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ABSTRACT

Disc brake squeal as a major source of customer dissatisfaction is known to be friction-induced due to the highly non-linear
contact of the surfaces between the disc and the pads. Brake squeal remains fugitive and difficult to predict also to some of its
squeal frequencies have varying character and cannot always be associated with component modes. By means of structural finite
element analysis, a simplified brake system in the form of a pin-on-disc is firstly approximated by a block sliding on a plate. By
varying pressure and the friction coefficient, no mode coupling instability is observed and the mechanism extracted is purely of
friction-induced nature. Especially in-plane pad motion in direction of and perpendicular to the sliding direction seem to feed-in
most of the energy. These modes and their variability due to pressure variation, changes of lining material‘s elastic components
and increased friction coefficient are studied in the following by means of the plate model. Then, it is shown, that these pad
modes also exist for a pad-on-disc model with isotropic lining material. A second pad-on-plate model with more realistic lining
material is developed which considers changes of elastic constants due to pressure variations. It is found, that changes in elastic
properties of the lining material influence significantly the vibrations of the pad modes. The kinetic energy spectrum lifts up with
changing pressure and stiffness and that combined effects of pressure synchronised with changing material properties are more
severe than could be assumed by the complex eigenvalue method alone. By means of inverse Fourier transform of the response
spectrum and non-linear time series analysis it is possible to detect the instability of the pad-on-plate model. The results show that
friction-induced instabilities result from non-binding forces between pad and disc, with energy transfer from pad to disc causing
dynamic instability, might trigger mode coupling or amplify underlying unstable modes predicted by the complex eigenvalue
method. It is shown that these instabilities are most likely responsible for squeal frequencies occurring at frequencies far from
the frequencies of the rotor modes, as often observed in brake squeal.

INTRODUCTION

Since the early 1930brake squeal has remained a research topic of
high importance to brake systems’ manufacturers and the automo-
tive industry [l] due to customer complaints and their accompany-
ing warranty costs. The high-pitched tonal character of most brake
noise is annoying and has become more dominant due to major re-
ductions in interior vehicle noise. Mechanisms thought to be respon-
sible for brake squeal include stick-slip-4], negative gradient re-
lationship between kinetic friction coefficient and sliding spegd [
sprag-slip p], mode coupling or binary flutter7], hammering §],
parametric resonance$,[10] and moving loads11]. Other mech-
anisms mentioned include thermo-elastic instability (THER,[13],
stick-slip-separation waved 4, 15] and [16], and viscous instabil-

ity [17]. All these theories have been comprehensively reviewed
by Kinkaid et al. [L8]. Other comprehensive reviews are those pub-
lished by Akay 19] in which a general outline of the acoustics of
friction is given, and Ouyang et &(] who focusses on the numer-
ical analysis of brake squeal noise.

Brake squeal is fugitive and difficult to predi]] and some of

its squeal frequencies cannot always be associated with component
modes. It has been shown that chaotic behaviour might develop in
disc brake squeal, and a route to chaos has been demonstrated by
means of non-linear time series analysis (NTSA) and cross- recur-
rence quantification analysi®3]. A correlation of the Complex
Eigenvalue Analysis (CEA) and analysis in the time domain has
been examined by2B] using an 8lof analytical model. If one or

two modes are predicted by the CEA as unstable, the system anal-
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ysed in the time domain might have already shown three or more
instabilities which are due to either quasi-periodic or chaotic be-
haviour. Hence, the CEA underestimates frequencies involved and
in a chaotic regime, unstable behaviour cannot be determined by
relying on only the unstable modes predicted by the CEA. For this
purpose, the time trace has to be analysed by means of NTSA. On
the other hand, it is well known that in numerical simulations the
CEA often shows too many frequencies, which, if compared with
measurements are not recorded on dynamometer tests as squeal:
[24-26]. As a consequence and due to the many mechanisms in-
volved, it seems obvious that the analysis of brake squeal propen-
sity in practice needs to be complemented by other analysis tech-
niques in order to detect instabilities not due to mode coupling. In
order to enhance prediction quality, the CEA in the frequency do-
main needs to be more oriented on the transient nature of brake
squeal which can only be captured by a time domain analysis of a
brake systemZ7]. Felske et al. 28] note, that not all squeal devel-
ops at, or even close to, the frequency of a brake component’s nor-
mal modes. Murakami et al2§)] states that closeness to a compo-
nent mode’s frequency is not even a necessary condition for squeal.
This indicates that either different mechanisms act exclusively on
a specific brake system or that, for certain parameter combinations,
mode coupling acts simultaneously or in a specific sequence with
another mechanism (hierarchical). This means, squeal might only
be audible, if for instance mode coupling is present but amplified
by another mechanism or that mode coupling instability results af-
ter an initiating dynamic instability. Cheri] shows that in an ex-
periment with a steel pin on a plate, squeal noise is not a result
of mode coupling instability. The squeal is describedrssanta-
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neous mode squewalhere the squealing frequency is not coincident
with the plate’s frequency but 200 to @@ lower depending on

the pressure and sliding velocity applied. Chen et20] gtudied
friction processes and in-plane modes. Assuming non-linearity to
be the reason, often the squeal frequency decreased and was be-
low the out-of-plane rotor frequency. Their recorded squeal sig-
nals show that either all the out-of-plane modes or only some fre-
guencies which can be assigned to out-of-plane modes are visible;
sometimes in only the low-frequency, but sometimes in the high-
frequency, range, peaks appear. This could happen for either the
transverse or the in-plane modes. However, the reason why some-
times only a few peaks appear, but not necessarily at the expected
positions of the system modes, was not further investigate®1in [

the frequency response of pad modes under increasing pressure at-
tenuated and it was further hypothesised that "the moment vibration
of [the] pad can stimulate both rotor in- and out-of-plane vibration".
Squeal not due to mode coupling was also observed by Ichiba et

(b)

Figure 1: (colour online) (a) anisotropic pad-on-plate (model Il) and
(b) anisotropic pad-on-disc (model IV} is measurement point to
obtain a transfer mobility

al. [32] in experiments, occurring at 200 to 400Hz below the clos-
est rotor's component frequency. The nature of the squeal was in-
vestigated by measuring the back-plate motion which showed no
bending behaviour, moving almastplane By studying the pad's
tangential motion, it has been found that the variation of the fric-
tion force with time depends directly on the change in the lining's
Young’s modulus due to its compressibility which lead to squeal
around 6kHz. The dynamic friction forces "do not bind" with the
rotor: Fluctuations in friction force due to variations of lining thick-
ness and Young's modulus were considered to be responsible for
generation of feed-back vibrations. The squeal‘s neighbouring fre-
quencies, belonging to components of the brake system, were suf-
ficiently spaced and mode-coupling instability could be excluded.
It is well-known, that pad-modes and their frictional contact play a
major role in initiating instability. For example, Ouyang et &3]
studied analytically friction-induced vibrations of an elastic slider
on a disc for the stick-slip mechanism. By using phase-space plots
of the slider's in-plane vibration and the disc's out-of-plane vibra-
tion, it was found that the transverse disc vibrations couple with the
pad due tdriction non-linearityand that an in-plane spring-damper
system on the pad might induce additional instabilities at newly de-
veloping parametric resonances or change existing resonances even
when the friction coefficient was constad®] 34]. A parametrical
resonance is due to a time varying system parameter change, so that
instability occurs at one of the system resonances and might act am-
plifying. Matsui et al. B5] found, that near the contact patch, the
higher shear forces induce vibrations which amplify the underlying
transverse modes in a feedback loop due to the change of friction,
prior to the braking process (see alsg®]). This feedback loops
amplifies the underlying transverse vibration modes causing them,
together with the system resonances, to squeal. On a global scale,
stick-slip is not present when a sufficiently high relative velocity is
assumed37, 38]. At the contact patch, it has been observed that
local sticking is still possible and is accompanied by lift-offs of the
pad which lead tatick-slip-separationvaves [L4, 16]. The appar-

