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ABSTRACT

Dominant Mode Rejection (DMR) adaptive beamforming replaces the covariance matrix for the Minimum Variance
Distortionless Response (MVDR) beamformer with a modified sample covariance matrix (SCM). DMR modifies the
SCM by first segmenting the eigenvalues into the signal (large eigenvalues) and noise (small eigenvalues) subspaces. The
modified SCM uses the large signal eigenvalues but replaces the small noise eigenvalues with the average of these noise
eigenvalues. The performance of the DMR beamformer in practical scenarios depends on the quality of the estimates of
the rank of the signal subspace, as well as the quality of the estimated signal eigenvalues and associated eigenvectors.
Therefore, an important challenge in practical applications of DMR is correctly estimating the rank of the signal subspace.
Nadakuditi and Edelman recently developed an extension of the Akaike Information Criteria (AIC) for estimating the
number of high dimensional signals from a relatively small number of observations exploiting results from infinite
random matrix theory. The accuracy of the new Nadakuditi & Edelman AIC (N/E AIC) in estimating the dominant
subspace rank was compared with the traditional AIC and Minimum Description Length (MDL) techniques. These
simulations examined uniform linear arrays with one signal and varying numbers of array elements, snapshots and
signal-to-noise ratios (SNRs). The N/E AIC performed better than the traditional AIC and MDL approaches in achieving
a higher probability of correct rank estimation at a lower SNR in each case evaluated. Additionally, the N/E AIC performs
well even in snapshot deficient cases where there are fewer snapshots than sensors. Both the standard AIC and MDL fail
in snapshot deficient cases. The N/E AIC performance was also evaluated in simulations including a loud interfering
source (+40 dB) and a relatively quiet source (-10 dB below the noise floor) observed by a uniform linear array with
half-wavelength sampling over a range of array apertures and numbers of snapshots. The observed Signal to Interferer
and Noise Ratio (SINR) for the standard DMR with N/E AIC suffered from a substantial degradation due to mismatch as
the number of array elements grew. When the DMR algorithm was modified to incorporate the Cox/Pitre robust DMR
method as well as the N/E AIC, the SINR closely tracked the performance of the omniscient beamformer with prior
knowledge of the signal subspace rank.

INTRODUCTION

Adaptive beamformers allow for high spatial resolution for
the detection and estimation of underwater acoustic sources.
When the signal and noise statistics are perfectly known, the
minimum variance distortionless response (MVDR) or Capon
beamformer [1] [2, Sec. 6.2] is generally considered to be the
optimal adaptive beamformer. In practice, the covariance matrix
is not available, and must be replaced by a sample covariance
matrix (SCM) estimated from the available array observations.
As an estimate of the true covariance, the SCM almost invari-
ably has some error relative to the true covariance matrix, and
this error or mismatch can cause substantial degradation in the
performance of adaptive beamformers. One proposed approach
to managing this mismatch in the SCM is the dominant mode
rejection (DMR) beamformer [3], [2, Sec. 6.8.3]. The DMR
approach begins by performing an eigen-analysis of the SCM
and separating the eigenvectors into a dominant signal subspace
and a noise subspace based on the magnitude of the associated
eigenvalues. All of the eigenvalues for the noise subspace in
the SCM are replaced by their average value. The modified
SCM is then constructed using the original signal eigenval-
ues and average noise eigenvalue, and this modified SCM is
used in the expressions for the covariance matrix in the MVDR
beamformer. The DMR can be interpreted as a modification
of the MVDR by enforcing a constraint on the structure of the

covariance matrix, specifically that all of the noise subspace di-
mensions have equal power. Like many adaptive beamformers,
the performance of the DMR beamformer has been observed
to depend on the ratio of the number of sensors in the array to
the number of observations, or the sensor to snapshot ratio as
it is often described. This paper explores in depth the factors
that the DMR beamformer depends upon, and how these factors
vary as the ratio of sensors to snapshots varies. In addition,
we demonstrate that a recent result for estimating the number
of large dimensional signals in relatively short time series [4]
performs well in the critical task of estimating the rank of the
signal subspace in DMR.

