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ABSTRACT

Shown here is that the separation matrixWWWICA by ICA in blind separation for an instantaneousn source -m source

case in the formxxx(t) = HHHs(t) is expressed asWWWICA = PPPAAARRRΣΣΣ− 1
2 ΦΦΦT, whereΣΣΣ : the diagonal matrix having largestn

eigenvalues ofCCCx, the covariance matrix ofxxx(t), ΦΦΦ : the m×n matrix consisting ofn eigenvectors corresponding to
the diagonal elements ofΣΣΣ, PPP : ann×n “permutation matrix" having unity in each row and each column,AAA : ann×n
“amplitude matrix" or “scaling matrix" having non-zero values only on the diagonal,RRR : ann×n ortho-normal matrix.
PPP, AAA andRRRare dependent on both the measure employed to evaluate the degree of independence among resultant signals
and the algorithm adopted for maximizing the measure. In case mixture is convolutive, the frequency-domain expression

of the ICA-based deconvolution matrixWWWICA( jω) is obtained asWWWICA( jω) = PPP( jω)AAA( jω)RRR( jω)ΣΣΣ− 1
2 ( jω)ΦΦΦT( jω),

while its time-domain expressionwwwICA(t) is obtained aswwwICA(t) = ppp(t) ∗⃝ aaa(t) ∗⃝ rrr(t) ∗⃝ σσσ− 1
2 (t) ∗⃝ φφφT(t), where

σσσ(t) andφφφ(t) are matrices consisting of the element-wise Fourier inverse transforms ofΣΣΣ( jω) andΦΦΦ( jω), respectively,
ppp(t), aaa(t) andrrr(t) are formal Fourier inverse transforms ofPPP( jω), AAA( jω) andRRR( jω), respectively, and∗⃝ denotes
matrix convolution.

INTRODUCTION

Independent Component Analysis (ICA) is usually regarded as
a basic tool for blind source signal separation [1] assuming that
source signals are mutually independent. ICA realizes source
separation by maximizing independence among resultant sig-
nals into which the observed signals are to be separated even
in case no field information is available.

Although ICA has been frequently explained to have close con-
nection to Principal Component Analysis (PCA) [1, 2, 3], little
has been explained about the concrete relation between them.
As the basic notion of PCA is the minimum mean-square er-
ror, and the least-squares solution of an over-determined set
of linear equations is obtained using the pseudo-inverse of the
coefficient matrix. Derived here is a relation between the sepa-
ration matrix in ICA and the pseudo-inverse of the mixing ma-
trix, based on a semi closed-form expression of the separation
matrix.

The separation matrix in ICA is obtained by maximizing a
measure of independence among separated signals employing
one of iterative algorithms, such as relative gradient method,
deflation algorithm, FastICA algorithm and so forth. As maxi-
mizing mutual independence cannot determine the magnitude
balance between source signals and the mixing paths nor iden-
tification of individual sources, there remain ambiguities in
amplitude and identification among sources. The former in-
evitably causes the so-called “scaling problem", while the lat-
ter, “permutation problem". Fortunately, these problems are
usually not serious in case of instantaneous mixtures as we will
be enough satisfied so far as separation is realized regardless of
mutual amplitude and identification or labeling of individual

sources.

Independence among separated signals requires uncorrelated-
ness among them as a necessary condition, thus diagonality is
required on the covariance matrix of separated signals. The fact
that “we don’t care mutual amplitude among source signals"
allows us to neglect mutual amplitude among separated sig-
nals. Considering in that way, we can introduce equi-variance
requirement on the covariance matrix of the signals to be ob-
tained as estmates for source signals. That means we can forcibly
make the covariance matrix of the observed signals be a unit
matrix employing an arbitrary scaling matrix.

A cascade processing of
1. sphering the covariance matrix of the observed signals
2. applying matrices representing

• free axis rotation of the spherized covariance matrix
• amplitude ambiguity
• permutation ambiguity

yields a conceptual closed-form expression of the separation
matrix in ICA.

