modes but over the whole band-
width.

Figure7(a) displays a comparison of the pad-on-plate‘s forced re-
sponse in terms of kinetic energy [38], calculated by the subspace
projection method and the direct steady-state response fora pres-
sure of 0.5MPa. The results of the modal method are not included
in Figure7 because it has already been shown in Figure6 that fric-
tion effects are not considered [32] in this method. The four domi-
nant frequencies are indicated byf1 to f4. With an increasing fric-
tion coefficient, both the direct steady-state and subspaceprojection
methods show increases in the kinetic energy. Clearly, the effects
of friction are underestimated by the subspace projection method,
resulting in lower kinetic energy amplitudes. For the subspace pro-
jection method, all modes in the frequency range of kHz to 6.5kHz
but without residual modes are used. Including modes up to 10kHz
improves the behaviour slightly but also results in longer computer
run times, thus reducing the advantage it has over the directcal-
culation approach. Similary Couyedras et al. found by meansof a
comparison of the direct time integration with the constrained har-
monic balance method, that many more harmonics are necessary to
receive the steady state nonlinear solutions for a brake system [47].
In Figure7(b), the development of external work , which includes
work due to all external forcing terms and friction, calculated by
the subspace projection method is depicted for friction coefficients
from 0.05 to 0.65, together with the direct steady-state method for
µ = 0.05. The external work represents the change in potential en-
ergy stored in penalty springs due to friction [37]: negative external
work increases their spring load which is missing at this frequency
to increase the potential energy of the structure due to deformation
[48]. However, the external work usually becomes higher at certain
frequencies with increasing external loads and only when energy
due to friction-induced excitation is fed into the system can the sign
of energy be reversed. The storage of potential energy is propor-
tional to fed-in energy. Increased feed-in energy is only visible at
frequencies off2 to f4 at which the feed-in energy for the direct
steady-state analysis is much higher than it is for the subspace pro-
jection method. By looking at the reference level (dotted line), one
can clearly see that the overall level of external work of thedirect
steady-state analysis is lower, indicating that more energy is fed into
the system thus lowering contributions due to external work.

ACOUSTIC RADIATION

For the evaluation of the acoustic radiation problem, various meth-
ods are assessed. For that, in LMS/VL Acoustics [49] the integra-
tions in are set to region limits ofD/L in the range of integer val-
ues or 0 to 5 for the near- and far-fields respectively. HereD is the
distance between two boundary elements andL is the longest edge.
The quadrature is set to 5,3,1 for the near, medium and far regions,
respectively, with up to 100 Gauss points. In AKUSTA, the Gauss
quadrature order is set to{2,4,6,8,12,16,24,30;30} which is lower
than in LMS, as a polynomial transformation is implemented,which
allows to reduces significantly computational cost due to integration
with at the same time higher accuracy [50]. The convergence crite-
rion for the fast multipole solvers in LMS and ESI have been set to
as 5.5×10−4, after an integration convergence study at some arbi-
trarily chosen resonance frequencies.
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Numerical Methods used in Acoustic Simulations

Numerical methods suitable for exterior acoustics are assessed using
the models depicted in Figure1.

Analytical Sphere A sphere as a test object represents simple ge-
ometry which can show irregular frequencies/internal resonances for
external acoustic radiation calculations. For that purpose, an analyti-
cal closed solution for the sound pressure,p(R)= ρcvkR√

1+k2R2 as a func-

tion of the wavenumber was taken from [51]. Here,ρ = 1.3kg/m3,
c = 340m/s,v = 1m/s,R= 0.25m andk = ω/c∈ [6.28,18.48] are
the fluid‘s density, the sonic velocity, the velocity in the normal di-
rection applied to each node, the radius of the sphere, the wavenum-
ber and circular frequency respectively.
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Figure 7: (colour online) Comparison of subspace projection method
and direct steady-state analysis: (a) kinetic energy; (b) external work
subspace projection method; and (c) external workdirect steady-
stateanalysis (p = 0.5MPa,µ = 0.05))

ERP (LMS/VL) The method of equivalent radiated power (ERP)
implemented in LMS VL (Virtual Lab Acoustics), as a plane-wave
approximation, sets the radiation efficiencyσ to 1 so that the acous-
tic powerΠ in the far-field is calculated by taking only the surface
velocity into account. The typical BE matrices do not have tobe as-
sembled and reflections are not considered in the solution ofacous-
tic power. An integration error, due to calculating the pressure of
two contacting surfaces, is not expected because the pressure is not
calculated by setting up and solving the BE matrices. The acoustic
power is directly calculated by equating 1= σ = Π

ρcS<v̄2>
. Here,ρ

is the fluid’s density,c is the speed of sound,S is the radiating sur-
face and< v̄2 > is the time and space averaged surface velocity [26].

