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ABSTRACT

Shown here is that the separation maWWxca by ICA in blind separation for an instantaneausource -m source

case in the formx(t) = Hs(t) is expressed &t/ ca = PARZ*%QDT, whereX : the diagonal matrix having largest
eigenvalues o€y, the covariance matrix of(t), ® : the m x n matrix consisting oh eigenvectors corresponding to

the diagonal elements &, P : ann x n “permutation matrix" having unity in each row and each coluAnannxn

“amplitude matrix" or “scaling matrix" having non-zero values only on the diagddahnn x n ortho-normal matrix.

P, AandRare dependent on both the measure employed to evaluate the degree of independence among resultant signals
and the algorithm adopted for maximizing the measure. In case mixture is convolutive, the frequency-domain expression

of the ICA-based deconvolution matca (jw) is obtained aW,ca (jw) = P(jw)A(jw)R(jw) bR (jo)®T(jw),

while its time-domain expressiomca (t) is obtained awca(t) = p(t) ® at) ® r(t) ® o2 t) ® @' (t), where
a(t) andg(t) are matrices consisting of the element-wise Fourier inverse transfori{g@f and®( jw), respectively,
p(t), a(t) andr(t) are formal Fourier inverse transforms Bfjw), A(jw) andR(jw), respectively, angs) denotes

matrix convolution.

INTRODUCTION

Independent Component Analysis (ICA) is usually regarded as
a basic tool for blind source signal separatidjgssuming that
source signals are mutually independent. ICA realizes source
separation by maximizing independence among resultant sig-
nals into which the observed signals are to be separated even
in case no field information is available.

Although ICA has been frequently explained to have close con-
nection to Principal Component Analysis (PCA) 2, 3], little

has been explained about the concrete relation between them.
As the basic notion of PCA is the minimum mean-square er-
ror, and the least-squares solution of an over-determined set
of linear equations is obtained using the pseudo-inverse of the
coefficient matrix. Derived here is a relation between the sepa-
ration matrix in ICA and the pseudo-inverse of the mixing ma-
trix, based on a semi closed-form expression of the separation
matrix.

The separation matrix in ICA is obtained by maximizing a
measure of independence among separated signals employing
one of iterative algorithms, such as relative gradient method,
deflation algorithm, FastICA algorithm and so forth. As maxi-
mizing mutual independence cannot determine the magnitude
balance between source signals and the mixing paths nor iden-
tification of individual sources, there remain ambiguities in
amplitude and identification among sources. The former in-
evitably causes the so-called “scaling problem”, while the lat-
ter, “permutation problem”. Fortunately, these problems are
usually not serious in case of instantaneous mixtures as we will
be enough satisfied so far as separation is realized regardless of
mutual amplitude and identification or labeling of individual
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sources.

Independence among separated signals requires uncorrelated-
ness among them as a necessary condition, thus diagonality is
required on the covariance matrix of separated signals. The fact
that “we don’t care mutual amplitude among source signals”
allows us to neglect mutual amplitude among separated sig-
nals. Considering in that way, we can introduce equi-variance
requirement on the covariance matrix of the signals to be ob-
tained as estmates for source signals. That means we can forcibly
make the covariance matrix of the observed signals be a unit
matrix employing an arbitrary scaling matrix.

A cascade processing of
1. sphering the covariance matrix of the observed signals

2. applying matrices representing

o free axis rotation of the spherized covariance matrix
e amplitude ambiguity.
e permutation ambiguity

yields a conceptual closed-form expression of the separation
matrix in ICA.

MIXING MODELS

We can express an observation model of an instantaneous mix-
ing process as
X(t) = Hs(t), @

wherex(t) denotes am dimensional time-varying vector rep-
resenting observed signasgt) denotes an(< m) dimensional
time-varying vector representing source signals, both having
the discrete time variable andH is anm x n matrix repre-
senting a scalar mixture from a set wfsources to a set of

m sensors without any time delay. Held,is assumed to be
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time-invariant with elemenkbjj representing a scalar mixing
amplitude from sources;So receiving sensor;Rn case of an
instantaneous mixture. Each element in bet) ands(t) is
assumed to be zero-mean without losing generality.