ent friction coefficient can be lower than the given friction coeffi-
cient due to the development of slip waves and a given constant
u does not allow to conclude about the pad-modes' contribution
to the stiffness matrix, the apparemtis generally lower 15]: the
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different stresses in the contact patch determine the friction coef-
ficient and as it comes to local slipping (slip-waves), the constant
global friction coefficient serves so-to-say as an upper bound only.
In [39], contact surface waves are investigated for different-pres
sures and sliding velocities. When the velocity is high but slowly
increases, slip-separation waves dominate the self-exciting charac-
ter of the friction system. For high pressures and a lower velocity of
the disc, the phenomenon of stick-slip is dominant. It is noted that
these phenomena occur even wittoastant friction coefficiersand

mark a major difference between their numerical model of a block
in contact with a hard surface which does take into account elastic-
ity of the two bodies in contact and analytical models, which do not
account for area contact and elasticity. Ostermed@ripvestigated

the surface structure of pads and discovered patches, which experi-
ence micro-vibrations, due to local sticking and slipping, growth
and destruction processes. Even though, these processes seem to be
stochastically distributed, they are able to synchronise resulting in
macroscopic tangential vibrations. This synchronisation has been
analysed with initially decoupled stick-slip oscillators. The multi-
dof system resembles the cross-sectional boundary layer of a FE
contact model where each element could stand for a separate oscil-
lator, able to feed in energy. Due to this importance of pad vibra-
tions, it has already been suggested that a CEA, as a function of a
pad’s modes, should be performed¥]. By means of a laboratory
brake, it has been found that, with varying loads, a change in pad
resonances of up to 25%, due to variations of the pad-disc’s 'angle
of attack’ up to 15%, are possible. By considering changes in all
the operating conditions of the experimental setup in the worst case
scenario, it has been found that a maximum change in the pad's in-
plane frequencies of 11.2kHz seems possible. It is difficult to cap-
ture the pad vibrations and their properties because lining material
properties change with operating conditions.

One uncertainty accompanied with the pad is beside its friction con-
tact with the disc its lining material model. It is known that brake
squeal is sensitively dependent on the lining material’s properties
which change when different pressures are appli8, 41, 42].
However, often in numerical simulations and analytical models, the
material property of the lining material is simplified as constant and
orthotropic or even constant and isotropic. Brake lining material
should be treated as a visco-elastic/plastic material with highly non-
linear load, time and history dependencid8§][ A good summary

of friction material’s properties, and their changes due to tempera-
ture variations pressures is giverDisc Brake Squed#1], (ch. 12).
Friction material is described as a non-linear meso-scopic material
with anisotropic characteristics. In Lou et &44], non-asbestos or-
ganic (NAO) lining materials are described as (1) inhomogeneous
and anisotropic, and (2) highly non-linear with respect to loading.
Changes in its properties have mostly been studied experimentally
but have not, as yet, been related to brake squeal. One problem
is that properties of brake lining material are difficult and time-
consuming to measure. Brecht et d5]described the lining’s elas-

tic properties as being similar to those of a spring which dissipates
energy via a viscous flow. Based on that, a material model is devel-
oped and for proper modelling of brake lining, an orthotropic visco-
elastic material is suggested.. Wegmann et4f] flefine the pad’s
compressibility as combined physical effects which relate the elas-
tic and plastic deformations of the lining material, after a series of
load cycles, to each other. Compressibility is not a friction material-
specific characteristic but, describes a property of the whole pad
assembly: dependent on its material composition, different layers
(sandwich structure) and geometry (form factor). The variability
of a pad’s lining compressibility due to manufacturing tolerances
is another problem encountered in terms of changes in the mate-
rial properties of a brake system under operating conditidi [
that is, the material matrix entries change during operation but the
changes are different for each batch of lining material due, for in-
stance, to changing degrees of inhomogeneity. Sanders d8hl. [
studied cyclic compressibility as a function of the preload, tem-
perature and velocity of a semi-metallic brake lining material by
means of a full factorial design analysis. Increasing the temperature
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from 20 to 300C or lowering the preload from 8 to 4kN halved
the compressibility. Decreasing the frequency (which was equated
with rotational velocity) from 20Hz to 1Hz reduced compressibil-
ity by 10% which is almost its increase in stiffness. Compressibil-
ity can be related to stiffness and it was found that doubling the
preload increases the stiffness by 100%, but that halving the com-
pressibility due to increased temperature leads to a 50% reduction
in the stiffness of the elastic constants. It has to be noted that these
changes occurred at rather low pressures of up to 60kN. Yuhas et
al. [43] studied three pad compositions’ anisotropic lining materi
als (engineering constants) by measuring the spatial variations of
ultrasonic attenuation, using static pressures frolt0 8 0MPa.

It was observed that the elastic constants vary highly non-linearly
with changing pressure, especially in the low pressure range. The
"through-thickness" component (derived from the out-of-plane ve-
locity), Css, varies by up to 60% and, in total, the magnitudes of
the elastic properties vary by 10% for the three lining compositions
investigated.

In this paper, in-plane modes of the pad are investigated for their
role in friction-induced squeal and triggering mechanism and in
amplifying mode-coupling instability. In the first part of the paper,
pad-modes obtained using complex eigenvalue analysis for a pad-
on-plate system are investigated and a link to experiments reported
by Chen [] is established. Then a simplified brake system in the
form of pad-on-disc is considered with non-linear pressure depen-
dent lining material properties. In the second part, the kinetic energy
for plate and disc models is studied in order to establish the kinetic
energy, to predict instability based on the behaviour of pad modes.
In the last part, by applying inverse Fourier transform to the forced
response of the pad-on-disc system, non-linear time series analysis
tools are used to investigate dynamic invariants of the pad-on-plate
system.

NUMERICAL MODELS

In this paper, four different models (I-IV) based on iso- and an-
isotropic (transversely isotropic) material properties and two model
types are usedplate and discs isotropic pad-on-plate model (1),
an-isotropic pad-on-plate model (1), isotropic pad-on-disc model
(1) and an-isotropic pad-on-disc model (1V), as shown in Figure
1. Plate models represent a slider on a moving plate, similar to the
analytical models used 9, 22] but with elasticity and area con-
tact. These models represent a simplified annular disc 'cut open’
and stretched to a plate shap@{53]. As previous simplified brake
systems were designed primarily to display mode-coupling instabil-
ity due to split modes merging togethengde merging54, 55]),

this type of mode coupling instability is eliminated by using a plate
model.