The rank estimation algorithm mentioned in the previous para-
graph is one of several recent results from a topic variously
known as infinite random matrix theory (IRMT) or stochas-
tic eigen-analysis. Bai and Silverstein [5] provides a compre-
hensive overview of the important results in this area, while
Nadakuditi [6] summarizes many of the key results as they per-
tain to adaptive beamforming and signal processing . IRMT
provides results on the distributions of eigenvalues and eigen-
vectors of random matrices which hold in the limit as the matrix
becomes infinitely large, but the ratio of rows to columns con-
verges to a fixed constant. In array processing, these results
provide asymptotic expressions for the SCM eigenvalues as the
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number of sensors and snapshots both become infinite, but do so
in a manner that the ratio of sensors to snapshots is fixed. These
expressions for the eigenvalue distributions form the basis for
the rank estimator developed by Nadakuditi and Edelman [4].

The remainder of the paper is organized as follows. The next
section presents the DMR beamformer in detail, the techniques
used to make DMR robust to mismatch, and the factors de-
termining the DMR beamformer performance. The following
section describes the simulations used in this study to evalu-
ate DMR performance in the presence of a strong interferer,
then presents the results of those simulations. The final section
discusses the results and summarizes the conclusions of the
study.

DMR ADAPTIVE BEAMFORMER

The DMR adaptive beamformer [3] assumes that an N element
hydrophone array receives a narrowband signal containing D
planewaves that can be represented by a vector of complex
phasors as

p =
D

∑
i=1

bivi +n, (1)

where p is the baseband complex phasors for the observed pres-
sure, bi is the amplitude of the ith planewave with associated
replica vector vi, and n is the spatially white observation noise.
Under this data model, the covariance matrix for the observed
signal is

S =
D

∑
i=1

σ
2
si

vivH
i +σ

2
wI, (2)

where σ2
si

is the power of the ith source, and σ2
w is the noise

power. The DMR beamformer assumes that the eigenvalues of
S can be partitioned into a group of eigenvalues representing
the strong signals to be nulled γ1, . . . ,γD and those due to the
observation noise γD+1, . . . ,γN . Assuming that the eigenvalues
of S are sorted in descending order, this can be written as

S = EΓΓΓEH =
D

∑
n=1

γneneH
n︸ ︷︷ ︸

large eigenvalues

+
N

∑
n=D+1

γneneH
n .︸ ︷︷ ︸

small eigenvalues

(3)

When the covariance matrix S is known, the Minimum Power
Distortionless Response (MPDR) adaptive beamformer pro-
vides an unbiased estimate of the signal from a desired look
direction θm while minimizing the output power of the beam-
former [2, Sec. 6.2]. (Note: The MPDR is slightly different
from the Minimum Variance Distortionless Response (MVDR)
beamformer. The MPDR beamformer uses the covariance ma-
trix for the combined signal and noise input, while the MVDR
beamformer uses only the noise covariance. Some authors do
not bother distinguishing the two. See [2, Sec. 6.2] for a discus-
sion.) The MPDR beamformer weights for a steering vector vm
are

wopt =
(

vH
mS−1vm

)−1
S−1vm (4)

In practice, the true covariance matrix S is frequently not avail-
able, and must be estimated from a set of L observation vectors,
or snapshots, p1, . . . ,pL. The result is a sample covariance ma-
trix (SCM)

Ŝ =
1
L

L

∑
n=1

pnpH
n (5)

=
L

∑
n=1

γ̂nênêH
n , (6)

where γ̂n are the SCM eigenvalues and ên are the associated
SCM eigenvectors.

The DMR beamformer imposes a structural constraint on the
SCM before substituting the SCM for the covariance matrix in
Eq. (4). Specifically, DMR constrains the eigenvalues for the
noise subspace to be constant as in Eq. (2). This constant noise
eigenvalue is estimated by averaging the N−D smallest SCM
eigenvalues

σ̂
2
w =

1
N−D

N

∑
n=D+1

γ̂n. (7)

Replacing γD+1, . . . ,γN with σ̂2
w in Eq. (6) yields the modified

SCM which the DMR beamformer then substitutes for S in
Eq. (4)

S̃ =
Dm

∑
n=1

γ̂nênêH
n +

N

∑
n=D+1

σ̂
2
wênêH

n (8)

The resulting DMR beamformer weights are

wDMR(θm) =
vm−∑

D
i=1 βi(êH

i vm)êi

vH
mvm−∑

D
i=1 βi |̂eH

i vm|2
(9)

βi =
γ̂i− σ̂2

w
γ̂i

, (10)

where θm is the bearing corresponding to the steering vector
vm.

