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ABSTRACT

Objective speech quality measurements can be made more accurately and robustly by analyzing individual distortions

of the afflicted speech signal. In previous papers [7, 8] “Salient Formant Points” (SFP) that are extracted from the

output of a hydromechanical, physiologically motivated cochlear model have been used to predict the perceptibility of

Temporally Localized Distortions (TLD). The feature represents areas of high energy vocal tract resonances resolved

in the output of the cochlear model. TLDs include afflictions best described using words such as “Fluttery”, “Babbly”,

“Harsh” and “Interrupted” and represent the highest variance amongst speech signals subjected to coding, network errors

as well as environmental noise. In previous work [7, 9] we have reported the high correlation between the predicted and

actual subjective Diagnostic Acceptability Measure (DAM) elementary perceptual quality (EPQ) scores that represent

these distortions. In this paper we investigate the algorithm’s tolerance to the alteration of various factors that affect the

accuracy of the TLD prediction. The parameters investigated include misalignment between the original and degraded

speech signals; inaccurate voiced/unvoiced decisions; inaccurate speech level normalization at the input to the cochlear

model (which affects the output of the non-linear cochlear mode). Results are illustrated for each these factors.

INTRODUCTION

The accurate and objective measurement of speech quality has

been the “Holy Grail” of speech processing. The current ITU

standard for objective measurement of speech quality, P.862

(also known as the “Perceptual Evaluation of Speech Quality”

(PESQ) algorithm [6]) - is often inappropriate, (as documented

in the standard), for evaluating low bit-rate vocoders (below

4kbps) [6] as well as speech degraded by environmental condi-

tions. These environmental degradations include babble/office

noise and military vehicle noise which affect the signal before

being subjected to coding. In realistic conditions clean (not af-

fected by the environmental conditions) versions of those sig-

nals do not exist and cannot be provided for use as the refer-

ence signal to the PESQ algorithm. In addition, our own tests

reveal that PESQ fails to predict the quality of low pass fil-

tered speech ( fc = 2kHz) as well as speech degraded by narrow

band noise (from 400Hz to 800Hz). Even so, the PESQ algo-

rithm betters earlier attempts at predicting MOS [1] - mainly

attributed to a highly evolved Psychoacoustic Masking Model

(PMM). The PMM is an attempt at modelling the linear com-

ponent of what is a highly non-linear hydromechanics of the

human cochlea.

A fundamental issue that affects the accuracy of speech qual-

ity evaluation is that both subjective Absolute Category Rat-

ing (ACR) testing and PESQ tries to evaluate the quality in

one dimension. This is counter to evidence [4, 12, 14], that

the perception of speech quality is multi-dimensional. This is

addressed in the proprietary subjective testing method called

Diagnostic Acceptability Measure (DAM) [2]. In DAM, sub-

jects are asked to detect individual distortions such as “Bab-

bly”, “Interrupted”, “High-frequency distortion”, etc, before

being amalgamated into a single score (CAE) that correlates

extremely well with ACR scores. In previous research, we have

employed the same “Divide and Conquer” strategy [12] to the

objective evaluation of speech quality to measure Frequency

Localized Distortions (FLD) [11] and Temporally Localized

Distortions (TLD) [7, 8]. These have proven to be extremely

effective and also been used to predict ACR scores more ro-

bustly than PESQ [13].

During the development of TLD measurement using the SFPs,

some interesting characteristics of the SFPs have been revealed.

These include a highly desirable “auto-alignment” property of

the SFPs. Most intrusive objective speech quality measures

spend considerable amount of computation attempting to align

the reference signal with the distorted signal. This paper con-

tinues to investigate the auto-alignment property of the SFPs

along with some other factors that affect the performance of

TLD prediction using the SFPs.

This paper is organized as follows. The following section will

describe the overall TLD measurement algorithm. The next

section will discuss three experiments that examine the toler-

ance of various parameters of the algorithm that impact on the

performance of TLD prediction.

FEATURE EXTRACTION FOR TEMPORALLY LO-
CALIZED DISTORTIONS

Temporally localized distortions in DAM are best described us-

ing “Babbling”, “Fluttering”, “Interruption”, as well as a faster

variation broadly perceived as “Harsh”. As the names suggest,

these distortions are localised in time - some appearing at a

faster rate than others. The algorithm developed to predict their

detectability is based on a few fundamental hypothesis.