In case of convolutive mixture, the model should be modified
as follows:
x(t) = h(t) ® s(t), )
where(®) represents matrix convolutiod]] signifying that
n
Xi(t) = z hij (t) *sj(t), 3)
=1

wherehj (t) denotes impulse response of propagation path from
source $ to receiving sensor iRand * symbolizes convolu-
tion. This model allows any types of propagation including re-
flection, refraction, diffraction, absorption and so forth. 2j.(
includes Eq.J) as its special case where each elemeri(of

is a single complex value representing delay and decay but not
a time function.

ASSUMPTION ON SOURCE SIGNALS

In caseH (or h(t)) is known, it is straightforward to obtain the
least-squares estimate fgt). However in cas# (or h(t)) is

not known, at least an appropriate restriction should be intro-
duced to obtain a meaningful estimate $¢r). The assumption
employed in ICA is the statistical independence among source
signals, expressed as

=

Pr(si(t),s2(t), - ,sn(t)) =

]
It requires uncorrelatedness among source signals as a neces-
sary condition expressed as diagonality of the covariance ma-
trix as

Pr(sj(t))- (4)

1

Cs ©E[s(t) s(t)"] : diagonal )

where H denotes an adjoint matrix (vector in this case).

SOURCE SIGNALS ESTIMATION

Source signal estimation is formulated as to ob&ii), the
estimat fors(t) in Eqg.() in case of instantaneous mixing, or in
Eq.(@) in case of convolutive mixing.

In case of instantaneous mixture

We can assume thétt) is expressed by the following form:
§(t) =W x(t), (6)

whereW is called the “separation matrix", whose sizeis m.
The situation to obtaiWV is divided into two cases: one where
H is measurable, and the other where it is not measurable.

() In case H is measurable

In caseH is measurable,
§(t) = Hx(t) @)

gives the least-squares solution &t), where™ signifies the
“Moore-Penrose pseudo-inverse" of matricBkdf the least-
squares type, expressed as follows:

H+ € HTH)-IHT )
So, the separation matrix in this case is given as
Wg=H"=HTH)IHT )

based on conceptual pseudo-inversion of the mixing process.

Needless to say,

H*=H™! incasem=n and |H|#£0. (10)
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(II) In case H is not measurable

In caseH is not measurable, it is impossible to obt¥hfrom
H. So, some constraints are required in order to deteriMne
To estimateW and s(t) without knowingH is called “Blind
Source Separation (BSS)".

(a) Basic Requirements on W for BSS

As mentioned above, introduced in ICA for BSS is indepen-
dence among source signals. Independence among source sig-
nals requires uncorrelatedness among them, or diagonality of
the covariance matrix c(t) as a necessary condition. Then,

Cs “EBNSNT]
def (1)
=diago?,02,--- 02| = £,
Whereaj2 corresponds to the power of sourcg S
Equations §) and (L1) leads
def
Cs=Cwx= EW x(t) W x(1)]]
=WEx(t) x(t)T]WT 12)

=WCW'=%

The equation noted above tells that the separation makris
required to be am x m matrix which diagonalize the covari-
ance matrixCy of them-dimensional observation vectrt).

Although the size o€y is mx m, the size of the diagonal ma-
trix Z is n(< m) x n, as the size oW is n x m, and onlyn,

out of m, eigenvalues are supposed to be significantly large
and the others are presumed to be small, since the rank of the
covariance matrixCy is thought to ben under an ideal condi-
tion. Then, in case the number of sources is known, altag-
onalization should be carried out so as to obtain the langest
eigenvalues as the diagonal elements in order to obtain source
signals.

So, a “possible" separation math of sizen x mis required
to be a matriWq consisting ofn row vectors corresponding
to the largesh eigenvalues of the covariance ma@x as fol-
lows:

Wy=0o'" (13)

where
*Cd==2 (14)

in which Z denotes a diagonal matrix having largastigen-
values ofCy on the diagonal, an® is anm x n matrix consist-

ing of the corresponding eigenvectors of sizen. Although

Wy fulfills the requirement for diagonalizing the covariance
matrix, or producing uncorrelated signals as separated source
signals, it does not necessarily yield statistical independence.
Thus,Wy is not the separation matrix yet.