Robust DMR

DMR is known to suffer from mismatch when a desired (weak)
signal is included in the dominant subspace, i.e., when the
signal replica vs has a significant projection onto e1, . . . ,eD
[2, Sec. 6.8.3]. In this case, the array weights in Eq. (9) will
null a significant portion of the signal energy when the beam-
former chooses vs as the steering vector. Several authors have
proposed different techniques to make the DMR beamformer
robust to this mismatch, including a white noise gain constraint,
modifying βi to have an exponential decay in σ̂2

w/γ̂i [7], and
introducing a weighting factor on βi to disable the nulling for
eigenvectors ei which fall too close to the desired look direction
[8]. This study implemented the latter approach proposed by
Cox and Pitre [8], modifying the array weights according to

wDMR(θm) =

vm−
D

∑
i=1

δiβi(êH
i vm)êi

vH
mvm−

D

∑
i=1

δiβi |̂eH
i vm|2

(11)

δi =

{
1 |̂eH

i vm|2 ≤ ν |vH
mvm|2,

0 |̂eH
i vm|2 > ν |vH

mvm|2,
(12)

where ν > 0 is a tuning parameter. This approach effectively
disables the nulling for any eigenvector in the dominant sub-
space which has too large a projection onto the desired steering
vector vm.

DMR Performance Issues

The performance of the DMR adaptive beamformer depends on
several quantities estimated from the SCM. Probably the most
crucial is the estimate of the rank of the dominant subspace D̂.
Given the correct rank D, accurate estimates of the dominant
eigenvalues and their associated eigenvectors are important
for good DMR performance. Also, an accurate estimate of the
average noise power in the noise subspace σ̂2

w is important
for DMR performance. At present, no analytic results exist to
predict or characterize the DMR beamformer’s performance
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as a function the parameters mentioned above, or in terms of
the number of snapshots or the ratio of sensors to snapshots.
The section that follows describes simulations investigating the
relative importance of all of these factors for the case of a weak
signal and a single strong interferer.

SIMULATIONS

This section describes simulations of the performance of the
DMR adaptive beamformer as a function of the number of
sensors and snapshots. The first set of simulations compares
three different algorithms for estimating the rank of the dom-
inant subspace. The second set characterizes the DMR beam-
former’s ability to null a strong interferer using histograms of
the beampattern in the interferer direction. The third set of sim-
ulations focuses on the overall performance, as defined by the
signal-to-interference-and-noise ratio (SINR). The SINR results
demonstrate the need for modifications of the standard DMR
beamformer to control mismatch and illustrate the performance
of the Cox & Pitre approach to controlling mismatch.

Subspace Rank Estimates

DMR beamforming requires knowledge of the dimension D
of the dominant subspace. Standard estimators for subspace
dimension include the Akaike Information Criterion (AIC) and
the Minimum Description Length (MDL) approaches described
by Wax and Kailath [9]. Both criteria include the log likelihood
of the observed data, which reduces to a statistic that is the ratio
of the geometric mean to the arithmetic mean for the smallest
N−d eigenvalues of the SCM:

td =
∏

N
i=d+1 γ̂

1
(N−d)

i
1

N−d ∑
N
i=d+1 γ̂i

(13)

The AIC & MDL estimators are then defined as:

D̂AIC = arg min
d

{−2(N−d)L log(td)+2d(2N−d)} (14)

D̂MDL = arg min
d

{
−(N−d)L log(td)+

d(2N−d)
2

log(L)
}

(15)

where 0≤ d < N.

Nadakuditi and Edelman developed a new rank estimator using
results from IRMT [4]. IRMT predicts the distribution of the
sample covariance matrix eigenvalues in the noise-only case
(D = 0). According to theory the distribution depends on the
ratio of sensors (N) to snapshots (L): c = N/L. The prediction is
valid in the limit as N,L−→∞ with c fixed. Using the predicted
eigenvalue statistics in conjunction with the Akaike Information
Criterion (AIC), Nadakuditi and Edelman (N/E) proposed the
following estimator

D̂N/E = arg min
d

{
t2
d

2c2 +2(d +1)

}
(16)

td = N

[
(N−d)

∑
N
i=d+1 γ̂2

i(
∑

N
i=d+1 γ̂i

)2 − (1+ c)

]
, (17)

where 0≤ d < min(N,L).