The fist hypothesis is that a hydro-mechanical cochlear model

(CM) which attempts to convert the speech signal into a do-
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main that is closer to the perceptual domain - will do so more

accurately than other existing methods (such as a linear Psy-

choacousticMaskingModel, or even short-term-Fourier-transforms).

The second hypothesis is that humans evaluate speech quality

mostly during voiced sections - which typically have longer

durations and higher energy than other sections.

Perceptually salient features are extracted from the CM response

of voiced sections to predict TLD distortions. The 2D Cochlear

Model response across time CMp(t), at a single discrete place
p (of arbitrary units), is a quasi-periodic waveform, with pri-

mary period Tc, dictated by the characteristic frequency fc =
1/Tc, at place p. For voiced speech, a second mode of periodic-

ity Tp can also be observed on the smooth low-passed envelope

of the signal ep(t) = E{CMp(t)}. This periodicity is due to the
pitch of the speaker and is independent of place p except for

a slow evolution across space. These are shown for a typical

voiced section in Fig. 1.

Due to causality, at place p+ 1, the envelope of the Cochlear

Model response ep+1(t) will have evolved albeit slowly for

voiced sections. The rate of evolution is a function of the amount

of voicing, such that for highly voiced sections, this evolution

is slow, whereas the rate is fast for unvoiced sections. The ex-

act same argument can be made in the alternate dimension of

looking at the Cochlear response as a function of place at dis-

crete time t0 and its evolution at t0 +1. It is necessary to track

this evolution in both space and time dimensions since the en-

velope is evolving in both dimensions. Fig. 2 illustrates this

evolution for a voiced section of speech by a 2D peak tracking

algorithm.

We have adopted these peak tracks of the CM response as es-

sential features that represent the rate of evolution of the re-

sponse. It can be observed that the peak tracks are almost par-

allel when the rate of evolution is slow as is the case for voiced

speech. This parallel structure is lost for unvoiced sections of

speech and is shown in Fig. 3.
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Figure 1: Cross section through the CM response for voiced

speech. Two types of periodicity, Tc and Tp, can be observed. Tc
is given by the characteristic frequency of the place where the

cross section is taken, while Tp is determined by fundamental

frequency of this speech segment.

The output of the cochlear model is two dimensional data across

time and space. The sampling rate at the output is identical with

the input speech signal while the spatial sampling is 0.0684mm/sample

such that there are 512 discrete points across the approximate

3.5cm length of the human BM. It is possible to convert be-

tween place and frequency using Greenwood’s map [3] (at thresh-

old levels).

The steps below describes an algorithm to track the two dimen-

sional evolution of the cochlear response CMp(t) on a closed

spatial region p = [pl,ph] along the BM.

1. We start at the lowest boundary place pl , which corre-
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Figure 2: Cochlear response as a function of time and place,

with peak tracks for an voiced segment of speech (/o/). Dark

lines indicate the peaks or crests of the response, and exhibit

a regular, quasi-periodic structure which is also evidenced in

Fig. 1.
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Figure 3: Peak tracks from the cochlear response for an un-

voiced segment of speech (/s/). The quasi periodic structure

that appears in Fig. 2 is not present. Note, that the actual CM

response is not plotted for reasons of clarity.
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Figure 4: Formant Places Determination. Track distance (in

blue) levels out at some region, where its standard deviation is

correspondingly lower than elsewhere. Only three regions with

higher energy has been marked as Formant Places, as shown

by 1, 2 and 3.
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sponds to the highest frequency in the region [pl,ph].
Find all local maxima along the time axis CMp=pl (t),
such that there areMpl peaks at time tk,k= 1,2, . . . ,Mpl .

The peaks are chosen such that at time tk,the cochlear re-

sponseCMpl (tk) satisfies the criteria that it is larger than
the N neighbouring time samples, on either side of it, as

follows: CMpl (tk) >CMpl (tk−1) >CMpl (tk−2) · · · >
CMpl (tk−N, andCMpl (tk) >CMpl (tk+1) >CMpl (tk+
2) · · · > CMpl (tk +N). The value of N is a function of

the temporal sampling rate and is empirically calculated

to ensure the capture of salient features.

2. The process in Step 1 is repeated for each spatial point

in the range (pl,ph]. The position of the peaks are stored
in a matrix PT , such that PT (pc,k)= tk, k= 1,2, · · · ,Mpc .