Direct BEM (DBEM) of LMS/VL Direct boundary element formu-
lations work by directly solving the Kirchhoff-Helmholtz equation
[52] through discretising the surface and then using for instance
the collocation method [53]. The interior of the volume of the ra-
diating body is not described mathematically and, in the frequency
spectrumirregular frequencies(non-uniqueness problem) can be ob-
served. These frequencies are physically not explained as they are
only mathematical artefacts [9]. To overcome the problem, the sys-
tem of equations can be enlarged by overdetermination points which
are placed inside the volume of the radiating body. The majordraw-
back of this method is that, as the geometry becomes complicated
[9], the exact location of these over determination points inside the
volume of the radiating body is no longer known so that more points
than necessary have to be applied, each of them increasing the sys-
tem matrices by one dimension.

Indirect BEM (IBEM) of LMS/VL This method is based on the so-
lution of the exterior and interior acoustic radiation by means of a
Galerkin approach [13]. As the interior is mathematically described
in this model, the previously described non-uniqueness problem be-
comes physical and can be described by internal resonances.If one

wants to use the indirect method in order to calculate only the exte-
rior acoustics, the internal effects of the radiating body have to be
eliminated. This is usually done by applying a layer of characteristic
impedances, inside the volume. For air, the characteristicimpedance
is Z = 10−3Nsm−3.

DBEM/Burton-Miller (BM) AKUSTA, developed at the technical
university of Dresden is able to use, besides other methods,the
Burton-Miller approach, which treats irregular frequencies due to
mathematical singularities (opposed to physical/ geometrical singu-
larities [54]), by forming a linear combination of matrices of the dis-
cretised Kirchhoff-Helmholtz equation with its second derivatives
and a weighting function, the Burton-Miller constant [52, 55]. In or-
der to have defined second derivatives at the nodes of the BE mesh
for additional integrands of the Burton-Miller components, nodes
of the BE mesh have to beC1 continuous. This means that unique
derivatives have to exist; this is not the case, if a continuous element
formulation as in FEM is chosen. Practically, this can be solved by
using a discontinuous element formulation [56, 57]).

(indirect) Fast Multi-pole BEM (IFMM) of LMS/VL Fast multipole
solvers work by means of substructuring the fluid domain intolevels
of cluster trees (or sub-domains) and subsequent approximate solu-
tion at these levels [58, 9]. The IFMM has some restrictions (see
also [59]) due to this substructuring process. The length of level
zero is the maximum length of the geometric body which is, in the
case of the cat’s eye radiator, the diameter of 0.5m. This cube is di-
vided into 8N cubes withN being the level counter, so that, for level
one, there are 8 sub-domains created. The length of theNth cube is
calculated byLN = L0/2N ≤ λ

4 whereλ is the shortest wavelength
with 11.3cm for a sonic velocity of 340m/s at a frequency of 3kHz.
Hence, the number of levels is 2.88, that is, 3 and there are 512
sub-domains. The IFMM far-field approximations can only be used
when the cubes are not adjacent, that is, only cubes at the minimum
level, 2, can be calculated by the ACTIFMM solver while, for the
rest, the classic SYSNOISEsolver is used. It is expected that the so-
lution of the IFMM is the most reliable in the frequency interval of
607Hz to 2000Hz. The advantage of the fast multipole in general is,
that it substructures and solves for the acoustic domain in aheuristic
manner and uses only a fraction of the computer memory even for
very large models. Further, due to the use of approximations, espe-
cially at high frequencies, the computer run times are supposed to
be much lower. As a result, model sizes with up to 1Mio. dof‘s can
be solved [60].
(direct) Fast Multi-pole BEM (DFMM) of ESI/VAOne The second
fast multi-pole solver, implemented in ESI VAOne, is based on pre-
vious pre-conditioning and subsequent iterative solving with a flex-
ible Generalized Minimal Residual Method (fGMRES), treating ir-
regular frequencies by means of the Burton-Miller Method [61]. In
contrast to the Burton-Miller method implemented in AKUSTA, the
element formulation is continuous and the regularisation of the in-
tegrals is based on an approximation. However, in this study, no ir-
regular frequencies in the acoustic power or pressure couldbe found
which means, that the BM approach used is working fine, although
the elements are notC1 continuous.

