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ABSTRACT

The Big Brown Bat (Eptesicus fuscus) uses Frequencgiuldbed (FM) echolocation calls to accurately eatan
range and resolve closely spaced objects. RecelkthydFontaine and Peremans have shown that a spgm®sen-
tation model for bat echolocation calls facilitatistinguishing objects spaced as closely as 2ayseconds in time-
delay and was also robust to noise over a reatiatige of signal to noise ratios (SNR). Fontaing Raremans used
the random FIR filter Compressive Sensing (CS) teclenis their input method. Their study demonstritatithe
undersampled data provided by the FIR filter ousiilitcontains sufficient information to accuratesconstruct and
resolve sparse target signatures using L1 minimizaechniques from CS. Their work raises the inirig question
as to whether under-sampled sensing approachedustd more like the bat's auditory system stilitein the in-
formation necessary for the hyper-resolution obeim behavioral tests. This research investigdesbility to es-
timate sparse echo signatures using a downsanifiEtydnk for the sensing basis that is closer bawauditory sys-
tem than randomized FIR filters. The returning eshase sensed using a discrete-time constant-battoiftr
bank followed by downsampling that loosely resemilbke filtering and smoothing of the bat's cochldaminimiza-
tion then reconstructs the sparse target retumn flos under-sampled signal. Initial simulationsnd@strate that this
filterbank CS model reconstructs sparse sonar wfgigh a high degree of accuracy while substagtiatidersam-
pling the filter outputs. In addition, the overdeeited filterbank CS approach has better targetutsnlthan the
Matched Filter for SNR values ranging from 5-45 di2l dnas better detection performance than the laveiger
method. This is all accomplished while undersamipthe return echo signal by as much as a facteixofThe de-
terministic sensing basis has the distinct advantager the random sensing basis in the respecthbatirculant
structure of the filterbank sensing matrix can lgdse implemented in electric circuits.

obtained by using an inverse filter (IF). The fregcy re-
sponse of the IF is generated by taking the recigrof the
frequency spectrum of the transmit waveform. Covingl the
return signal with the impulse response of the @Butts in

I. INTRODUCTION

The Big Brown Bat (Eptesicus fuscus) operates in ceripl

acoustic environments. Using wideband Frequency Wéted
(FM) echolocation calls in the 20-100 kHz band. sBefn
detect target reflections or glints as closely spaas 2us in
the midst of noise [6]. The task that the bat'ditury system
performs very well is the same challenge poseditnam made
active sonar systems. Active sonar transmits scamdl at-
tempts to detect and estimate the range of thenéiesb ob-
jects. In addition, active sonar systems musthbe @ resolve
closely spaced targets for complicated multi-targeviron-
ments.

The Matched Filter (MF) or Auto-Correlation Filteptamizes
the detection and delay estimation for a singlevkmsignal in
additive white noise. However, it does not optienilae resolu-
tion of closely spaced targets. The resolutiothefMF is de-
termined by the mainlobe of the Auto-Correlationdiion of
the transmit waveform. For bat FM transmit wavefey the
mainlobe width is approximately 10-1:2.

Target resolution can be optimized by utilizingimer time
invariant filter that minimizes the width of thegleof the tar-
get return that results from the convolution of tin@nsmit
waveform with the impulse response of the filtdhis can be
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scaled and delayed impulse functions that corresgonthe

amplitude and time delay of the target returnsis Tésults in a
significant improvement in resolution of closelyaspd targets
for high SNR. However, as the SNR decreases, traarifli-

fies the noise out of the frequency band of thasimst wave-
form and the detection performance is significantgraded.
While tapering the out of frequency band resporfsthe IF

will improve the detection capabilities, its detent perform-

ance still will not rival that of the matched filtand the taper-
ing degrades resolution performance.

Recent work by Fontaine and Peremans [3] has prdpase
sparse representation of bat biosonar signals.s Tethod
builds from the assumption that the echo returnaigan be
sparsely represented as a convolution of the triangawveform
and a small number of impulse functions that mdkdeltarget
image return. The return signal is then recontdicia €,
minimization methods. Simulations showed that tpsirse
representation of bat echolocation calls can resdérgets
spaced as closely aqi2 in range separation with performance
similar to the inverse filter while also showingsagnificant
improvement in detection capability for a range reélistic
SNR’s. In addition, a compressive sensing technigag ap-

1



23-27 August 2010, Sydney, Australia

plied to the sparse representation approach andalies to
reconstruct the biosonar signals using fewer sasntian the
Nyquist rate requires while largely preserving tiesolution
and detection performance. Their sampling mettamiowas
based off of work done by Baraniuk and Steeghs &t was
shown to yield impressive target return reconsioactesults.
While no claim was made in regard to the biologausibil-
ity of this method, [3] raises the intriguing questof whether
a sensing methodology similar to the mammaliantandisys-
tem contains the necessary information to achibeerésolu-
tion and detection performance reported in obsEmwat stud-
ies.