The size of the matrix is given by the maximum number

of peaks at any place (i.e., max(Mp)).
3. The next step is to associate each peak with a track

across time and place. To do this we look in a distinct

neighborhood (i.e., [tk,p−1−tbackword , tk,p−1+t f orward ])
of each peak position from the previous place, p−1. If

a peak is found within the above range, then it is con-

sidered to be part of the same track as the one at tk,p−1.

If more than one peak is found within that range, then

the one closest to tk,p−1 is chosen. If no peaks are found

within that range, then it track is terminated at place

p−1 and no further search along this track is performed

in the future. Due to causality, the peak tracks always

move towards increasing time and place. For this rea-

son, tbackward can be small. It is important to account

for any new tracks that originate at a higher place (i.e.,

was not at place p− 1) by ensuring that new peaks not

associated with the previous place are not discarded but

are stored for future tracking until they terminate.

4. Further post-processing involves checking to ensure that

the track lengths are longer than a certain threshold. If

not, these short tracks are discarded.

5. The final tracks are stored in a matrix T (m,n) where

each column describes a single track.

Example of the above steps is illustrated in Fig. 2 and 3. The

continuous lines capture information on the evolution of the

spectrum over time and space. During voiced speech, this evo-

lution is slow and is characterised by peak tracks which do not

change drastically over time and therefore take-on an almost

parallel looking tracks across time and space.

Formant frequencies or vocal tract resonances are easily dis-

tinguishable in the 2D CM response. During voiced speech,

they show up as distinct “peaks” or high energy regions in the

CM response, as can be observed in Fig. 2. In the figure, the

three formant frequencies can clearly be tracked over time and

place. They appear at approximately 23.11mm, 24.20mm and

25.57mm from the base of the BM, their positions changing

slightly with time. These places correspond to approximately

4461Hz, 3707Hz and 2911Hz. Instead of referring to Formant

frequencies, it is more appropriate to refer to these as For-

mant Places (FP), reflecting the association between each place

along the length of the cochlea with a characteristic frequency.

The peak tracking algorithm described in the previous section

tracks the FPs extremely accurately over time and place. This

is one of the main reasons that the use of CM response is far su-

perior than spectrogram, as the CM response reflects only the

information that remains after non-linear cochlear processing.

What is actually being tracked is the effect of the formants in

the cochlea rather than the actual formants.

One of the important features of the Formants is their station-

ary nature over time and place. This can be observed on the

CM response by the fact that the number of peaks remain un-

changed for the duration of the voiced speech, as well as the

fact that the peak-tracks are approximately parallel to each

other (in the 2D projection across time and place) - especially

in the regions of the Formant Places. This is demonstrated in

Fig. 1.

The next step in our feature extraction is to focus on just the

“Formant Places”. This is facilitated by the observation that

the average time difference between the peak tracks

∆tp = 1
K−1∑

K
k=2(tp,k+1− tp,k) (over the duration of the voiced

section) is almost constant across the region of each Formant

Place. This is shown in Fig. 4 which shows that in each of the

three Formant Places, 1, 2 and 3, the ∆tp , shown by the blue

line, is almost constant along the width of the each of three

formant places. The standard deviation of the time difference,

shown in red, is also shown to be low. Further, there is a con-

spicuous increase in the average time difference with increas-

ing distance - such that the ∆tp for region 1 is lower than the

∆tp for region 2. This is a direct consequence of the fact that

the number of peaks at any one places are lower with higher

distance, reflecting the fact that the characteristic frequencies

1/Tc decreases with distance.
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Figure 5:Cochlear response with peak tracks for voiced speech

/o/ on the time-place plane. The parallel structure between

tracks can be observed at the FPs (between yellow straight

lines). Also, the Tc and Tp in Fig. 1 is indicated here.

By using a two pronged strategy of imposing an energy thresh-

old such that only sections of the CM response above the thresh-

old will be kept as well as using the graded characteristic of ∆tp ,
it is possible to concentrate only on the Formant Places, essen-

tially discarding the rest of the CM response and associated

peak tracks. The regions that were approximately kept after

this stage are shown in Fig. 5 as the areas between the straight

lines.