Irregular Frequencies/ Internal Resonances

For external acoustics based on a direct formulation, the irregular
frequencies are not physical as the interior of the volume isnot gov-
erned by its underlying integral equations. For the direct method,
CHIEF or the Burton-Miller approach can be chosen to overcome
the so-called non-uniqueness problem [13]. For the indirect meth-
ods, radiation modes due to internal resonances can be treated by
applying a layer of impedance inside the volume. The first irregu-
lar frequency of a cavity can be estimated fromc2L , whereL and
c are the characteristic length and the speed of sound respectively.
For a sphere with diameter,D, an irregular frequencies may ap-
pear for frequencies greater than 340Hz. The same can be assumed
for the cat‘s eye, as it is derived from the sphere with similar di-
mensions. However, more irregular frequencies are expected due to
the more complicated geometry [9]. For the plate and disc struc-
tures, irregular frequencies/internal resonances are tested using the
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acoustic FEM in ABAQUS. The interior of the disc is meshed with
quadratic 20−node acoustic brick elements. The outer surfaces are
constrained with a zero pressure boundary condition (interior Neu-
mann problem). The bulk modulus of elasticity of the fluid airis
set toK = 150,280Pa, the density is assumed to beρ f = 1.3kg/m3

and the speed of sound isc = 340m/s. The first irregular frequency
for a plate of thickness of 12.6mm is calculated at 13,863Hz (see
Figure8(a)). By using c

2L , the first irregular frequency is estimated
to be above 13,493Hz. For the disc, the first fluid’s radiation mode,
corresponding to an irregular frequency of the exterior problem, is
found via the acoustic FEM at 5140Hz (estimate 4857Hz which cor-
responds roughly to a wavelength of 6.5cm (see Figure8(b)). For the

(a) 13,863Hz (b) 5,140.9Hz

Figure 8: First irregular frequencies of: (a) plate; and (b)disc

pad of the pad-on-disc system, the first irregular frequencyappears
at around 9041.1Hz (estimate 8500Hz), which is out of the range of
interest in this study, as only frequencies up to 7kHz are investigated.
The pad of the pad-on-plate system showed irregular frequencies at
around 14kHz.

Test for Irregular/Internal Frequencies

Sphere The acoustic radiation of a sphere is calculated using the
direct exterior BEM and the IBEM, both of which are availablein
LMS/VL Acoustics. The direct method is calculated once without
CHIEF points and, in the second run, 480 over determination points
are applied, similar as in [22]. The indirect method calculates the
interior and exterior problems at the same time. In order to elimi-
nate the effect of interior resonances, an absorbing interior panel,
with a characteristic impedance of air ofZ = 10−3Nsm−3, is ap-
plied [26]. As can be seen in Figure9, the DBEM shows the effect
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Figure 9: (colour online) (a) DBEM and (b) IBEM applied to radiat-
ing sphere

of irregular frequencies on the acoustic power at 680Hz, while the
indirect method gives an internal resonance at 961Hz. By applying
(a) overdetermination points or in (b) a layer of impedance on the
interior of the sphere‘s surface, both methods work well: a compar-
ison with the analytical solution shows no differences. This simple
example also shows that irregular frequencies are not identical to
internal resonances as the integral equations involved aredifferent
and that CHIEF points or the characteristic impedance overcome the
non-uniqueness/internal resonance problem.

Cat‘s Eye (Benchmark A ) Next the cat‘s eye radiation properties
are studied in terms of acoustic power. The performance in terms of
irregular frequencies/internal resonances of various acoustic BE for-
mulations suitable for analysis of disc brake squeal is analysed. It is
interesting to determine whether some methods can be excluded by
examining the acoustic power (Π) as a global measure alone. Then,
selected methods are assessed in terms of their performanceto anal-
yse the acoustic pressure at the centre and backside points of the
spherical part [9]. In Figure10, the different methods are compared

with each other. If the acoustic powerΠ is expressed in dB, almost
no difference can be seen for frequencies above about 750 Hz.The
IFMM follows the IBEM very closely as it is based on the same
formulation. Here, for frequencies between 250 and 750Hz, these
indirect methods seem to over-predict the acoustic power compared
with the other methods. As can be observed in the magnification
of Figure10, the DBEM/CHIEF also suffers from the effects of ir-
regular frequencies, especially at higher frequencies, which simply
means that more CHIEF points have to be applied. All methods show
thatΠ approximates the ERP method very closely. The DBEM/BM
(AKUSTA) and the DFMM of ESI‘s VAOne both working with
Burton-Miller formulation do not show any irregularities and are
relatively easy to apply. Figure11depicts the sound pressures in the
centre and back of the cat‘s eye for these two methods workingwith
the Burton-Miller approach. The sound pressure is generally more
sensitive than acoustic power to the effects of irregular frequencies
due to singularities. In the center of the cat‘s eye, the sound pressure
diverges very strongly for the fast multipole method. The differences
at the center node are probably due to (1) the continuous element
formulation of the DFMM which is different from the constantdis-
continuous elements used in DBEM/BM (AKUSTA) which isC1