(b) On Mutual Amplitude among §;j(t)’s

As expressed in Edl], BSS can be regarded as decomposi-
tion of x(t) into a product of matriXd and vectors(t), there
arises ambiguity of amplitude assignment betwidesnds(t),
because the produkt s(t) can be rewritten as

Hst)=HA 1As(t) (15)

where
Ad:efdiaqal7a27"' 7an} (16)

is ann x n diagonal “amplitude matrix" having non-zero val-
ues as its diagonal elements and zeros in all other places.
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Considering the possible structure of the proddstt) as de-
scribed above, we can understand t{&} in Eq.(1) can be de-
composed into any combination of product between a matrix
HA™! and a vectoAs(t) with an arbitrary amplitude matrix
A, but not the fixed form of the produéts(t). This is called
the “Amplitude Ambiguity” or “Scaling Problem"” of ICA.

However the Amplitude Ambiguity is not serious in BSS for
instantaneous mixture, as the amplitude of each separated sig-
nals is thought to be not so important once the waveform of
each target source is obtained.

So, it is feasible to estimate a matrix that whiten or spherize
Cy assuming that actual solution Ass(t) including arbitrary
amplitude matrixA that shares amplitude betwebtA—! and
As(t). Under this modelCs, the covariance matrix of source
signal vectos(t), can be assumed to be a unit matrix of size

Cs=E[st)st)T] =1, (17)

(c) Whitening or Sphering

We presume that separation maw¥should be able to whiten
Cy, or transfornCy into a unit matrix as

S IPTCPI =1y, (18)
wherel, denotes the unit matrix of sizg and
W, =3 207 (19)

is thought to express a candidate for the separation mtrix
under condition of uncorrelatedness among signa$gtin

W,y is only a possible example of matrices that transf@n
into a unit matrix, or makse;{t)’'s be mutually uncorrelated and
normalized to have unit variances.

(d) Ambiguities

Multiplying any ortho-normal matrix from the left side does
not affect the spheredness of the covariance matrix. So, the
separation matriW should contain an ortho-normal matrix
representing arbitrariness of axis rotation in théimensional
source space.

Considering the ambiguity in amplitude, the separation matrix
W should contain a diagonal matrix representing arbitrariness
of sharing amplitudes between source sides and path sides.

As ICA tries to just divide a set of received signals into source
signhals assuming independence among sources, it cannot iden-
tify individual sources. That means the separation is made with-
out regard to source ID. This requires the separation m¥frix

to contain a matrix that has a single one in each row and col-
umn, and zeros at all other positions, representing the permu-
tation among sources.

So, the separation matrix by ICA is to be expressed as follows:

Wica = PARW,, = PARZ 2 0. (20)
whereR, A andP are matrices for representing ambiguities in
axis rotation, amplitude sharing and labeling source ID’s, re-
spectively. ThouglR has no special name other than an “ortho-
normal matrix for Axis Rotation"A is called “Amplitude Ma-
trix" or “Scaling Matrix", while P is called “Permutation Ma-
trix".

Each element in the joint indeterminaPAR is thought to be
determined as specific one by the measure, such as kurtosis,
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negentropy or mutual information, employed to express the de-
gree of independency amosgt)’s and the algorithm adopted

to maximize the measure together with the initial values for
iterative procedures emoloyed.

In case of convolutive mixture

Sound fields are usually produced in environments enclosed by
reflective surfaces, or at least environments that contain some
items like floors, walls, furniture or other objects with sound
reflecting surfaces. In such sound fields, received sounds in-
evitably consist of reflective waves and diffractive waves hav-
ing longer path lengths besides the shortest direct wave. So,
sound received by a microphone is actually a sum of sounds
including reflected ones that can be expressed as a sum of con-
volutions of source signals and the impulse responces from
sources to the microphone. That leads Bq.gr

X(t) = h(t) ® s(t),

where(®) represents matrix convolutiod][ The separation or
deconvolution is required to be expressed as

8(t) = w(t) ® X(1).