MIXING MODELS

We can express an observation model of an instantaneous mix-
ing process as

xxx(t) = HHHs(t), (1)

wherexxx(t) denotes anm dimensional time-varying vector rep-
resenting observed signals,sss(t) denotes ann(≤m) dimensional
time-varying vector representing source signals, both having
the discrete time variablet, andHHH is anm× n matrix repre-
senting a scalar mixture from a set ofn sources to a set of
m sensors without any time delay. Here,HHH is assumed to be

ICA 2010 1



23–27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

time-invariant with elementhi j representing a scalar mixing
amplitude from sources Sj to receiving sensor Ri in case of an
instantaneous mixture. Each element in bothxxx(t) andsss(t) is
assumed to be zero-mean without losing generality.

In case of convolutive mixture, the model should be modified
as follows:

xxx(t) = hhh(t) ∗⃝ sss(t), (2)

where ∗⃝ represents matrix convolution [4], signifying that

xi(t) =
n

∑
j=1

hi j (t)∗sj (t), (3)

wherehi j (t) denotes impulse response of propagation path from
source Sj to receiving sensor Ri , and * symbolizes convolu-
tion. This model allows any types of propagation including re-
flection, refraction, diffraction, absorption and so forth. Eq.(2)
includes Eq.(1) as its special case where each element ofhhh(t)
is a single complex value representing delay and decay but not
a time function.

ASSUMPTION ON SOURCE SIGNALS

In caseHHH (or hhh(t)) is known, it is straightforward to obtain the
least-squares estimate forsss(t). However in caseHHH (or hhh(t)) is
not known, at least an appropriate restriction should be intro-
duced to obtain a meaningful estimate forsss(t). The assumption
employed in ICA is the statistical independence among source
signals, expressed as

Pr(s1(t),s2(t), · · · ,sn(t)) =
n

∏
j=1

Pr(sj (t)). (4)

It requires uncorrelatedness among source signals as a neces-
sary condition expressed as diagonality of the covariance ma-
trix as

CCCs
def
= E[sss(t) sss(t)H] : diagonal, (5)

where H denotes an adjoint matrix (vector in this case).

SOURCE SIGNALS ESTIMATION

Source signal estimation is formulated as to obtainŝss(t), the
estimat forsss(t) in Eq.(1) in case of instantaneous mixing, or in
Eq.(2) in case of convolutive mixing.

In case of instantaneous mixture

We can assume thatŝss(t) is expressed by the following form:

ŝss(t) =WWW xxx(t), (6)

whereWWW is called the “separation matrix", whose size isn×m.
The situation to obtainWWW is divided into two cases: one where
HHH is measurable, and the other where it is not measurable.

(I) In case HHH is measurable

In caseHHH is measurable,

ŝss(t) = HHH+xxx(t) (7)

gives the least-squares solution forsss(t), where+ signifies the
“Moore-Penrose pseudo-inverse" of matrices [5] of the least-
squares type, expressed as follows:

HHH+ def
= (HHHTHHH)−1HHHT (8)

So, the separation matrix in this case is given as

WWWG = HHH+ = (HHHTHHH)−1HHHT (9)

based on conceptual pseudo-inversion of the mixing process.

Needless to say,

HHH+ = HHH−1 in case m= n and | HHH |≠ 0. (10)

(II) In case HHH is not measurable

In caseHHH is not measurable, it is impossible to obtainWWW from
HHH. So, some constraints are required in order to determineWWW.
To estimateWWW andsss(t) without knowingHHH is called “Blind
Source Separation (BSS)".

(a) Basic Requirements on WWW for BSS

As mentioned above, introduced in ICA for BSS is indepen-
dence among source signals. Independence among source sig-
nals requires uncorrelatedness among them, or diagonality of
the covariance matrix of̂sss(t) as a necessary condition. Then,

CCCŝ
def
= E[ŝss(t)ŝss(t)T]

= diag[σ2
1 ,σ

2
2 , · · · ,σ2

n ]
def
= ΣΣΣ,

(11)

whereσ2
j corresponds to the power of source Sj .

Equations (6) and (11) leads

CCCŝ =CCCWx
def
= E[WWW xxx(t) [WWW xxx(t)]T]

=WWW E[xxx(t) xxx(t)T]WWWT

=WWW CCCxWWWT = ΣΣΣ

(12)

The equation noted above tells that the separation matrixWWW is
required to be ann×m matrix which diagonalize the covari-
ance matrixCCCx of them-dimensional observation vectorxxx(t).