continuous [62] and (2) the different choice of the Burton-Miller
coupling parameter which was chosen to be 0.1 as a compromise be-
tween performance and accuracy for the DFMM according to [61]
and the optimal choice of 1 [55] in AKUSTA. Important here is, that
the divergent behaviour at the centre node is expected and that for
both methods, the DFMM of ESI and the DBEM/BM (AKUSTA),
work well for approximating the sound pressure at the back ofthe
cat‘s eye surface with a smooth function to that of a sphere. The
behaviour of the center node is related to the character of this geo-
metric singularity at which the effect of irregular frequencies gets
amplified [22] and which can get remedied by different mapping
approaches [54], which however, is beyond the scope of the paper.

Test for Integration Error in Contact Patch

For a pad-on-disc or the pad-on-plate in which two bodies arein
frictional contact, it is likely that integration errors inthe contact
surfaces influenceΠ. The significance of integration errors is depen-
dent on the method used but can be circumvented by wrapping the
pad and disc with one additional mesh, together with subsequent
mapping of the surface velocities onto this new mesh.

Pad-on-plate In Figure 12, the significance of different sliding
regimes and a possible integration error due to the contact surfaces
is evaluated for the pad-on-plate model. The DBEM, which suppos-
edly has additional integration errors due to the contacting surfaces,
but also considers reflection due to geometry, is compared with the
ERP, in which the integration error of the BEM is minimised be-
cause the surface pressure and also reflections are not calculated. In
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Figure 12(a), the acoustic power levelΠ of the ERP method is de-
picted for both the small (Πp

s ) and finite sliding (Πp
f ) regimes and
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almost no differences can be observed. There is also no difference
between the acoustic power level for the small and the finite slid-
ing contact using direct BEM, indicated byΠd

s andΠd
f . In Figure

12(b), two curves show the difference in acoustic power expressed
in % based on Watts, between small and finite sliding for both the
DBEM (∆Direct) and the ERP (∆ERP) method.∆Direct represents a
measure for the integration error, reflections and differences in the
sliding regimes while∆ERP only gives a measure for differences in
the sliding regimes plus an overestimation due to the use of ERP
which is supposed to be rather small for the high-frequency range
[9]. Differences of up to 13% can be observed for both the DBEM
and the ERP which are almost congruent, indicating that, an integra-
tion error is rather small. In Figure 12(c),∆Direct is deducted from
∆ERPand depicted in %. The differences do not exceed 2%, thus in-
dicating that the effects of reflection plus integration error are very
small compared with the effects due to different sliding definitions.
That the effects of reflection are small for the pad-on-platesystem
has previously been shown in [25] where energy area contributions
do not show major differences compared to acoustic intensity. It has
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Figure 11: (colour online) Sound pressure levels of DBEM and
DFMM, both using Burton-Miller approach

to be noted that a possible lift-off of the pad, as depicted inFigure5,
is not applied to the BE methods with regard to the reflectionsas the
structural mesh was taken in its undeformed state from the FEanal-
ysis. For the plate or disc models it can be stated, that DBEM can
be usedwithout considering a wrapping mesh. However, for a real
brake system in order to circumvent any problems associatedwith
an additional integration error, a wrapping mesh is recommended.

In Figure13, Π is calculated by the ERP, the DBEM (no CHIEF
points, as no irregular frequencies are expected at this lowfrequency)
and the DFMM for the pad-on-disc model. The last approach is
used in calculations for three different wrapping meshes which have
(i) 2,551 nodes (2.67mm EL), (ii) 6,952 nodes (1.63mm EL) and
(iii) 23,022 nodes (0.905mm EL).EL is thedesired element length,
which should correspond to at least 6 elements per wavelength. This
element length is not to be confused with theaverage characteristic
length in the contact zone defined by ABAQUS. The former is ho-
mogeneously distributed over the surface and does not consider the
partitioned contact area. The contact area was seeded and meshed,
with an element length of 1.63mm in the contact partition and as can
be seen from Figure13, exactly the same desired element length
has to be applied to the wrapping mesh in order to obtain results
which match the non-wrapped structure of DBEM and DFMM with
the ERP as upper bound, as this method overestimates the acoustic
power [9]. When no wrapping mesh is applied, the results do not de-
viate greatly from the results of the LMS/VL Acoustics DBEM and
the medium-sized wrap with anEL of 1.63 mm which is as small as
the element size in the contact zone.