For the pad, the form factor, (that is its size, geometrical features)
remains the same for isotropic and anisotropic pad-on-plate/disc
models except that, for the anisotropic pad, a back-plate is attached
to the lining material causing higher out-of-plane stiffness. For the
pad-on-disc model (ll1), the isotropic material properties are modally
updated via the finite element method (FEM) to closely match the
three plates bending modes 7582 and 11kHz identified in]].

For the elastic modulus and the Poisson’s ratio, 210GPa &850

are used, the density is calculated from the weights of the pin (1109)
and the plate (648g) as 80Z&r44kg/m3. Thus, under free-free
boundary conditions, thead-modes were found &p,q) = (1,0) =
57748Hz, (0,2) = 80833Hz and(2,0) = 11044Hz, wherg and

r are the nodal lines in the longitudinal and transverse in-plane di-
rections, respectively5p]. The nomenclature of the disc follows
that [57], where(m,n,l,q) represents out-of-plarma nodal circles
andn nodal diameters, in-plane p nodal circles and g nodal radial
lines. For example, ih = 3 then(0,3,0,0) describes a disc mode
with three nodal diameters; If this mode becomes unstable, it is re-
ferred to aq0, 3+, 0,0)-mode with+ indicating a positive+{) and

a negative {) travelling wave.
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In order to investigate the influence of material property changes of
the brake lining in model 1V, data taken from Yuhas et 4B][are
given in Figure2 for 4 different pressures:.B 2.5, 5 and 8 MPa.
The shear moduli were estimated with a 10% change at each pres-
sure value43]. For the other models, only either a pressure or ma-
terial variation was performed. Numerical simulations are based on
ABAQUS 6.8-4 usindinite sliding thekinematic constraintontact
algorithm with aconstanfriction coefficient. A mesh-independence
study was performed, as recommended58].[ The meshes used
here give a difference in the estimate of frequency of less than
1% when the number of elements is increasedkb®98%. Table

1 shows the number of each specific element type, the numbers of
elements in the FEM. Onlincompatible modeslementsC3D8l)

are used in order to achieve improved bendi@] pnd convergent
behaviour p8]. The properties of the lining materials of models I
and IV are taken from Yuhas et a#3] and are given in Tablé for
apressure of BMPa. For models | and Il standard properties of
isotropic cast iron and steel are used.

DYNAMIC BEHAVIOUR OF PAD MODES

Problem Scope

Emphasis in this study is on models | and 1V (Fig8)eas model |
simulates an experiment performed by Ché&hgnd model IV pro-
vides the opportunity to investigate the influence of changes in the
lining material properties due to its compressibility under load for
a simplified brake system (pad-on-disc) also usedb) 1, 53].

The models studied focus on the influence of (a) geometry: plate
model | — disc model Il and (b) material properties: isotropic
disc model 11— anisotropic disc model IV. In this study, the fric-
tion coefficient and the pressure are varied in order to simulate the
braking process in the frequency domain. Hereby, it is important to
keep in mind, that even though a constant friction coefficient is ap-
plied, implicitly a negative friction/velocity gradient is assumed by
increasing the friction coefficient. Thereby, the velocity is assumed
to be nearly constant during braking. FiguBés) and (b) depict two
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Figure 2: (colour online) Material properties of measurements taken
from Yuhas et al.43]; MP;-MP, indicate material points

modes which indicate the motions of the (isotropic) steel pad. The
pad‘s dominant movements are indicated by double arrows. Figure
3(c)-(d) depict the pad-on-disc model (V) with the combindd e
fects of pressure, friction and disc rotation. These effects give the
pad a slight twist so that for normal modes, the tangential motion
obtains a stronger radial component for complex modes, as can be
seen in Figur&(c). In comparison to Figured(a) and (b), deforma-
tions of the isotropic pad are rather limited whereas larger deflec-
tions can be visually observed for the transversely isotropic lining
material, by applying identical scaling factors. For models | and I,
pad vibrations irx— /y— direction are observed (translational rock-
ing motions): a pad oscillating in-plane perpendicular to its sliding
direction @) and one mode oscillating with the direction of rela-
tive velocity (k). For model I and Il, a pad's in-plane mode, which
rotates in-plane about its centre of gravity lies arourftkBz out-
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side the frequency range 0f526.5kHz. This kind of mode will be
named rotational mod@; in the course of this study. The in-plane
pad motion of the disc models always comprises three basic mo-
tions: (i) in-plane translational but perpendicular to the direction of
the disc’s motion (radial mod@); (ii) also translational but in the
direction of the disc's motion (tangential mo&g; and (iii) rota-
tional in the third pad mode (rotational moégyt). Unless other-
wise mentioned, the friction coefficieptis increased in @5 steps,
from 0.05-065. Pressure on the pad is uniformly distributed and
takes values in the range of0010.5,2.5,5.0,8.0MPa. Depend-

ing on (a) chosen boundary conditions constraining the pad, (b)
mesh refinement and lining material properties, (c) applied pres-
sure, (d) changes in lining material stiffness and (e) alteration of
the friction coefficientu, both the frequencies and amplitude of
vibration change. Altering the boundary conditions to more node
constraints (e.g., line or area constraints) has the effect of moving
the pad modes to higher frequencies. With more nodes constraint
(e.g. an area constraint on each side), the pad modes come to lie
around 1%Hz which is still in the audible range. For a real brake
system, the fixation of the pads is limited to relatively small parts
of the pad earswhich are connected to springs (abutment clips)
and consist of only two line contacts each, resembling the contact
of the abutment clip. It is assumed that these springs are less rigid
than the boundary conditions applied here. At the beginning of this

Table 1: Material parameters for models I-1V

Models/ Material Plate/Disc Lining Backplate
No. Elements| Constant
2 116,312 E GPa 210/110 180/210 —
e I /26,153 % 0.305/0.28 0.3/0.3 ——
2 pkg/mé | 7744/7100 | 80257200 ——
% 11/6,312 EijGPa 146/146 207
2 IV/31,355 % 0.29/0.29 see Table
2 pkg/m? | 7100/7100 7860
=
a

study, the sensitivity of the lining material properties kanges in

the friction coefficient and the elastic constants of the lining for
the pad-on-plate only, was briefly investigated in order to check
if a more realistic lining material (model 1) would (i) exhibit the
number and kind of modes and (ii) have similar sensitivity to stiff-
ness changes as a steel pad (model 1) rubbing on a plate. The pur-
pose of this preliminary computational experiment is to gain a feel
for the importance of the material properties relative to changes in
the friction coefficient for the isotropic and anisotropic lining ma-
terial. Isotropic steel and the transversely isotropic (in-plane differ
from out-of-plane components) pad componegis,G;;, vi; with

(i,j € x,Y,2), were altered by increasing and decreasing the elas-
tic constants by 24%. For the transversely isotropic lining ma-
terial these changes are assumed to result from increased brake-
line pressure. As steel itself is not very pressure-dependent, these
2.44% represent realistic changes in the steel lining (pin material)
only if it is assumed that the temperature increases or decreases.