Although the size ofCCCx is m×m, the size of the diagonal ma-
trix ΣΣΣ is n(≤ m)× n, as the size ofWWW is n×m, and onlyn,
out of m, eigenvalues are supposed to be significantly large
and the others are presumed to be small, since the rank of the
covariance matrixCCCx is thought to ben under an ideal condi-
tion. Then, in case the number of sources is known asn, diag-
onalization should be carried out so as to obtain the largestn
eigenvalues as the diagonal elements in order to obtain source
signals.

So, a “possible" separation matrixWWW of sizen×m is required
to be a matrixWWWd consisting ofn row vectors corresponding
to the largestn eigenvalues of the covariance matrixCCCx as fol-
lows:

WWWd = ΦΦΦT (13)

where
ΦΦΦTCCCxΦΦΦ = ΣΣΣ (14)

in which ΣΣΣ denotes a diagonal matrix having largestn eigen-
values ofCCCx on the diagonal, andΦΦΦ is anm×n matrix consist-
ing of the correspondingn eigenvectors of sizem. Although
WWWd fulfills the requirement for diagonalizing the covariance
matrix, or producing uncorrelated signals as separated source
signals, it does not necessarily yield statistical independence.
Thus,WWWd is not the separation matrix yet.

(b) On Mutual Amplitude among ŝj (t)’s

As expressed in Eq.(1), BSS can be regarded as decomposi-
tion of xxx(t) into a product of matrixHHH and vectorsss(t), there
arises ambiguity of amplitude assignment betweenHHH andsss(t),
because the productHHH sss(t) can be rewritten as

HHH sss(t) = HHH AAA−1 AAA sss(t) (15)

where
AAA

def
= diag[a1,a2, · · · ,an] (16)

is ann×n diagonal “amplitude matrix" havingn non-zero val-
ues as its diagonal elements and zeros in all other places.
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Considering the possible structure of the productHHHsss(t) as de-
scribed above, we can understand thatxxx(t) in Eq.(1) can be de-
composed into any combination of product between a matrix
HHHAAA−1 and a vectorAAAsss(t) with an arbitrary amplitude matrix
AAA, but not the fixed form of the productHHHsss(t). This is called
the “Amplitude Ambiguity" or “Scaling Problem" of ICA.

However the Amplitude Ambiguity is not serious in BSS for
instantaneous mixture, as the amplitude of each separated sig-
nals is thought to be not so important once the waveform of
each target source is obtained.

So, it is feasible to estimate a matrix that whiten or spherize
CCCx assuming that actual solution isAAAsss(t) including arbitrary
amplitude matrixAAA that shares amplitude betweenHHHAAA−1 and
AAAsss(t). Under this model,CCCs, the covariance matrix of source
signal vectorsss(t), can be assumed to be a unit matrix of sizen.

CCCs = E[sss(t) sss(t)T] = IIIn (17)

(c) Whitening or Sphering

We presume that separation matrixWWW should be able to whiten
CCCx, or transformCCCx into a unit matrix as

ΣΣΣ− 1
2 ΦΦΦTCCCxΦΦΦΣΣΣ− 1

2 = IIIn, (18)

whereIIIn denotes the unit matrix of sizen, and

WWWw = ΣΣΣ− 1
2 ΦΦΦT (19)

is thought to express a candidate for the separation matrixWWW
under condition of uncorrelatedness among signals inŝss(t).

WWWw is only a possible example of matrices that transformCCCx
into a unit matrix, or make ˆsj (t)’s be mutually uncorrelated and
normalized to have unit variances.

(d) Ambiguities

Multiplying any ortho-normal matrix from the left side does
not affect the spheredness of the covariance matrix. So, the
separation matrixWWW should contain an ortho-normal matrix
representing arbitrariness of axis rotation in then-dimensional
source space.

Considering the ambiguity in amplitude, the separation matrix
WWW should contain a diagonal matrix representing arbitrariness
of sharing amplitudes between source sides and path sides.

As ICA tries to just divide a set of received signals into source
signals assuming independence among sources, it cannot iden-
tify individual sources. That means the separation is made with-
out regard to source ID. This requires the separation matrixWWW
to contain a matrix that has a single one in each row and col-
umn, and zeros at all other positions, representing the permu-
tation among sources.