Pad-on-disc (Benchmark B) In order to use the DBEM for the
pad-on-disc system, overdetermination points, have to be applied.
Care has to be taken that these points are only applied to the inte-
rior of the disc and that no points liein the contact patch or pad
volume. If this is guaranteed, an overdetermination study can be per-
formed for which the acoustic power level should converge (see Fig-
ure11). As a more strict convergence criterion, the sound pressure

at (arbitrarily) chosen field points can also be specified (asexem-
plified in Figure11). Ideally, the convergence has to be checked at
as many frequencies as possible; however, as this is not feasible, it
is suggested to choose frequencies corresponding to prominent disc
modes. In Figure14, an overdetermination point convergence study
is presented for the pad-on-disc model, here for the disc‘s first three
out-of-plane modes. It has been found that convergence is reached
if at least 3000 overdetermination points are applied (see Figure14),
so that 3500 overdetermination points were taken.

Next shown in Figure15 is the radiated acoustic power for differ-
ent calculation methods for the pad-on-disc model. The IBEMand
IFMM, have characteristic impedances ofZ = 10−3Nsm−3 (air) ap-
plied. The DBEM/BM (AKUSTA) does not converge fast enough
and no results are presented here. Only for ESI/VAOne‘s DFMM,
both a wrapped and a non-wrapped structure are calculated but there
are insignificant differences between the two. All methods appear to
work well and the modes which contribute most to the overall sound
radiation are able to be identified and no method can be excluded.
However, by zooming in (magnificationsA1 −A4), differences in
the methods can be distinguished, but are not significant forthis
pad-on-disc system. However, one has to bear in mind, that with
higher geometric complexity and more parts, the modal density in-
creases, so that stronger irregularities due to integration errors or the
non-uniqueness/internal resonance problem are potentialsources of
misinterpretation. At around 2kHz, the IFMM shows a peak which
does not correspond to a regular frequency. More exposed peaks
lie at frequencies of around 3.3kHz and, at around 4.2kHz and the
IBEM is not smooth. Integration errors are present inA1 to A3 which
are associated with not using a wrapping mesh because irregular fre-
quencies/internal resonances are only found above 5.1kHz. Above
5kHz, the irregularities of the DFFM without wrapping are due to
integration errors as the curve of the wrapped structure is smooth.

Computational Costs

Not only performance but also computational costs are important.
As all models used in numerical simulations represent only approxi-
mations, it is the trade-off between accuracy (physically meaningful)
and computational cost (feasibility) that determines the practicabil-
ity of the method to be employed. Therefore, the computing times re-
quired to calculate the sound pressure from the surface velocity and
then the acoustic power are compared in Figure16 for the various
methods. All simulations used in-core solvers and no other major
process ran on the workstation. The main advantage of the fast multi-
pole formulations (DFFM, IFFM) is that their memory usage isless
than those of the non-heuristic methods, such that it becomes feasi-
ble to analyse large models. This could be particularly important for
simulating a full brake system. As can be seen in Figure16(a) for
the cat‘s eye radiator, the DBEM with Burton-Miller and the IFMM
do not offer significant advantages in terms of computational cost.
In Figure16 the performance of codes in numerical acoustics is pre-
sented in terms of normalised time/frequency for (a) the cat‘s eye
model (A ) and in (b) for the pad-on-disc system (B). For the cat‘s
eye model, the performance of AKUSTA is significantly lower than
that of the commercial codes. This is because the parallel use of mul-
tiple processors for one step is not possible. The IFMM does not per-
form well as the model size of the cat‘s eye radiator is far toosmall.
The IBEM performs much faster. However, for the indirect method,
the internal resonance frequencies remain problematic so that here
the impedance of water is better used. The DBEM performs well,
provided that enough overdetermination points (CHIEF) areprop-
erly assigned to the structure. The DFMM is slower than the DBEM
or the IBEM but its performance is convincing for the cat‘s eye radi-
ator. Although the DBEM and the IBEM of LMS/VL perform well,
here the preference is for the DBEM as the IBEM suffers from larger
errors, due to either internal resonances still being present regardless
of an applied impedance or due to integration errors. The major dis-
advantage of the DBEM is the large memory consumption which
gets even worse when CHIEF points have to applied, renderingthis
method as non-applicable for large models.
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A second benchmark, with its focus being on not having a wrap-
ping mesh applied, is performed on the pad-on-disc model (B). Due
to the non-matching meshes in the contact zone, integrationof the
methods using the DBEM/BM approach suffer; this could be ob-
served in the very slow convergence rates of the iterative gener-
alized minimal residual method (GmRes). The performance ofit-
erative solvers can be found in [14]. The convergence rate of the
DBEM/BM (AKUSTA) is too low and calculations were prema-
turely aborted for the pad-on-disc model. For the DFMM, two cal-
culations are depicted in Figure16(b). The large bar gives the av-
erage times/frequencies for a structure without wrapping mesh and
highlights the problems the Burton-Miller approaches havewith the
contacting surfaces. However, the application of a wrapping mesh
speeds up calculations considerably due to a faster convergence rate
of the iterative solver and, at the same time, has very low memory
consumption (small bar). Thus the DFMM method implemented in
ESI VAOne with a wrapping mesh is recommended for future cal-
culations of a real brake system as it combines accuracy and ease
of handling due to the Burton-Miller approach and fast calculations
with low memory consumption fromkD of 0.0025 up tokD of 250
( which is going to be increased up tokD = 500 in VAOne 2010),
wherek is the wavenumber andD is the diameter of the acoustic
domain.
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Possible Consequences of Pad Lift-off and Chamfers