Like the instantaneous cases, situation to obagi is divided
into two cases: one whett) is measurable, and the other
where it is not measurable.

(21)

(22)

() In case h(t) is measurable

In caseh(t) is measurablew(t) is conceptually required to be
the convolutive inverse di(t).

Taking Fourier transform of Eq2(), we have

X(jw) =H(jw) jw), (23)

where
Xi(jw)=Zx(t)] fori=12---,m (24)
Si(jw) = Z[sj(t)] for j=1,2,---,n (25)
A (jw) = ZF[hij (t)] (26)

with .# representing Fourier transform. As the least-squares
solution forS(jw) is obtained as
S(jw) =Ws(jw)X(jw)

=H"(jw) X(jw), (27)

H™(jw) should be determined so as to satisfy the following
relation

H*(jo)H(jw) =In (28)
As its time-domain expression, we have
h® (1) @ h(t) = 8" (1), (29)

whereh® (1), defined as “Generalized Convolutive Inverse of
h(t)", is a matrix having element-wise Fourier inverse trans-
form of H' (jw).

Element-wise description yields

fori=j(<n)

otherwise (30)

3 RO h() = 3

Employing hjc? (t), the least-squares estimate &(t) is ob-
tained as

m
§(t) = _Zhﬁ? (t)+x (1), (31)
i=
We have a convolutive matrix expression as
8(t) = h (1) ®x(), (32)
3
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Comparing Eqs42) and B2), we have the time-domain least-
squares separation matrix as the “generalized convolutive in-
verse matrix" as follows:
wg(t) = h® (). (33)
From Eg.@7), we have a frequency-domain expression of the
least-squares separation matrix for frequeacys
Wg(jw) =H"(jw). (34)

The equation above can be obtained also by taking element-
wise Fourier transform of EBB).

(1) In case h(t) is not measurable

Frequency-domain ICA is most frequently used for blind sep-
aration of mixed convolved signals. The frequency-domain ex-
pression of receiving sounds framsources byn microphones

is formulated as Eq2Q).

Let's assume that separation by ICA in the frequency domain

based on independence among source signals is expressed as

follows using separation matriWca (jw)

S(jw) =Wica(jw) X(jw). (35)

As the separation matriW,ca (jw) is obtained for each fre-
quncy bin so as to maximize independence anmgigw)’s of

the frequency bin, the basic framework is the same as the case
of unknownH in the instantaneous mixture. So, ambiguities in
both amplitude and permutation, or order among elements in
S(jw), arise also in this case. Siné&), the estimate for in-
dividual source waves, is obtained as element-wise Fourier in-
verse transform o8(jw), the ambiguities cause serious prob-
lems in this case if the ambiguities are not removed.

This difficulty, however, is not the subject of this paper, so we
assume that these ambiguities are formulated by introducing a
permutation matri¥P, an amplitude matriA and an arbitrary
ortho-normal matrixR into Wca (jw).

Like the instantaneous case, we have the frequency-domain ex-
presseion oW ca(jw) in Eq.(35) as

Wica(jw) = P(j0)A(jw)R(jw) 72 (jw)@"(jw). (36)

Taking Fourier inverse transform of both sides of the equation
above, we have a time-domain expression as follows:

1
Wica(t) = pt) @ at) ®rt) @ () ® @'(t).  (37)
whereo (t) andg(t) are matrices of size x n having element-
wise Fourier inverse transforms &f jw) and®(jw), respec-
tively, andp(t),a(t) andr(t) are element-wise Fourier inverse
transforms ofP(jw), A(jw) and R(jw), respectively, while
(® denotes matrix convolution.

RELATION BETWEEN THE SEPARATION MATRIX
BY ICA AND THE PSEUDO-INVERSE OF THE
MIXING MATRIX

Assuming that matrices for representing appropriate amplitude,
permutation and rotation of the orthogonal axe&A&R andR,
respectively, we can admit that the orthogonal basis in ICA and
that in least-squares estimation are common. So, we will cal-
culate the basis for in least-squares estimation to equate it to
thatin ICA.
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In case of instantaneous mixture
() Singular Value Decomposition of H

Applying the singular value decomposition (SVD) kb we
have

H=urvT (38)

whereU andV arem x mandn x n orthogonal matrices con-
sisting of left singular vectors and right singular vectors, re-
spectively, and” is, in an ideal case, am x n matrix of the

form
_ (I
" [%]

rn :diag[yl7~~~7)41]> (40)

wherey;’s are singular values dl, assuming that the rank of
H is n without losing generality. So we can assume tdias
nsingular valuesa, ..., ya with y1 > o >, ..., > yh > 0.