Figure 1 compares the performance of the N/E AIC estimator
with the standard AIC and MDL methods. The simulation envi-
ronment contains a single planewave signal at broadside plus
spatially white noise. The plots show the probability that the
rank estimate is correct (i.e., equal to one) as a function of the
output SNR of the conventional beamformer. Probabilities were
determined using 1000 Monte Carlo trials. Results are shown

for three arrays of different lengths and three values of c for
each array. The plots indicate that performance depends primar-
ily on the ratio of sensors to snapshots (c). For the snapshot-rich
cases (c = 0.1), the N/E AIC estimator achieves good results
for output SNR’s of 0 dB or above. As the figures show, the N/E
AIC estimator performs as well as AIC and better than MDL for
these snapshot-rich cases. As the number of snapshots decreases
and c gets larger, the N/E AIC estimator requires higher SNR
to achieve the same performance it did for smaller values of c.
When the ratio of sensors to snapshots is 10 (c = 10), the N/E
AIC estimator works well for the two large arrays (N = 50,100),
but fails for the 20-sensor array. Thus the N/E rank estimator is
well-suited to large arrays operating in non-stationary environ-
ments. In contrast, the AIC and MDL methods fail completely
for all array sizes for this snapshot deficient case.

Beampattern Histograms

The goal of the DMR beamformer is to null strong interferers
in order to facilitate the detection and measurement of weak
sources. This section investigates how the null depth of a DMR
beamformer varies as a function of snapshots for a 50-element
array with half-wavelength spacing. The coordinate system
for the simulation measures the arrival angle θ from the posi-
tive endfire direction, and source directions are defined by the
directional cosine u = cos(θ). The simulation environment con-
tains spatially white background noise, a quiet source located
at broadside (u = 0), and a loud interferer located at u = 0.1.
The source and interferer have SNR’s of -10 dB and +40 dB,
respectively, relative to the white noise background. For the
beampattern results described below, the DMR beamformers
assume the rank of the interference subspace (D) to be equal
to 1. Figure 2 compares the beampatterns for the conventional
beamformer (uniform weighting), the DMR beamformer, and
the optimal MPDR beamformer. The DMR and MPDR beam-
formers were designed with the true spatial covariance matrix.
As Figure 2 indicates, the interferer lies at the peak of the sec-
ond sidelobe of the conventional beamformer. The adaptive
beamformers place a null at the location of the loud interferer.
The null depth for the ideal MPDR beamformer is -132 dB
and the null depth for the ideal DMR beamformer is -120 dB.
These nulls are sufficiently deep to eliminate the influence of the
strong interferer on the beamformed output in the look direction.

Ideally the DMR beamformer can effectively null out the strong
interferer. In practice the depth of the null achievable by the
DMR approach depends on how many snapshots are available
to estimate the covariance matrix. Figure 3 shows histograms
of the beampattern at the location of the +40 dB interferer for
different ratios of sensors to snapshots. The histograms were
computed using the results of 300 Monte Carlo trials. Figure 3
illustrates how the null deepens as c decreases, meaning that the
DMR processor does a better job of blocking the loud interferer
when it has more snapshots to estimate the spatial statistics.
With c = 0.1 the average null depth is -78 dB. While the DMR
beamformer designed using 10N snapshots substantially re-
duces the impact of the loud interferer, note that the null depth
has not reached the optimal value of -120 dB achievable when
the covariance matrix is known a priori.

SINR Performance

SINR is a useful metric for characterizing the overall perfor-
mance of adaptive beamforming algorithms. Given a particular
realization ŵDMR of the adaptive weight vector, the SINR at
the output of the beamformer is defined as

SINR =
σ2

s ŵH
DMRvsvH

s ŵDMR

ŵH
DMRSi+nŵDMR

, (18)
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Figure 1: Comparison of the probability of subspace rank de-
tection for the three estimators as a function of output SNR.
Colors represent the ratio of sensors per snapshot, and line types
represent number of sensors.
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where Si+n is the interference plus noise covariance matrix.
The SINR depends on the adaptive weight vector (a random
quantity), thus it is a random variable whose statistics can be
quantified. For the results presented below the known inter-
ference plus noise covariance matrix Si+n for the simulation
was used in the SINR calculation since it produces smoother
results [2].