As there are cavities, due not only to contact patch deformations
and lift-offs (Figure5) but also naturally to the different geometries
(form factorsFF) of the pads, a possible gap between disc and pad
is studied. In this parametric study at 4060Hz, the pad is lifted off the
disc, starting from 0mm (in contact) over 0.5mm and then in 1mm
steps up to 7mm, using the DFMM solver of ESI. Only the finite slid-
ing contact algorithm in ABAQUS is taken and the field-point mesh
is evaluated at 1m distances. Figure17(a)shows a (distorted) dipole

[51]. In Figure17(b), the shape of a lateral quadrupole [51] can be
discerned which becomes clearer for a contact opening of 0.5mm.
Leaving a gap between the disc and the pad results in a horn ef-
fect with significant amplification, a well-known phenomenon, and
leads also to undesired sound pressures in for instance tyre-road-
contact noise calculations [63]. Of course, due only to different con-
tact regimes, it is not very likely that the pad lifts off at 7mm; thus,
this scenario has to be seen as hypothetical. However, due toa real
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pad having slots and chamfers, it is suggested in the next step that the
pad‘s form factor be modified. Four cases are depicted in Figure18:
(Case I) baseline configuration with steel pad and a compliant BC;
(Case II) Case I with chamfers and a compliant BC; (Case III) Case
I with chamfers and stiffened BC; and (Case IV) Case I with cham-
fers and stiffened boundary conditions such that the weights of pad
(I) and pad (IV) are equal. For case I the(0,4±,0,0) mode becomes
unstable. For case II, due to its higher mass and less rigid boundary
conditions, pad modes, previously at around 4.72− 4.82kHz, now
appear at 3.1kHz. For this case, the(0,4±,0,0) split mode becomes
stable and the(0,3±,0,0) mode at around 2500Hz is unstable. In
order to maintain the same unstable modes for all 4 cases, thelin-
ing material is changed (density) and the boundary conditions are
altered to constrain more nodes. Again, the(0,4±,0,0) mode be-
comes unstable, with pad modes lying at around 4.75 and 5.56kHz.
In the upper right corner of Figure19(b), the acoustic power level,
Π, for Cases I-IV is denoted. The results clearly show that theeffect
of chamfer is to amplify the acoustic pressure. This is disadvanta-
geous and has to be further evaluated to determine if and, if so, by
how much, the acoustic pressure is shielded by e.g. the calliper as-
sembly.