Table 2: An-isotropic lining material properties according to Figure
2 dependent on pressur3] for modelsl| andIV

PressureMPa| Po ‘ P ‘ [ ‘ [3 ‘ Pa ‘

Constant 103 0.5 25 5.0 8.0
E33GPa 19 19 2.5 4.0 4.3

Ey» = E11GPa 128 128 130 131 132
G1,GPa 2.0 2.0 2.1 2.2 2.3

Gy3 = G3GPa 4.0 4.0 4.2 4.4 4.6
Vo3 = Vi3 0.51 0.51 0.41 0.32 0.30
V3o = V31 0.08 0.08 0.105 0.11 0.115
Vip = Vo1 0.08 0.08 0.105 0.11 0.115
pkg/m3 2500 | 2500 2500 2500 2500

Three temperatureg0, 22,44}°C were used to vary the stiffness
of the isotropic lining material. An estimation of the temperature-

modified Young’s modulus is calculated frdg = E (af %)
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velocity

velocity

Figure 3: Isotropic pad-on-plate model (l): oscillations in
(a) y—direction (modeR;) and in (b) x—direction (modeP);
Anisotropic pad-on-disc model (IV): (c) dominant motion of tan-
gential modeR and (d) rotational motion of mod@o.

anda=1b=22C,n=1E, =E = 180GPa and = 900°C [60].

The results for the first 6 of 7 modes calculated by CEA in the
frequency range of 1-7000Hz are depicted in Figdi@ = 1kPa,

u € {0.05,0.5,0.75}, v=1m/s). Non of these modes is predicted

to be unstable. For the pad-on-plate model, the first three modes and
the 8" mode were dominated by the plate movement but then for
4t and 3" mode, the pad‘s movement became dominant.

(a) isotropic () A+ 2.44% (b) isotropic () A —2.44%
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Figure 4: Effect of changingX) Young’s modulus and Poisson's
ratio of isotropic and anisotropic pad-on-plate model (1) to stiffer
(a+c) and more compliant (b+d) values; for model Il trend of change
taken from Figure

The pad modes are acting almost as in-plane rigid body modes. D
to this in-plane vibration especially ddirection (tangential direc-
tion) a lot of energy can be fed-in into the systédj[which might
result in destabilisation. The pad modes for the an-isotropic pad-
on-plate model (1) are of the same kind than those of model I. In
summary, four observations can be made: (1) The sensitivities of the
frequencies of pad modes to changes in stiffness of the lining mate-
rials are smaller than that of the steel pad, being, at most, a change
of £1.2% (model I) andt0.3% (model II) for at+2.44% change in

the elastic constants. Even though these changes do not seem large,
it should be noted that for model |, the assumed maximum tempera-
ture was only 44C whereas the brake system‘s components are de-
signed to be mechanically stable at temperatures up toGHP).

Also, for model Il, as lining materials can change their stiffness by
more than 100%45], the 244% taken here is a rather conservative
value. (2) Changes in frequency due to only changes in the friction
coefficient from 005,0.50 to Q75 (at a relatively low pressure of
10-3MPa) are, at most, abouta%. (3) The # and 5" pad modes

in which the pad is moving in a dominantly rocking motiony-
direction) are the most sensitive to changes in the lining's stiffness.
(4) Due to the boundary conditions and the coupling of the pad and
plate, there are ystem modesompared with 5 component modes
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of the plate in the frequency range investigated. As a final interest-
ing outcome, the frequencies of the system modes depicted in Fig-
ure 4 are within 6% of the frequencies reported in the experiment
by Chen f].

Dynamic Behaviour by means of CEA

In the following section, changes in the complex eigenvalues of the
pad-on-plate model | (Tabl®) are investigated. The material prop-
erties for the isotropic pad-on-disc model (Ill) remained constant
but the pressure was varied from FMPa to 80MPa. The fric-
tion coefficientu altered in 005 steps from @5 to 065 and a ve-
locity of v=1m/s~ 3.6km/h. Apart from frictional damping, no
other dissipation mechanism was active. In Figbiréhe variation

(a) pp = 0.5MPa

©) po=25MPa ) p3=50MPa (d) ps =8.0MPa

Frequency kHz
ol

0

4 -3 2 -1

Real Par{x1073) 1/s

02 04 06 02 04 06 02 04 06

Friction coefficientu

02 04 06

Figure 5: (colour online) Pressure variations on isotropic pad-on-
plate model (I): (a)p1 = 0.5MPa; (b) p, = 25MPa; (c) p3s =
5.0MPa; and (d)y4 = 8.0MPa.

of frequencies and real parts (representing damping) of the com-
plex eigenvalues of system’s modes with pressure are depicted. Pad
modesPx and R, remain stable and are indicated by thicker lines
as well as the 8 mode. The results for 1kPa are not presented as
they look qualitatively like the results for.BMPa except that the

real parts are decreasing slower with increasing friction coefficient.
By increasing the pressure and the friction coefficient, the following
observations can be made:

(1) inthe frequency range investigated, the CEA does not detect
an instability;

(2) the pad mode perpendicular to the sliding directiyroe-

creases and thé®3mode, with a strong component in of the

pad inx— direction increases in frequency;

changes in the frequenciesRyfandgs are more pronounced

when the pressure increases aisd-ahaped curve (frequency

over i) moves in the direction of the lower friction coeffi-

cients (see Figurg (a)-(d)); and

the eigenvalue's real part shows an almost linear decay with

increasing friction coefficient and, after reaching a minimum,

exhibits approximately square-root increasing behaviour.

(5) gz is strongly influenced by the pad motion as it lies close to
the pad modey = R

(©)

4)

It has to be noted that, fd®, the complex eigenvalue's real part
takes very negative values which probably indicates that the vibra-
tion in this direction becomes greatly suppressed by increasing pres-
sure. In experiments of a similar systetf, [node-coupling type in-
stability was excluded due to the slider not having flexible modes in
the frequency range investigated. By investigating the pad-on-plate
model using CEA, no instability due to mode coupling could be
observed for a sliding velocity of 1f8. The most interesting point

is that, although it could be confirmed that instability was not de-
tected by the CEA. Also, increasing the complex modes extraction
up a frequency range of 25kHz, does also not show any instability.
However, the pad modes excite tretill flexible vibration" [1] of
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the plate and show large changes in frequency and real part. In the
next step, the anisotropic pad-on-disc model IV is considered as a
model of a simplified brake system. The structure changes in the
following ways:

(a) rotation is applied to an annular disc thereby allowing for
mode-merging of the split modess a specific kind of mode
coupling B3, 55);

(b) modeP now corresponds to an in-plane tangential pad mode
(R) and modeR, to an in-plane radial pad modg{ ;

(c) arotational pad modét), appears in a frequency range of
1Hz— 7kHz;

(d) the pad material changes from isotropic to an-isotropic;

(e) the velocity increases to 10rak 11.4km/h and

(f) the lining material is non-linearly dependent on the pressure
(see Figure?).

Case Study Complex Eigenvalue Analysis (Model V)

In order to investigate the effects of changes in non-linear material
properties on pad modes, cases Ato C are examined (see also Figure
2).

(A): The pressure is left constant at a low value of 1kPa; varia-
tions concern only changes in the material propentigs-
my.