So, the separation matrix by ICA is to be expressed as follows:

WWWICA = PPPAAARRRWWWw = PPPAAARRRΣΣΣ− 1
2 ΦΦΦT. (20)

whereRRR, AAA andPPP are matrices for representing ambiguities in
axis rotation, amplitude sharing and labeling source ID’s, re-
spectively. ThoughRRRhas no special name other than an “ortho-
normal matrix for Axis Rotation",AAA is called “Amplitude Ma-
trix" or “Scaling Matrix", whilePPP is called “Permutation Ma-
trix".

Each element in the joint indeterminacyPPPAAARRR is thought to be
determined as specific one by the measure, such as kurtosis,

negentropy or mutual information, employed to express the de-
gree of independency among ˆsj (t)’s and the algorithm adopted
to maximize the measure together with the initial values for
iterative procedures emoloyed.

In case of convolutive mixture

Sound fields are usually produced in environments enclosed by
reflective surfaces, or at least environments that contain some
items like floors, walls, furniture or other objects with sound
reflecting surfaces. In such sound fields, received sounds in-
evitably consist of reflective waves and diffractive waves hav-
ing longer path lengths besides the shortest direct wave. So,
sound received by a microphone is actually a sum of sounds
including reflected ones that can be expressed as a sum of con-
volutions of source signals and the impulse responces from
sources to the microphone. That leads Eq.(2), or

xxx(t) = hhh(t) ∗⃝ sss(t), (21)

where ∗⃝ represents matrix convolution [4]. The separation or
deconvolution is required to be expressed as

ŝss(t) = www(t) ∗⃝ xxx(t). (22)

Like the instantaneous cases, situation to obtainwww(t) is divided
into two cases: one wherehhh(t) is measurable, and the other
where it is not measurable.

(I) In case hhh(t) is measurable

In casehhh(t) is measurable,www(t) is conceptually required to be
the convolutive inverse ofhhh(t).

Taking Fourier transform of Eq. (21), we have

XXX( jω) = HHH( jω) SSS( jω), (23)

where
Xi( jω) = F [xi(t)] for i = 1,2, · · · ,m (24)

Sj ( jω) = F [sj (t)] for j = 1,2, · · · ,n (25)

Hi j ( jω) = F [hi j (t)] (26)

with F representing Fourier transform. As the least-squares
solution forSSS( jω) is obtained as

ŜSS( jω) =WWWG( jω)XXX( jω)

= HHH+( jω) XXX( jω), (27)

HHH+( jω) should be determined so as to satisfy the following
relation

HHH+( jω) HHH( jω) = IIIn (28)

As its time-domain expression, we have

hhh+⃝(t) ∗⃝ hhh(t) = δδδ (n)(t), (29)

wherehhh+⃝(t), defined as “Generalized Convolutive Inverse of
hhh(t)", is a matrix having element-wise Fourier inverse trans-
form of HHH+( jω).

Element-wise description yields

m

∑
k=1

h+⃝
ik (t)∗hk j(t) = { δ (t) for i = j(≤ n)

0 otherwise.
(30)

Employing h+⃝
ji (t), the least-squares estimate forsj (t) is ob-

tained as

ŝj (t) =
m

∑
i=1

h+⃝
ji (t)∗xi(t), (31)

We have a convolutive matrix expression as

ŝss(t) = hhh+⃝(t) ∗⃝ xxx(t), (32)
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Comparing Eqs.(22) and (32), we have the time-domain least-
squares separation matrix as the “generalized convolutive in-
verse matrix" as follows:

wwwG(t) = hhh+⃝(t). (33)

From Eq.(27), we have a frequency-domain expression of the
least-squares separation matrix for frequencyω as

WWWG( jω) = HHH+( jω). (34)

The equation above can be obtained also by taking element-
wise Fourier transform of Eq.(33).

(II) In case hhh(t) is not measurable

Frequency-domain ICA is most frequently used for blind sep-
aration of mixed convolved signals. The frequency-domain ex-
pression of receiving sounds fromn sources bymmicrophones
is formulated as Eq.(23).