DISCUSSIONS AND CONCLUSIONS

Boundary Conditions and Mesh Study It is found that, for stiff-
ened boundary conditions, convergence of the solution, in terms un-
stable modes predicted by the CEA, is much faster as pad modesare
not found in the frequency range investigated. However, padmodes,
vibrating in-plane either radially, tangentially or rotatationally, could
be unstable and initiate or amplify underlying or neighbouring mode
coupling [38]. They are very sensitive to changes in mesh resolution
or contact stiffness and influence predictions in terms of the complex
eigenvalues: Therefore, a mesh study for converged solutions has to
concentrate on a frequency range where pad modes are present. Two
contact formulations, small and finite sliding, are studiedby means
of C3D8I elements without considering pad modes. The finite slid-
ing contact is stiffer as the frequencies of predicted unstable modes
are higher. The criticalµ predicted is different for the two contact
conditions (see Figure3). The contact patch, of the finite sliding
contact shows a lift-off which definitely changes the dynamics and
could itself be responsible for higher acoustic radiation.Therefore,
the finite sliding regime is recommended as the local surfacelift-off
is more realistic. Extra calculation time required is so small as to be
almost not measurable for the pad-on-disc model. The tetrahedral 4-
node and 10-node elements are benchmarked against the 8-node hex-
ahedral elements. The typical drawback of the linearC3D4 becomes
obvious since the frequencies of the modes are very high: thestruc-
ture is far too stiff compared with the other elements. This is related
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to the out-of-plane motion where elements lock into each other, also
referred to asshear lockingwhich is a numerical error and results
in sometimes only one mode being predicted to be unstable: The so-
lution is not mesh independent. Therefore, the tetrahedralelements
should be avoided and only used to fill ’gaps’ whenever it is easier
to apply tetrahedral elements in the support of the mesh structure
[31]. The 10-node tetrahedral element performs better and can be
easier meshed. However, it suffers from large computing times as it
has many more nodes than the 4-node tetrahedral element and lacks
super-convergence. The use of fully integrated hexahedralelements
results in large computer running times. Therefore, often the hexahe-
dralC3D8R element, is taken. This element type suffers from hour-
glassing and serious over-prediction of unstable modes if the mesh is
too coarse. The incompatible mode elementC3D8I produces better
results than does theC3D8R element and no hour-glassing is ob-
served. The numbers of total modes and unstable modes converge.
A drawback is, that for the pad-on-disc system, the computerrun
times are more than 4 times larger than that forC3D8R.
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Forced Response Study The extraction of surface velocities is
essential in order to calculate the acoustic radiation by means of
BEM. The differences in the forced response due to differentcalcu-
lation methods (modal, subspace, direct) and due to different types
of excitation (point force vs uniform pressure) have been demon-
strated (Figure6). For pure mode-coupling instability in the fre-
quency range of interest, without in-plane pad modes, subspace pro-
jection methods can be used to obtain good estimates of surface ve-
locities, as discussed in [20]. However, the direct steady-state analy-
sis is far more accurate as it calculates the system‘s response directly
in terms of its degrees of freedom and captures pure friction-induced
effects (such as pad-mode instabilities [38, 39, 41]) much better. Fur-
ther, a pressurised pad delivers a more realistic forced response, with
a higher relative change between different loading regimes, tested
for the disc alone, a pre-stressed disc and a disc in frictional contact.
The computer run times, as investigated in [20], are longest for the
direct steady-state analysis which is a severe disadvantage of this
method, especially if larger models are investigated.

Acoustic Study Next, the acoustic power of the cat‘s eye radia-
tor as a global measure is analysed as it could thin out some of
the methods before analysing, in detail, by means of more sensi-
tive parameters concerned with irregular frequencies/ internal res-
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Figure 17: (color online) Directivity plots for gaps of 0.5, 1, 3 and
7mm.
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Figure 18: Depicted are three different geometries used forfour dif-
ferent models: (Case I) baseline configuration with steel pad; (Case
II) chamfers; (Case III) stiffened type boundary conditions; and
(Case IV) density such that weights of pad (I) and pad (IV) equal

onances. To begin with, the analytical sphere is calculatedand a
plane-wave approximation is applied to the structure whichshow
that the sphere radiates higher power than does the cat‘s eyein the
far-field. It is expected that the acoustic power level of thecat‘s
eye is slightly lower than that of a sphere as one octant is cutout
which has an imposed zero velocity BC. The DBEM/BM imple-
mented in AKUSTA, performs well and approximates the acoustic
power level of a sphere. The two indirect methods of LMS both work
fine, the modelling requests the correct impedance to be applied, but
mostly the one of air is found to be sufficient. The IFMM, based
on the formulation of the indirect method, follows the curveof the
IBEM. The DBEM/ CHIEF (LMS) seems to perform fine in terms
of the overall sound power level compared with the other methods.
The DBEM/BM (AKUSTA) performs well as does the DFMM with
Burton-Miller formulation. As mentioned earlier, acoustic power as
an integral measure is not very sensitive to pressure fluctuations.
Hence, the DFMM and DBEM, both working with a Burton-Miller
formulation are studied in terms of their sound pressure magnitudes
in the centre, and at the back, of the cat‘s eye radiator. It isexpected,
that on the back of the cat‘s eye, the sound pressure level of asphere
is approximated and it is found, that both methods perform well.