(B): The pressure varies from@1 to 80MPa with the material
properties kept constant ity

(C): The material properties for the four different pressures from
0.5 to 80MPa as given in Tabl2 are used.

In all three cases, in a frequency range of 1Hz to 7kHz, only the
disc's(0,3,0,0) split mode becomes unstable.

Case A In Figure 6, the results of Case A are depictd@let,
R, P and(0,3+,0,0) are the rotational, tangential, radial pad and
out-of-plane split modes of the disc, respectively. In Figbiréhe
critical friction coefficient for bifurcation is marked by P where

the damping ratid = 72% > —1075. O{x} and0{x} denote
the eigenvalue’s real and imaginary parts, respectively. At low pres-
sures, as solely frictional damping and variations of the lining mate-
rial's elastic constants are applied, the complex eigenvalues' imagi-
nary parts merge in a perfect manner: two modes transfer energy at
exactly the same frequency and no corridor is visible between the
two modes' freuquency, according tb7]. By stiffening the lining
material, the transition point moves to higher friction coefficients.
Assuming an increase in the friction coefficient for a decreasing
velocity, this generally corresponds to predicted squeal at a lower
relative velocity. Therefore, the complex eigenvalue's real part ob-
tains absolutely lower values at higher friction coefficients. That the
system does not behave more stably with a decreasing value of the
positive eigenvalue’s real part has been argued by Oberst and Lai
[50] due to the acoustic power not increasing with increasingneg
tive damping. Therefore, the terstabilising is avoided here when
referring to an increasing value of the critical friction coefficient.

Case B As shown in Figure7, the material properties are kept
constant at those of the material poiMP; = (my, p1) (Figure2)

but the pressure is varied from3MPa to 80MPa. In Figure7(a)

to (d), the changes in frequency, especiallyPa andP;, become
visible: the frequencies of the two pad mod@sand P decrease

with increasing pressure and friction coefficient. The radial and ro-
tational pad modesP and Pt) decrease n frequency; however,
even though a general trend can be perceived, the modes' frequency
changes are visible and might be described as fluctuating. First of
all, their frequencies are not only going down as the trend is some-
times broken due to these large changes in frequency, and secondly,
due to an oscillating and uncertain friction coefficient in the time
domain, large fluctuations are for sure. The change in frequency of
modeR is negligible by comparison. Also, for2VPa and MPa,
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the radial pad mode vanishes, and might act like a switching mecha-
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Figure 6: (colour online) Case A: varying material proper{ieoor-
dinatem; in Figure2) and a constant pressure of 1kPg:, R and

P give the rotational, tangential and radial pad modes3=+,0,0)

is the disc-dominated transverse mode with 3 nodal diameters (pos-
itive (+) and negative-) travelling wave) T P marks the transition
point.

nism in terms of frequency in the time domain, as shown in Figures
7(b) and (d), when the friction coefficient exceeds= 0.55 and

u = 0.40, respectively. One interpretation is that, vibrations in the
in-plane radial direction cease if both the pressure and friction co-
efficient are sufficiently high. It is interesting that in Figut€d),
indicated by a circle att = 0.65, the radial modeR) re-appears.
Further, for 80MPa, the transition point changes frgm= 0.40 to

u = 0.45, thereby indicating possible squeal at a lower velocities .
It can be seen from Figures(a) to (d), that the real parts fo the
complex eigenvalues decrease with increasing pressure and friction
coefficients. The real parts of the rotational and radial pad modes
are so small that they are only visible in Figdi@). The black lines

in (b) and €) give the real part of the tangential pad moB&g.(The
fluctuations in the modes’ eigenvalue frequencies with the friction
coefficient can be observed in the real parts of the complex eigen-
values for these modes perhaps because of different energy transfer

between modes. It can be assumed that these frequency changes are

due to energy being transferred differently between modes due to
variations of the friction coefficient. As it can be seen in Figdre
(a), the mode coupling of the split modes is imperfect because of
the higher pressure value of Case B compared with that of Case A
(Figure6). By increasing the pressure, this imperfection is ampli-
fied (Figure7 (a) to (d)). Apart from frictional damping, no other
dissipation mechanism is present. IY], by incorporating viscous
damping, imperfect mode-merging resulted fremacous instabil-

ity for a mode-coupling type instability. A similar effect can be
observed here: for increasing pressure and frictional damping, the
spectral characteristics change such that mode-merging is not per-
fect anymore.

Case C As shown in Figure, the pressure and material values
are varied (Case C) according to the material points in Fidlre
Globally, similar behaviour as for Case B can be observed, except
that the curves look smoother. Again, the frequencidggpfandP;
experience large changes and the unstable mode(pz8t:-,0,0),

splits imperfectly (Figure3 (a) to (d)). However, probably due to

the combined effects of increase in pressure and changes in mate-
rial properties, the critical friction coefficient increases. It is inter-
esting to note that the radial mode still vanishes, although at higher
pressure values than for Case B, and does not reappear (see Figure
8 (d)). Similar to P of the isotropic pad-on-plate model, the tan-
gential pad mode‘sR) real part has a clear minimum. As in Case

B, the change in spectral properties of the radial and rotational pad
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Figure 7: (colour online) Case B: constant material propsréc-
cording to Figure2 but varying pressure loadk)(of p; = 0.5MPa
to ps = 8.0MPa. Pot,R and B indicate the rotational, tangen-
tial and radial pad modes, respective{®,3+,0,0) is the disc-
dominated transverse mode with 3 nodal diameters (positiye (
and negative-) travelling wave).T P marks the transition point.

modes are the most severe. To analyse changes in the frequencies
of the pad modes, especially Bf, in more details, the sum of the
modes standard deviation in frequengygestimated as a dispersion
parameter of all the modes in a frequency range of HkHz, for

the four pressure cases is calculated and shown in FRj(ag to

(c). The modes for the an-isotropic pad-on-disc system are num-
bered 1-20. For case A (Figur8(a)), modes 12F) and 17 Brot),
show a relatively large value of 35 and 40Hz, respectively. Here, es-
pecially for a pressure of. 2MPa, the dispersions & andPt are
relatively high . Other modes which change their eigenfrequencies
quite a lot are 78 and 1113 which are predicted as unstable pair of
the (0,3,0,0) mode, the radial pad modg;{ and the neighbouring
(0,4—,0,0) mode, respectively. The minus of tf@ 4—,0,0) mode
indicates the split mode with a negative travelling wave relatively to
the rotation direction. All other modes show negligible changes in
their frequencies. In Figurg(b), for Case B, by applying different
pressures but leaving the material properties at the material point
of MPy, large changes for thB and Rt pad modes can be ob-
served. The sum of the standard deviations increase ubkbiz

and Q5kHz (variationps = 8.MPa), respectively. The sum of the
standard deviations for all four pressure variations reaches a maxi-
mum of 3981Hz foP;, 1650Hz forPo: and 106Hz folR. The mode
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Figure 8: (colour online) Case C: varying material properti$, (
and varying loadsl(). Pot, R andP; stand for the rotational, tangen-
tial and radial pad mode$0,3+,0,0) is the disc-dominated trans-
verse mode with 3 nodal diameters (positive) @nd negative )
travelling wave).T P marks the transition point.
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P displays the highest standard deviation (1640Hz), followed by
the rotational padR;ot) mode 17 with 1330Hz. However, the com-
bination of the lining material stiffening and increased pressure re-
sults in more than a halving of the summed standard deviation, from
around 3981Hz to 1640Hz, which may be interpreted as stabilising
in terms of frequency variations. Then, in Figu@€d), the faned

out standard deviation estimates of the second pad nog@g| is
presented, for Cases A to C for variations in material, pressure and
for the synchronised case C (pressure with material changes). Two
basic findings are observed: (i) the sensitivity of méd&o higher
pressures is lower than that of tRe and Pyt modes; and (ii) the
combined effects of load variation and non-linear material changes
lead to an increased standard deviation which is still higher than that
for disc's out-of-plane modes. This means that, for the pad rifigde
the combined effects of load and alteration of material introduce
more variability into the system.