A characteristic of the peak tracks at the FP region is the fact

that they are quasi-parallel on the time-place plane (much more

so than in other regions). Corresponding tracks across period

Tp, are also more similar in intensity than say neighbouring

tracks. In a further attempt at reducing dimensionality, while

keeping the most salient component of these tracks, we reduce

each set of tracks in a single period Tp to a single point given by

the “centre of mass” of the tracks in one period. Fig. 6 indicates

the final result of this process. Fig. 6.(A) shows the extracted

Salient Formant Points (SFP) in 3D space of time, place and

IHC response. Fig. 6.(B) is a plot of the points showing the

respective time they were extracted. A most notable feature is

that the points extracted in this manner, for the two different

systems are automatically synchronized - without the explicit

requirement of the signals to be synchronized accurately at the

input. Fig. 6.(C) shows that the points are lightly dispersed over

place due to the different coding systems - as should be ex-

pected. Finally, Fig. 6.(D) shows the IHC response at each of

the extracted points.

SB and SF are defined [2, 10] as "Babble" and "Fluttering"

distortions respectively. From observation of systems which
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Figure 6: Extracted Salient Formant Points. (A) illustrates both

original (green) and distorted (red) SFPs as a function of time

and place. (B), (C) and (D) shows the time, place and IHC

response of the SFPs, respectively.

have high SB and SF distortions, it can be deduced that they

are highly influenced by temporally localised distortions. This

is also reflected in the actual descriptions of these parameters

(“interrupted” and “clipped” for example). This implies that

the distortions are spread over frequency (or along the com-

plete length of the BM/cochlea). However, this is further com-

plicated by the fact that the CM response is not synchronized

between the original and distorted signals - due to the fact that

the CM is nonlinear and also a number of upsampling and

downsampling steps that are carried out in the CM. This prob-

lem is alleviated by our use of the SFP feature which has the

property of automatic synchronization, as shown in Fig 6.(B).

It is recognised that an actual sustained difference in the IHC

response (between the original and coded speech) means little

in terms of invoking a temporally localised distortion. Instead,

a temporally localised distortion will introduce a highly fluc-

tuating difference in the IHC responses. We hypothesize that

this “jitter” or “trembling” is captured by the standard devia-

tion of the difference in IHC responses, at the extracted SFPs,

as shown in Equation 1. Also, as in our previous work [11],

we only carry out this analysis in voiced areas of the speech

signal with the hypothesis that speech quality is largely deter-

mined in voiced areas (whereas intelligibility is discriminated

in unvoiced consonant areas) of the speech signal.

jitter = std(IHC(SFPori)− IHC(SFPdis))|voiced (1)

EXPERIMENTS

The above algorithm delivers excellent prediction of TLD per-

ception. The purpose of this section is to analyse the perfor-

mance of the algorithm when some basic assumptions are con-

tradicted or errors are introduced. Specifically, we measure the

performance when the original and reference signal are mis-

aligned, the SFPs are analysed in unvoiced areas and when the

speech signals are introduced into the cochlear model at inac-

curate levels. The last issue is significant as the cochlear model

is non-linear and we have assumed that an active speech level

of −26dBoV (as scaled by the ITU tool svdemo) corresponds

to 79 dB SPL which is the level at which the speech stimuli is

actually presented to human listeners in DAM testing. The re-

sults are referenced against subjective “SB” (Babbling) scores

in our DAM database [2] by calculating the correlation coef-

ficient ρsub j,ob j between the predicted and DAM scores. The

performance for female/male speech are slightly different, so

ρsub j,ob j is presented separately for female/male speakers as

well as for overall (both male and female) performance.

Effect of misalignment

Our use of SFPs, like other intrusive methods of objective speech

quality measurement involves the pre-alignment of the refer-

ence and degraded speech. This experiment attempts to inves-

tigate the effect of introducing an artificial delay between the

original and degraded speech by shifting the degraded speech

forward by ∆t time. Other components of the algorithm are left

intact for the subsequent computation of the correlation coef-

ficient ρsub j,ob j (between DAM “SB” score and the predicted

value) as a function of ∆t . The results are shown in Figure 7.

The correlation coefficient ρsub j,ob j are fairly invariant until the
introduced delay reaches 1.2ms, after which it starts decreas-

ing. However, even with a delay of 6ms, the ρsub j,ob j only goes
down by 0.05. This indicates that the TLD measurement algo-

rithm using the SFPs is fairly tolerant to misalignment. The

reason for the high tolerance is that the SFPs auto-align as de-

scribed in the previous section, within a pitch period of the

speech signals. Thus as long as the mis-alignment is within a

pitch period, the performance is not expected to degrade signif-

icantly.
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Figure 7: Performance of TLD objective measurement, as a

function of artificially applied erroneous delay. When the de-

lay is smaller than 1.2ms, the accuracy ρsub j,ob j is almost unaf-

fected. Increasing the delay to larger than 1.2ms leads to lower
accuracy at a fairly slow rate.