Next, the second benchmark with contacting surfaces is studied. In
order to evaluate firstly the pad-on-plate then the pad-on-disc sys-
tem, the acoustic power level is calculated. Here, a possible inte-
gration error due to contacting surfaces of two radiating bodies is
of special interest. Hence, for the pad-on-plate system, two possi-
bilities are evaluated: (1) the use of a wrapping mesh; and (2) no
wrapping mesh.

It is found, by means of a pad-on-plate system, that the choice of
wrapping mesh is not arbitrary as thedesired element lengthhas to
be chosen such, that the seeding of the structural analysis in regions
of high acoustic significance (e.g., contact patch) is matched. It can
be assumed, that too coarse or too fine a mesh either under- or over-
estimates the acoustic power level, respectively (see Figure13). If no
wrap is taken, an integration error does not seem to be too large ex-
cept that, depending on the numerical method used, the convergence
and, therefore, the computational performance, might suffer. A com-
parison of different methods shows that, indeed, the deviations are
not too large, and that all methods tested perform sufficiently well in
the prediction of radiated power. However, shortcomings are there,
due mainly to integration errors or irregular frequencies which, how-
ever, are only visible under magnification. In terms of computational
cost regarding only the cat’s eye radiator, preference has to be given
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to the DFMM since it seems to be a sufficiently accurate method
capable of calculating results very quickly due to its iterative solver.
Also, the IFMM seems to have an advantage because of the inca-
pability of the DBEM and IBEM to solve large problems at high
frequencies due to large memory consumption but suffers from high
computational costs, due to the large proportion of calculations in
the low frequency range. Both models, definitely the cat‘s eye and
also the pad-on-disc were also too small for the IFFM. Due to the
low frequency range involved and the relatively small size of the
models, either the slower sysnoise solver was used more often or
sub-leveling of the acoustic domain was in efficient [49]. Also, the
problem of internal resonances is not overcome, which will pose a
problem for a real brake system with an increased modal density. Ta-
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(Figure18)

ble 2 gives an overview of the test results. Here,firr ,
∫

, Mem, Cost
stand for irregular frequencies, integration error, memory consump-
tion and computational cost in average time/frequency, respectively.
Further, the category ’Model size (sma/med/lar)’ gives a recommen-
dation as to whether it is feasible to calculate (small/medium/large)
models by the method, respectively. Values in brackets werenot eval-
uated here, and only estimated.

Then, by means of a gap study, the lift-off of the pad up in con-
text with a horn effect is evaluated. No additional integration errors
due to contacting surfaces are expected. The outcome of thisstudy
is, that lifting the pad up results in a horn effect which amplifies
the sound pressure. As a consequence, the amplification of cham-
fered pads is studied. Results show that pads with chamfers produce
higher sound pressure and acoustic power levels.

Table 2: Results from BEM benchmarks modelA andB

Method firr
∫

Mem Cost Model Size
(A ) (B) (A /B) (A /B) sma/med/lar

ERP NA NA ✔/✔ ✔/✔ ✔/✔/(✔ )
DBEM/CHIEF ✔ ✔ ✔/✘ ✔/✔ ✔/✘/(✘ )
DBEM/BM ✔ ✘ ✔/✘ ✘/✘ ✔/✘/(✘ )
IBEM ✔ ✔ ✘/✔ ✔/✔ ✔/✘/(✘)
IFMM ✔ ✘ ✔/✔ ✘/✘ ✘/✘ /(✔)
DFFM ✔ ✘ ✔/✔ ✔/✔ ✔/✔/(✔)

In conclusion it can be said, that the DFMM solver implemented
in ESI/VA performed accurately (no irregular frequencies or visibly
higher integration errors due to contact), was easy to applyand the
fastest. Apart from that, the plane-wave approximation wasa good
alternative for obtaining preliminary estimates of acoustic power.
Due to a lifting-off of the pad, a horn effect was evidenced and was
also present for pads with chamfers which resulted in highlyampli-
fied sound pressure/power levels.

Further work should be directed towards the understanding of acous-
tic radiation of simplified brake systems for which complexity can
be built up step by step. Also, the findings for pad-on-disc systems
have to be validated for a brake system with realistic geometry, which
is done at the moment. The effects of high sound power at frequen-
cies not predicted by the CEA should be validated and studiedex-
perimentally using a pad-on-disc system. Again, this couldbe under-
taken using a simplified brake system or a laboratory brake (e.g., as

in Giannini et al. [64]). For all analyses, especially the for realistic
geometry, a high-performance workstation or a server and the use
of the FAST MULTI -POLE BEM over a wide range ofkD values is
recommended.
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