Dynamic Behaviour in terms of Kinetic Energy

From results obtained by the CEA, noticeable changes in frequen-
cies and the real parts of the complex eigenvalues are observed. The
modal frequencies and real parts, due to changes in pressure, mate-
rials’ elastic constants and friction coefficients are investigated for
models | and IV. The complex eigenvalue method, based on the ex-
traction of mode shapes, does not take into account the influence of
other modes due to a structurally damped system under excitation.
The change in frequencies is estimated based on mode shapes and
is, therefore, linked to the modes sensitivity. The magnitude of a
positive real part of the complex eigenvalue is in itself not a use-
ful predictor for a non-linear system because it only predicts the
linearised state, and mostly mode coupling is detected. Even the de-
termination of the critical friction coefficient seems debatablg.[
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Figure 9: (colour online) Standard deviation estimates (a) Case
A - A material AM); (b) Case B A load (AL); (c) Case C A load
and material AL + M),(d) frequency ofR for Cases A to C and
variationsg € {my, pi, MR} with &,i € {1, ...,4};

Since a single transfer or point mobility, as performedsd [ only

gives the system's response at one point on the structure, a global
measure of the amplitude of the vibration level is preferred. The
system's kinetic energiin = %pwdv [64] is a measure which
accounts for the system's global vibration level and may be used to
predict vibrationally very active pad modes. Hétas the volume

of the structurey the velocity field angp the structure’s mass den-
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sity. As theV andp remain constant, the only change expected is
the strength of the underlying velocity field. Figur@(a)shows the
effect of increasing the pressure on the kinetic energy of model |
from 10-3to 8.0MPa and for each pressure, the friction coefficients

u from 0.05 to 065. The peak frequenciefg to f4 correspond to

the B, (27d,3), (4" 5ty and (6", 7t") mode, see Figuré. Some

of the modes given in Figuré do not show visible frequencies in

the energy spectrum as they are smeared and coupled with neigh-
bouring frequencies due to their interactions and global structural
damping of 04%. Additionally, the kinetic energy spectrum for the
plate alone and for T®MPa with 1 = 0.01 andu = 0.001 is plot-

ted. The kinetic energy of the plate alone, does not show any peaks
at frequencies greater than 3kHz, although plate modes are present
over the frequency range investigated: #434.40,4.44,5.71 and

at 605kHz. The incorporation of the pad with pressure and a very
low friction coefficient ofpt = 0.001, only moves the plate mode at
around 3kHz down to.ZkHz and no other modes are visible. How-
ever, with an increase of the friction coefficient upte= 0.01 new
peaks appear. Then, increasing the pressure increases the kinetic
energy spectrum. A further effect of increasing the friction coeffi-
cient is to produce broader and higher peak amplitudes for most of
the frequencies, with the exception of only the first frequerfgy (
which is dominated by a plate‘s bending mode with almost no pad
movement involved. The kinetic energy spectrum shows the modes
responsible for feeding in most of the energy. The feed-in energy
can be estimated by meanshzflance in energy

1)
)

Exin + Eint + Efric — Efor — Evisc = const
== DEin|yt = AEtor +ABvisc — AEint — AE+ric
—_——— N N N e~

=0 =0 >0 <0

>0

kinetic Energy dB re 1J

External Work dB re 1J

Frequency kHz

Figure 10: (colour online) (a) Kinetic energy fpp = 1kPaps =
8.0MPa andu € .# = {0.05,0.25,0.45,0.65}). fi-f4 indicate
peaks in the energy spectrum; (b) External wpek 1kPa and over

varying U

Here,Eor, Evise: Eint andEgic are the energies due to the applied
external forces, viscous dissipation, internal forces and friction, re-
spectively. However, no viscous damping is applied here and the
external forces are constant. From Figd®a)it can clearly be
stated, that at most frequencies the kinetic energy increases with
increasingp or p. Therefore, thed|,; in equation 2) stands for
changes due to increasing the friction coefficient. As the change in
the internal energy is always greater than or equal to zero for an
increase in the friction coefficient, the increase in kinetic energy at
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some peaks are related to negative frictional work, which is higher, 270)

than the increase in strain energy. As the negative external work
describes work done by external forces including friction, not avail- \
able for the internal work, due to friction energy stored in contact g

springs, the increase in kinetic energy describes the releases fedgin |

80

D: E 210GPa

energy at theses frequencié&8|[64, 59]. % e RS
S Cioios s U NS E 210GPd]
In Figure10(b), the external system's worlE(y) is plotted fora 3 s “1“57’“
range of friction coefficients from.05 to 065. Ey is composed £ (b)
of frictional energy and work done by the external forceg, = oL Dt H o R&R | ”qﬁ |
Efor + Efric. As theEyo-term remains constanEy can only be- § - B
come negative due to the friction term. As negative values are n@ *| " Eéj : Plot 165 |
defined for logg, the logarithm of|Ey| was taken. Evidently, at I gj% | g%; 7
f3 which corresponds to pad modg&", 5" feeds in most of the 8r ;g | : s 4 A

energy, thenf, and f, followed by f1. Peaks of kinetic energy at L
two frequencies f, f3) are analysed in detail in Figurkl. For °
illustrative purposes, the curves were smoothed by means of Her- ¥ |
mite interpolation 5] as only five pressures were calculated to ob- C ne{005.074
tain the kinetic energy. For this purpose, the peak energies at fre- 1 2 3 4 5 6 7
quenciesf; and f3 are extracted: it can be seen that one is mov- Frequency kHz

ing on the vertical line in Figur&O(a)from lower to higher pres-
sure values, such representing developmerpeafk kinetic energy
over (a) pressure or (b) friction coefficients. Also, the logarithm
of the identity function 10logy(p) and its square are depicted for
reference purpose. Clearly, as the dB values are on a logarithmic

Figure 12: (colour online) Energy spectra of isotropic pad-on-disc
model (I11): (a) windowEy;, show fluctuations of pad modes due to
elavated temperaturek (v +18.9% ) for S- subspace projection
method and - direct steady-state analysis); and (b) kinetic energy
spectrum folE = 210GPa (Tabld) of D - direct steady-state anal-

ysis)