Figure 4 characterizes the performance of the DMR beamformer
using the average SINR. The plot shows how SINR varies as a
function of the number of snapshots (L). Each data point repre-
sents 300 Monte Carlo trials. As L increases the performance of
the DMR beamformer gradually approaches that of the optimal
MPDR beamformer designed using clairvoyant statistics.
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Figure 4: Average SINR as a function of the number of snap-
shots for simulation example with 50-element array. Plot shows
how the SINR of the DMR beamformer approaches the SINR
achievable with the ideal MPDR beamformer designed with a
known covariance matrix.

The normalized SINR metric η defined below indicates how
close the DMR beamformer comes to the optimal MPDR result:

η =
SINRDMR

SINRMPDR−ideal
. (19)

Figure 5 shows the normalized SINR for the standard DMR
beamformer as a function of array length. The solid lines show
the performance for different values of c when the rank of
the dominant subspace is assumed equal to one. Excluding
a transient for low numbers of sensors, the performance is
flat, meaning that η is essentially determined by the ratio c =
N/L and is not dependent on N. The dashed lines show the
corresponding results for the case when the rank of the dominant
subspace is estimated from the snapshot data using the N/E
AIC algorithm. In contrast to the known-rank case, these results
show a substantial degradation in performance as the number
of sensors increases. As N increases, the N/E AIC algorithm is
more likely to estimate a rank of two for the dominant subspace.
The second eigenvector in the subspace will be very close to the
replica of the desired signal (though not exactly the same due
to mismatch). The DMR processor has a well-known problem
when the signal is included in the dominant subspace, since the
processor attempts to null the modes in this subspace.

Obviously this type of performance degradation is undesirable.
Mismatch control techniques, such as the one proposed by
Cox/Pitre, can be used to mitigate this problem. Figure 6 shows
that the Cox/Pitre robust method with ν = 0.5 in Eq. (12) yields
the same normalized SINR as for the known-rank case.

DISCUSSION AND CONCLUSIONS

This paper presented simulations studying the performance of
the dominant mode rejection (DMR) adaptive beamformer for a
uniform linear array observing narrowband signals that contain
a weak source signal in the presence of a strong interferer and
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Figure 5: Comparison of DMR output SINR normalized by the
ideal MPDR SINR as a function of the number of array sen-
sors N. The plot compares the performance of DMR assuming
D = 1 (solid lines) with DMR estimating dominant subspace
rank using the N/E AIC (circle/dashed lines). Colors represent
different ratios of sensors per snapshot.
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Figure 6: Comparison of DMR output SINR normalized by the
ideal MPDR SINR as a function of the number of array sen-
sors N. The plot compares the performance of DMR assuming
D = 1 (solid lines) with DMR estimating dominant subspace
rank using the N/E AIC and Cox/Pitre mismatch control [8]
(circle/dashed lines). Colors represent different ratios of sensors
per snapshot.

ICA 2010 5



23–27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

white noise. The simulations demonstrate that the rank esti-
mator in Nadakuditi and Edelman [4] performs better than the
classic MDL or AIC estimators for the signal subspace rank
proposed by Wax and Kailath [9], especially for scenarios with
fewer snapshots per sensor. The simulations also demonstrate
that the depth of the null for a strong interferer also depends on
this ratio of sensors to snapshots, and that even for a snapshot-
rich scenario the null depth falls well short of the theoretical
null depth for an omniscient processor that knows the covari-
ance matrix. The simulations results also demonstrated that the
sensitivity of the N/E AIC estimator to weak signals means that
the DMR implementation for large arrays requires adequate
mismatch control to prevent performance degradation. As the
array grows, the N/E AIC is actually too successful at detecting
the presence of the weak signal and begins including an eigen-
vector in the dominant subspace that is too close to the steering
vector for the weak signal. Using the N/E AIC puts a higher
premium on some form of mismatch control such as Cox and
Pitre [8] to prevent this undesired nulling of the desired signal.
Incorporating this mismatch control allowed the N/E AIC DMR
to achieve comparable SINR performance to a DMR algorithm
told a priori that signal subspace rank was D = 1.

All of the simulations found that the two major parameters
determining DMR performance were the input SNR and the
ratio of sensors to snapshots (c). This latter factor is consistent
with infinite random matrix theory results that the density of
the eigenvalues of sample covariance matrices are parametrized
by this same ratio of sensors to snapshots. In light of this, the
success of the N/E AIC rank estimator is not surprising, since
it is the only of the three signal subspace rank estimators that
incorporates c into its estimator statistics.
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