Let’s assume that separation by ICA in the frequency domain
based on independence among source signals is expressed as
follows using separation matrixWWWICA( jω)

ŜSS( jω) =WWWICA( jω) XXX( jω). (35)

As the separation matrixWWWICA( jω) is obtained for each fre-
quncy bin so as to maximize independence amongŜj ( jω)’s of
the frequency bin, the basic framework is the same as the case
of unknownHHH in the instantaneous mixture. So, ambiguities in
both amplitude and permutation, or order among elements in
ŜSS( jω), arise also in this case. Sinceŝss(t), the estimate for in-
dividual source waves, is obtained as element-wise Fourier in-
verse transform of̂SSS( jω), the ambiguities cause serious prob-
lems in this case if the ambiguities are not removed.

This difficulty, however, is not the subject of this paper, so we
assume that these ambiguities are formulated by introducing a
permutation matrixPPP, an amplitude matrixAAA and an arbitrary
ortho-normal matrixRRR into WWWICA( jω).

Like the instantaneous case, we have the frequency-domain ex-
presseion ofWWWICA( jω) in Eq.(35) as

WWWICA( jω) = PPP( jω)AAA( jω)RRR( jω)ΣΣΣ− 1
2 ( jω)ΦΦΦH( jω). (36)

Taking Fourier inverse transform of both sides of the equation
above, we have a time-domain expression as follows:

wwwICA(t) = ppp(t) ∗⃝ aaa(t) ∗⃝ rrr(t) ∗⃝σσσ− 1
2 (t) ∗⃝ φφφT(t), (37)

whereσσσ(t) andφφφ(t) are matrices of sizen×n having element-
wise Fourier inverse transforms ofΣΣΣ( jω) andΦΦΦ( jω), respec-
tively, andppp(t),aaa(t) andrrr(t) are element-wise Fourier inverse
transforms ofPPP( jω), AAA( jω) and RRR( jω), respectively, while
∗⃝ denotes matrix convolution.

RELATION BETWEEN THE SEPARATION MATRIX
BY ICA AND THE PSEUDO-INVERSE OF THE
MIXING MATRIX

Assuming that matrices for representing appropriate amplitude,
permutation and rotation of the orthogonal axes asAAA,PPP andRRR,
respectively, we can admit that the orthogonal basis in ICA and
that in least-squares estimation are common. So, we will cal-
culate the basis for in least-squares estimation to equate it to
that in ICA.

In case of instantaneous mixture

(I) Singular Value Decomposition of HHH

Applying the singular value decomposition (SVD) toHHH, we
have

HHH =UUUΓΓΓVVVT (38)

whereUUU andVVV arem×m andn×n orthogonal matrices con-
sisting of left singular vectors and right singular vectors, re-
spectively, andΓΓΓ is, in an ideal case, anm× n matrix of the
form

ΓΓΓ =

[
ΓΓΓn
000

]
(39)

where
ΓΓΓn = diag[γ1, ...,γn], (40)

whereγ j ’s are singular values ofHHH, assuming that the rank of
HHH is n without losing generality. So we can assume thatHHH has
n singular valuesγ1, ...,γn with γ1 > γ2 >,...,> γn > 0.

(II) Calculating the covariance matrix CCCx

From Eqs.(1), (15), (5) and (38), the covariance matrix ofxxx(t)
is obtained as

CCCx = E[xxx(t) {xxx(t)}T]
= E[{HHH sss(t)} {HHH sss(t)}T]
= E[{HHHA−1AAAsss(t)} {HHHA−1AAA sss(t)}T]

= HHHA−1E[{AAA sss(t)} {AAA sss(t)}T] [AAA−1]THHHT

= HHHAAA−1AAAE[sss(t) sss(t)T]AAATAAA−1T
HHHT

= HHHIIInCCCs IIInHHHT

= HHHCCCsHHHT

= HHHIIIn HHHT

= HHHHHHT

=UUUΓΓΓVVVT[UUUΓΓΓVVVT]T

=UUUΓΓΓVVVTVVVΓΓΓUUUT

=UUUΓΓΓ2UUUT

=UUU diag[γ2
1 , ...,γ

2
n ,0, ...,0]UUU

T.

(41)

By Eq.(41), UUU can be interpreted as the diagonalization ma-
trix of CCCx. Thus, the firstn columns ofUUU form ΦΦΦ defined by
Eq.(14).