40

which are more severe, are considered herel@2307°C). The
pad modes, which exist for the pad-on-plate model also exist for
the pad-on-disc at around-34kHz and 55kHz. However, the lin-
ing does not deform as strongly as depicted in Figg{eg and (d)
due to steel being the pad material. As a result, due to changes in the
Young’s modulus (2%%), variations of frequency in the pad modes
(P, R) are large, around 789Hz or Z8%, relative to the mode at
170GPa. AtE = 210GPa, the pad modes lie almost equally apart
from the peaks, at around13and 41kHz. Then, forE = 210kPa
| of Young's modulus, the direct steady-state analysis in ABAQUS is
‘ ’ used for the friction coefficient from.05 to Q74, to calculate the

3 : 5 R T k_inetic energy spectrum, as depicted in Figmk(_b). The dashed
Pressurep MPa Friction Coefficientu line shows the previously calculated frequency in Fidizéa) and
| =0, B, R andP,t describe an in-plane tangential shear mode and
Figure 11: (colour online) Scattering of peak amplitudes of kinetic  the radial, tangential and rotational pad modes, respectively. Two in-
energy of isotropic pad-on-plate model (I) exemplified for reso-  stapilities are detected by the CEA: tf@5-+,0,0) split-mode pair
nancesf; and f3 by varying (a) pressure or (b) friction coefficient (atu > 0.38) and the0, 3+, 0,0) split-mode pair (a1 > 0.45). Ob-
by leaving eithei or p constant, respectively viously, as the friction coefficient increases, the pad mode’s change

in kinetic energy is dominant and other frequencies at which the

scale, increasing the pressure gives an almost quadratic increase spectrum lifts up are clearly visible (e.g., at around 3 @k#iz).

gy dBre 1J

0

Peak kin. Ener

-40
80

in kinetic energy (see 10g10(p?) for comparison in Figure1). At these locations, the qualitative motion of the pad for the ani-
Further, the behaviour of both familiy of curves, for resonafice mated mode shape is often equal to the motion of one of the pad
and resonancés is consistent, giving the same slope for peak ki-  modes, even though their amplitudes might be very st de-

netic energy over pressure. However, the two peaks show differ-  scribes an in-plane shear mode of the disc.@kHz, which also
ent behaviours: afy, the peak amplitude decreases whereas the  shows a significant increase Hi,. The dependency of kinetic en-

second frequency shows a strong increase with greatéhe be- ergy on pressure and friction coefficient is illustrated for 4 modes
haviour of frequencie$, and f, in Figure10(a)is similar to that of of the pad-on-disc model in Figurk3. The pressure dependency
f3 in Figure1l, only less accentuated. As shown in Figa®a) looks different from that for the pad-on-plate model (Figaif:

as | changes to higher valueEyi, increases at botfi; and fs. the family of curves, although being in the same resonance show

However, these behaviours are inconsistent, being either linear or  changing slopes, which have the tendency of getting flatter for res-
non-linear depending on the pressure applied. Also, no clear trend  onances, which decrease with increasing friction (€;gf,) and

can be found. Based on this, a prediction without calculating di-  getting steeper for curves with increasing peak kinetic energy val-
rectly kinetic energy variations due to friction coefficient changes  ues. However, the general shape remains consistent for all modes
is more difficult than those due to pressure variations. In Fi@g@re and the behaviour can be described as raphedictable The de-

the kinetic energy spectrum of the isotropic pad-on-disc ehdidl pendency on the friction coefficient is again mainly not predictable:
is depicted. The question is whether the pad modes also exist and  trends in one family of curves change and also different resonances
whether their effect is similar to that of the pad-on-plate. In order  show qualitatively very different behaviour. The identity function
to study the fluctuating character of the modes, the subspace pro- id(p) := p and its square are depicted for reference in Figiras
jection method §) is used to calculate the kinetic energy spectrum well.

for three different Young‘'s moduli 17@10 and 249GPa (Figure

12(a)). Of course, for steel, as pressure variations cannagpon- As a next step, the global kinetic energy of the an-isotropic pad-on-
sible for such large material property changes, temperature effects, disc model is analysed with settipg= 0.5. In Figurel4(a) the ki-

8 ICA 2010



Proceedings of 20th International Congress on Acoustios,2@10

netic energy spectrum for Cases A to C, which were previously anal-
ysed by means of the CEA method, is depicted. In Fid4rder case
A, in which only the material properties are varied and the pressure
limited to only 1kPa, two peaks, correspondingRtcand R, keep

23-27 August 2010, Sydney, Australia

to some perturbation is yet not fully understood. In any case, the
vanishing radial pad-mode visible for the anisotropic pad-on-disc
model IV in Figurel4(b) (d) is connected to this phenomenon at

low pressures. If the kinetic energy can be related to the acoustic

changing their frequencies and amplitudes. The absolute changes power, then the peak in the spectrum of the in-plane radial pad mode
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Figure 13: (colour online) Peak kinetic enerdsit,) model 111, de-
pendent on (ap with u = const; and (b)u with p= const; (i) and
(iii) frequenciesfy and fo, (ii) and (iv) unstablen = 3 mode and
tangential pad modg

in amplitude of both mode$} andPR;, is around 10dB. In Figure
7(b), by increasing the pressure from onlglPa to 80MPa (case

B), the radial pad mode is pushed out of the frequency band of
3.7-5.0kHz. Only the modé} remains visible. Changes in ampli-
tude due to pressure are high up t6MPa above which are not so
pronounced and the maximal variations are only around 8dB. Case
C in Figure14(c) shows that for the combined effects of pressure
and material properties, (i) the overall vibration level expressed in
Exin is higher than for case A and B, (ii) the amplitude is increased
by around 3dB from 1kPa to 8MPa; and (iii) the amplitudes of the
modes that are not primarily pad modes also increase. In Figure
14(d) the kinetic energy spectrum for various friction coeéiuis,
pressures and material properties is depicted. ggoe 1kPa the
material properties ofn; were used. Evidently, the kinetic energy
of the rotational pad modB; is not distinguishable anymore for
pressures higher than8MPa, the same for the radial pad mdgle

It is worthy to mention, that changes in frequency up to 180Hz can
clearly be observed for the tangential pad m&deAlso, although

the geometry of the structure remains the same, the change from
steel to anisotropic lining material reduce the peaks of the energy
spectrum by 4 to only at most 11. The kinetic energy for the case
of 1kPa uniformly distributed pressure is lower but increases in the
end up to 150dB which marks the different behaviour of steel and
brake lining behaviour: a steel pad gives an overall higher vibration
level at low pressures, than the brake lining, but does at high pres-
sures vibrate on basically the same level . The kinetic energy of the
isotropic pad-on-disc system is also around 150dB. In the past, the
connection between non-linearity for lower pressures and the oc-
currence of brake squeal, which often develops at lower pressures
[35, 44] and at the beginning of a reduction in a car's spe&\vas
mentioned. In 6] radial bursts of the pad‘s motion were observed
while reducing the car's speed. Whether this mechanism is a purely

kin. Energy dB re 1012)

kin. Energy dB re 1012J

P, marks an increased likelihood of squeal at lower pressures (here
0.001- 0.5MPa) which is a frequenclty encountered phenomenon.