(39)

where

(Il) Calculating the covariance matrix ~ Cy

From Egs.{), (15), (5) and B8), the covariance matrix of(t)
is obtained as

Cx = E[X(t) {x(t)}"]
=E[{Hs(t)} {Hs(t)}]
— E[{HA AS(t)} {HA 1As(t)}T]
=HATE[{As(t)} {As(t)}T][A1THT
— HA'AE[s(t) s(t)T]ATA 1 HT
= H I nCs l nH T
(41)

=urviurvrmr
=urvivruT

=ura’

=U diagy?, ...,)2,0,...,0/UT.

By Eq.(41), U can be interpreted as the diagonalization ma-
trix of Cyx. Thus, the firsh columns ofU form ® defined by
Eq.(14).

Now, we can decompod# as

whereU, is equivalent toP andU, is a matrix consisting of
the lastm— n columns ofU.

(1) Expressing  §(t)

The set of the separated signals$) is expressed as follows
using the singular vector matri, its corresponding singular
value matrixI” and®, that diagonalizes the covariance matrix
Cx.

§(t) H*x(t)

(HTH)=IHTx(t)
[(urvHTurvT-LurvnhTx)
VIUTUrVT-WVrTuTx(t)

VI diagl,---,1,0,---,0] VTV TUTx(t)

n m-—n
= VI2riuTx)
UT
- VI | o] [gE]xo
= VI Ui
= VIloTxt).
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(IV) Relation between W,ca and Wg by equalizing @

Comparing Eq43) and Eq.7) under Eg.9), we can presume
VI 1" to beW in Eq.(). So,

W=V, o’ (43)
Substituting®" of Eq.@3) into Eq.@0), we have
Wica = PARZ 2V~ Wg (44)

which gives the relation betwedN|ca, the separation matrix
in ICA, andWg, the pseudo-inverse of the mixing matrix, in
instantaneous mixture case.

In case of convolutive mixture

Comparing EqZ7) and Eqg.85) under Eq.86), the frequency-
domain relation betweeW,ca (jw), the separation matrix by
ICA, andWg(jw), the matrix that gives the least-squares so-
lution for convolutive case is obtained as

Wica(jw) )
=P(jw)A(jo)R(jw) 272 (jw) rn(iw)V(iw)ﬂWG(J&(}ZS)

The time-domain relation betweamca (t) andweg) is for-
mally obtained by taking the Fourier inverse transform of &5).(
introducing inverse Fourier transform of each term as follows:

Wica (t) )

=pt) @ at) ®rt) ® 02 (t) Ayn(t) D V(L) @ Welt), )
wherewg(t) is identical toh®(t), the convolutive generalized
inverse f] of h(t), p(t),a(t),r(t),o(t) andy,(t) are element-
wise Fourier inverse transforms Bf jw), A(jw), R(jw),
2(jw), Mn(jw) andV (jw), respectively.

As h(t) is not measurable in blind separation, we cannot calcu-
late y;,(t), v(t)~1 norh®(t), so the equation noted above ex-
presses only conceptual relation betwagga (t) andwg(t),

but not indicating any procedure to obtawta (t) fromwg(t).

CONCLUSIONS

A conceptual expression for the separation matrix in ICA is
shown for both instantaneous case and convolutive case. Pre-
sented as a by-product is a relation between the separation ma-
trix in ICA for blind separation and the pseudo-inverse of the
mixing matrix under condition of transfer function being mea-
surable for both instantaneous mixture and convolutive mix-
ture. Though validity of the results is not strictly verified nor
confirmed by any means, the obtained result looks reasonable.
Strict mathematical verification or confirmation by simulation

is desirable in the future.
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