Now, we can decomposeUUU as

UUU =
[
UUUp |UUU r,

]
(42)

whereUUUp is equivalent toΦΦΦ andUUU r is a matrix consisting of
the lastm−n columns ofUUU .

(III) Expressing ŝss(t)

The set of the separated signalsŝss(t) is expressed as follows
using the singular vector matrixVVV, its corresponding singular
value matrixΓΓΓ andΦΦΦ, that diagonalizes the covariance matrix
CCCx.

ŝss(t) = HHH+xxx(t)
= (HHHTHHH)−1HHHTxxx(t)
= [(UUUΓΓΓVVVT)TUUUΓΓΓVVVT]−1(UUUΓΓΓVVVT)Txxx(t)
= [VVVΓΓΓUUUTUUUΓΓΓVVVT]−1VVVΓΓΓTUUUTxxx(t)
= [VVVΓΓΓ diag[1, · · · ,1︸ ︷︷ ︸

n

,0, · · · ,0︸ ︷︷ ︸
m−n

] ΓΓΓVVVT]−1VVVΓΓΓTUUUTxxx(t)

= VVVΓΓΓ−2
n ΓΓΓTUUUTxxx(t)

= VVV
[

ΓΓΓ−1
n 000

][UUUT
p

UUUT
r

]
xxx(t),

= VVVΓΓΓ−1
n UUUT

pxxx(t)

= VVVΓΓΓ−1
n ΦΦΦTxxx(t).
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(IV) Relation between WWWICA and WWWG by equalizing ΦΦΦ

Comparing Eq.(43) and Eq.(7) under Eq.(9), we can presume
VVVΓΓΓ−1

n ΦΦΦT to beWWW in Eq.(6). So,

WWWG =VVVΓΓΓn
−1ΦΦΦT. (43)

SubstitutingΦΦΦT of Eq.(43) into Eq.(20), we have

WWWICA = PPPAAARRRΣΣΣ− 1
2 ΓΓΓnVVV

−1WWWG (44)

which gives the relation betweenWWWICA , the separation matrix
in ICA, andWWWG, the pseudo-inverse of the mixing matrix, in
instantaneous mixture case.

In case of convolutive mixture

Comparing Eq.(27) and Eq.(35) under Eq.(36), the frequency-
domain relation betweenWWWICA( jω), the separation matrix by
ICA, andWWWG( jω), the matrix that gives the least-squares so-
lution for convolutive case is obtained as

WWWICA( jω)

= PPP( jω)AAA( jω)RRR( jω)ΣΣΣ− 1
2 ( jω)ΓΓΓn( jω)VVV( jω)−1WWWG( jω).

(45)

The time-domain relation betweenwwwICA(t) andwwwG(t) is for-
mally obtained by taking the Fourier inverse transform of Eq.(45)
introducing inverse Fourier transform of each term as follows:

wwwICA(t)

= ppp(t) ∗⃝ aaa(t) ∗⃝ rrr(t) ∗⃝ σσσ− 1
2 (t) ∗⃝γγγn(t) ∗⃝ vvv(t)−1 ∗⃝ wwwG(t),

(46)
wherewwwG(t) is identical tohhh+⃝(t), the convolutive generalized
inverse [4] of hhh(t), ppp(t),aaa(t), rrr(t),σσσ(t) andγγγn(t) are element-
wise Fourier inverse transforms ofPPP( jω), AAA( jω), RRR( jω),
ΣΣΣ( jω), ΓΓΓn( jω) andVVV( jω), respectively.

As hhh(t) is not measurable in blind separation, we cannot calcu-
lateγγγn(t), vvv(t)−1 nor hhh+⃝(t), so the equation noted above ex-
presses only conceptual relation betweenwwwICA(t) andwwwG(t),
but not indicating any procedure to obtainwwwICA(t) from wwwG(t).

CONCLUSIONS

A conceptual expression for the separation matrix in ICA is
shown for both instantaneous case and convolutive case. Pre-
sented as a by-product is a relation between the separation ma-
trix in ICA for blind separation and the pseudo-inverse of the
mixing matrix under condition of transfer function being mea-
surable for both instantaneous mixture and convolutive mix-
ture. Though validity of the results is not strictly verified nor
confirmed by any means, the obtained result looks reasonable.
Strict mathematical verification or confirmation by simulation
is desirable in the future.
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