PHASE-SPACE REPRESENTATION OF MECHANISMS
INVESTIGATED

In this section, the phase-space plots and calculations of dynamic
invariants of the steady-state response of the pad-on-plate model |
is presented to show that the system has the tendency to become
unstable when the friction coefficient is increased. As mentioned
earlier, this instability is not due to the mode-coupling type of insta-
bility which would have been detected by the CEA. In the follow-
ing, only the velocity response at poiNtin Figurel(a) is taken. A
pressure excitation of 1kPa is linearly swept through the frequency
domain. The resolution in the frequency domain fory@—point
transfer function waA f = 0.5Hz. The time series was synthesised

by applying an inverse Fourier transform to the imaginary surface
velocity term. In order to reconstruct the dynamic's phase space,
embedding parameters were estimated by means of time-delay em-
bedding using the averaged auto-mutual information and the false
nearest neighbour algorithné{, 68]. With the algorithm of Sano

and Sawadaf9] the Lyapunov spectrum and as a correlation dimen-
sion estimate the Kaplan-Yorke dimension were calculafédq1].

In Figurel5, the phase-space representation of the plate’s velocity
in thex-, y- andz-directions, measured at poiNt (Figure 1(a)), is
depicted. In each subplot, the maximal Lyapunov exponent and the
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Figure 14: (colour online) Spectra of kinetic energy of model IV
for: (a) Case A; (b) Case B; and (c) Case C. The small squares,
as fixed points on the peak values, indicate the movement of the
frequency peaks; squares with arrows schematise this movement
of peaks in a vector plot. (d) Variation of friction coefficient for
pressure®g = 1kPa tops = 8MPa.

correlation dimension are estimated. As the friction coefficient in-
creases (up tpr = 0.25), (i) the maximum phase-space dimension
becomes larger which is indicative of higher vibration amplitudes;
the phase-space dimension increases in continuoushgirection.

In y- andz-direction however, the phase space dimension decreases

transient process or can also be observed with constant speed due afteru = 0.25. However, the dynamics get more complicated as can

ICA 2010



23-27 August 2010, Sydney, Australia

be seen from the (ii) correlation dimension which increases from 1
to over 3 and the Lyapunov exponents, which become for higher
friction coefficients slighlty positive.

DISCUSSION AND CONCLUSION

This paper is focussed on analysing pad-modes by means of the
complex eigenvalue analysis and the system's kinetic energy speg
trum. By simulating a pad-on-plate model, similar to an experi-ﬁf
ment performed in 1], pad modes were identified and found to =
be very efficient in feeding-in energy and highly sensitive to stiff-
ness changes. No instability is detected by means of the complex
eigenvalue method, hence classical mode coupling is not present.
The plate model‘'s extension to a pad-on-disc model with isotropic
pad, shows that these pad modes also exist for annular structures.
The fluctuation in frequencies of the pad modes is highly depengu"
dent on the material composition of the lining material. An extreme =
case represents an isotropic pad-on-disc model (lll) which has to
be modelled with a very fine resolution in the contact zone due to
this sensitivity p8]. Special care has to be taken in the modelling of
pin-on-disc or beam-on-disc setups which utilise steel lining; also,
apart from these models, high-performance pads could show higher
rates of fluctuation in frequency as they have higher in-plane stiff<
ness $1]. The modelling of boundary conditions as for instance the
friction contact or the pad's constraining nodes as showB8hi§ =
crucial because the pad modes are responsible for increased energy
transfer in the sidebands of their eigenfrequencies. Although for a
transversely isotropic lining material, frequency changes are only
up to 4% for a pad-on-disc system, the friction and/or temperature
at the abutment clips might change the lining‘'s or abutment clip‘s,,
stiffness and induce a shifted position of the pad modes. Also, wea
is an important factor as it changes the elastic lining properties by,
reducing the puck depth, decreasing the mass and, possibly, increas-
ing the contact zone, depending on whether chamfers are used or
not.

Further, it is found by means of the complex eigenvalue analysis,
that imperfect merging is not only due to viscous damping but also
to frictional damping and higher pressures. This supports the pos-
sibility of instabilities with increased system damping as suggested

in [17].

As the complex eigenvalue analysis itself is unable to predict insta-
bility induced by pad-modes, the kinetic energy is found to be a
useful global measure to identify a high structural vibration level.

It is found that the dependency of the peak kinetic endfgy at
constanty on pressure is more predictable than that at constant
pressure oru. It is found that the system’s kinetic energy gener-
ally increases with increasing pressure and friction coefficient. For
the first time, non-linear material property changes due to varying
pressure are incorporated into complex eigenvalue calculations. By
incorporating variations of pressure and the friction coefficient, the
quasi-transient process in analysis of disc brake squeal in the fre-
guency domain can be enhanced: Frequency domain analysis are
efficient and can substitute computational expensive time domain
models to a certain degree. By applying inverse Fourier transform
to the transfer mobility of the pad-on-plate model (I) and conduct-
ing non-linear time series analysis, the instability is evidenced by an
increasing correlation dimension, an increasing phase space dimen-
sion and positive Lyapunov exponents. This result supports the ex-
perimental findings of]] indicating that another mechanism apart
from mode coupling is responsible for the squeal encountered in
the experiment. For friction coefficients greater tha260the phase
space dimension decreases, but the dynamics are more complicated.

It is observed in practice that some squeal occurs repeatedly at
the same frequency and that others in the same brake system scat-
ter around a certain frequency. The findings presented here indi-
cate that the often-encountered non-repeatability of brake squeal at
some frequencies could be due to the pad modes fluctuating as a
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modes represent instabilities themselves, and might enhance the
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Figure 15: (colour online) Phase-space plots of friction coefficient
variations for model | with 1kPa pressure applied. Only plate out-of-
plane vibrations at poirtl (Figurel) are measured.ax, D2 give
estimates for the maximal Lyapunov exponent and the correlation
dimension respectively.

mode-coupling instability or the efficiency of previously-coupled
unstable modes in terms of radiating sound similar to parametric
resonances/R, 9]. Initially, the position of these pad modes is de-
pendent on the boundary conditions appli®8|[ Therefore, apart
from the friction couple as a boundary condition, this is a problem
of the designed stiffness and geometry of the abutment clips as well
as the bracket design as also investigate®ii. [

In the course of a brake application, the lining material changes
its stiffness non-linearly. Apart from knowing the composition of
the general lining material, its behaviour under dynamic loading is
important. Due to increased pressure, compressibility and changed
elastic properties, the friction coefficient changes and induces, if
increased, additional contact stiffness. It has been shown, that pad
modes are sensitive to pressure, material property changes and fric-
tion coefficient variations. Significant changes in frequency, due to
variations inu are observed. As in reality the friction coefficient
varies a lot, these modes can be called fluctuating, as the strong
change in the frequency domain indicates, that in the time domain,
their frequency contributes with changing harmonics and strength
to the vibration. Due to mesh sensitivity, and a possible amplify-
ing and triggering characteristics of the pad modes, developing a
reliable numerical model of a brake system in FEM is a very dif-
ficult task. Whether this dynamic instability due to pad modes is
truly relevant and efficient in radiating sound is investigateBj.|

A possible solution for assessing the uncertainty of pad-mode insta-

consequence of stifiness, temperature and pressure changes. Pad bility, caused by variations in frequency, kinetic energy and acoustic

10

power, is presented irVf].
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