Effect of voiced section extraction

Typical examples of voiced sections identified by the algorithm

are shown in Figure 8, where voiced section are marked as red.

To measure the dependence of accurate identification of these

segments, we will calculate the correlation coefficient after ex-

panding the voiced sections arbitrarily to widths of [tstart −
∆v, tend +∆v], where [tstart , tend ] were the original conservative
estimates of the width of the voiced regions. Correlation co-

efficients are then reported as a function of ∆v. The tested in

a range of ∆v is [−5,60]ms. Here, negative values indicate

a shorter voiced section. The results are shown in Figure 9.

The prediction accuracy ρsub j,ob j reaches a maximum with ∆v

equal 18ms (for all speech) indicating the use of an overly con-

servative estimate of the endpoints of the voiced sections, pre-

viously. However, further expansion of the segments degrade

the accuracy of prediction, indicating that the original hypothe-

sis of constraining the analysis to voiced regions is quite valid.

Effect of different active speech level

According to [5], speech signals should be normalized to−26dBoV

before being played back to subjects. We undertake the same

approach to ensure the exact conditions to simulate human per-

ception as closely as possible. To simulate DAM testing, we
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Figure 8: Example of identified voiced sections (in red). The

algorithm is based on pitch estimates of the signal.
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Figure 9: Performance of TLD objective measurement, as a

function of extended lengths of voiced section extraction. The

x-axis is ∆v, which reflects an expansion of the voiced region

to [tstart −∆v, tend +∆v].

further calibrate the cochlear model such that −26dBoV rep-

resents 79 dB SPL. The cochlear-model is highly non-linear

in nature - meaning that it is sensitive to the level at which

stimuli is introduced. This experiment will try to examine our

TLD measurement accuracy as a function of erroneous speech

level, L. The original speech will continue to be normalized

to −26dB, while the degraded speech will be normalized to

different levels, ranging from −21dB to −51dB. The results

are shown in Figure 10. The correlation coefficient ρsub j,ob j
reaches a maximumwhen the degraded signal is scaled to−26dB

for male speech and−31dB for female speech. When the level

is decreased, ρsub j,ob j decreases slightly. This high tolerance

(or relative insensitivity) to level is attributed to the fact that

the TLD prediction algorithm is based on the jitter of SPFdis(t).

Thus even if the stimuli is scaled differently, any fluctuation

of the temporal characteristics remain intact. This ensures that

the active speech level does not change the accuracy of TLD

measurement.

The characteristic is useful for future extension of the algo-

rithm to non-intrusive and/or real time application to assess

TLD distortions. In such circumstances, the original speech

may not accessible. However, the SFPs themselves contains

enough information to predict TLD, as long as current input

speech is within a certain acceptable level.
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Figure 10: Performance of TLD objective measurement, as a

function of active speech levels.
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Figure 11: Non-linearity of CM output. SFP1 and SPF2 are

calculated from Cochlear Model output of speech scaled by S

and S/2 respectively. The two sets of SFPs are not identical.

However, the fluctuation structure is preserved, which ensures

the accurate prediction of TLDs.

DISCUSSION

This paper analyses the tolerance of an algorithm that predicts

the perception of temporally localised distortions by artificially

introducing errors in several parameters. We have shown that

the algorithm has a high tolerance for misalignement between

the original and distorted signal. This means that even if de-

lays between the original and degraded speech are not totally

eliminated, accurate results can still be achieved. This can be

extremely useful when the signals have variable delays - as is

often the case in VoIP networks. Additionally, the algorithm is

also fairly invariant to speech level normalization. Introducing

the reference and distorted signals at different levels have not

shown significant impact on accuracy. This is because the SFPs

preserve TLD information irrespective of level differences.

Smaller active speech levels do degrade the accuracy slightly.

The investigation on selection of voiced sections reveal that

the previously reported voiced/unvoiced selection can be opti-

mized by expanding the segments by 18ms. However, the re-

sults also shows that the hypothesis that quality evaluation is

best achieved by restricting analysis to the voiced sections is

well founded.
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