This paper builds from Fontaine and Peremans’ veortt ex-
ploits the sparsity of Biosonar signals using a isgnsethod-
ology that more closely resembles the physiologshef mam-
malian auditory system. The sensing method comprid a
filterbank of finite impulse response (FIR) filtefwllowed by
decimation. The filterbank spans the frequencydbah the
bat’s echolocation call. The filterbank decimatfaotor can be
adjusted to sample at the Nyquist rate (maximadgimated)
or to sample below the Nyquist rate (over-decimatetike
Fontaine and Peremans, we make no claims to tHegisal
plausibility of the compressed sensing algorithithe aim of
this research is to demonstrate that the undersahwpltputs of
a deterministic filterbank still contain sufficieimtformation to
reconstruct sparse target impulse responses innaananalo-
gous to that observed in behavioural experimentd Wats.
The simulation results show that this sensing naieable to
resolve closely spaced targets that the MF canmdtcan de-
tect these closely spaced targets with a highesesgcrate than
the IF while also undersampling the target retugna.

IIl. COMPRESSIVE SENSING

CS theory asserts that a signal that is sparsehlgsepted in
some basi® can be acquired from fewer measurements than
generally required, or undersampling. A commonngXe is
that signals containing only a few frequency to(gsarse in
frequency spectrum) can often be accurately acdjuivkile
sampling below the Nyquist rate. Consider an N-ieng
bandlimited discrete-time signal x[n] with no adkkt noise
sampled at a frequencyduch that the Nyquist criterion is met
(i.e. that { is at least twice the highest frequency of x[rffur-
ther, assume that x[n] is sparse in some basisedtor form, x
can be represented in the sparse basis in vectords

x=WQa )

whereY is of dimension N x N. The N x 1 vectercontains S
non-zero coefficients where S is much less thanlghgth of
the signal N. In CS terminology, we say that tharse vector
ais S-sparse or x is S-sparseVin This particular case as-
sumes a noiseless signal. In reality almost egeggal con-
tains some additive noise and the signal is nodostictly S-
sparse. However, the S columnstofepresent the vast major-
ity of the signal energy. In the CS framework thignal is
then said to be compressible.

X=Wa+n 2)
The sparse or compressible signal is then sampleda b

M x N sensing matrixb where M < N to obtain an under-
sampled signal y[n]. In vector form, y can be teritas

y=0 3

Substituting (1) in to (3) yields
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y=0[Wh=0L[h (4)
Where ®=0-¥. Finding the signal’'s sparse coefficient vec-
tora becomes a convex optimization problem. Candes, Rom-
berg, and Tao [4] show th&f norm minimization exactly re-
covers S-sparse signals and closely approximateprassible
signals with high probability. Th& norm minimization prob-
lem can be solved by the linear program known assBar-
suit.

A sufficient condition that allows for sparse signeconstruc-
tion is for the sensing matrix to obey the Restdcsometry
Property (RIP). The RIP states [5]

For each integer S=1,2,... (sparsity), define an istyyncon-
stantd; of the matrix® such that:

(1-4.)]al; <[o ;= (1+ o,)4l; )

holds for all S-sparse vectors.

This theorem states that@f satisfies the RIP, then any subset
of S columns of® are approximately orthogonal [5]. Conse-
quently, no S-sparse vector has a significant amofianergy

in the null space o®, and it should be possible to at least ap-

proximately reconstru@ fromy. A related measure known

as coherence requires that “the rowsbofannot sparsely rep-
resent the columns oF” [9]. The coherence of the sensing
matrix is computed as

u(®,w) =N max

12k, j<N

(o v) ©

wherey; are the columns of andgy are the rows ob.

The coherence measures the largest inner prodtweée the
rows of® and the columns oF. The coherencg can take on
values between 1 antN. If ® and¥ contain common values,
the coherence tends towardd. The columns of the 2 matri-
ces are then said to be mutually coherent. Whemd¥ do
not share common values, the coherence tends teviashd
they are said to be mutually incoherent. A sensiragrix with
low coherence will obey the RIP with high probakilitCandes
and Wakin [5] show that sensing matrices with iBernoulli
or Gaussian random entries with variance 1/N mairaalow
coherence and thus obeys the RIP with high prolabiMost
of the CS literature revolves around utilizing ramdeensing
matrices due to their ability to guarantee recarmsion of
sparse or compressible signals. However, work éydde [9]
has shown that sensing matrices with determinitiactures
can also obey the RIP.

Ill. SPARSE REPRESENTATION AND SENSING
METHOD

The sparse representation exploited in this papsuraes that
the echolocation return signal can be expresse lm®ar su-
perposition of the echoes. The echoes are modatiechpulse
functions with amplitude corresponding to the sgtbnof the

target return. It is also assumed that the phaseearansmit-
ted signal is not altered when reflected. Therretarget im-

age can be modelled as a sum of scaled and tinageatkim-

pulse functions and the return signal x[n] in taem be written
as

«()=3 adt-2r/d+ ) g

x[n] = x(nCI) ®)
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where & represents the amplitude of the echo reflected by
target i with delay 2fc where ris the range of target i,

s(t-2r/c) is the transmit waveform with time delay/@rS is the
number of reflections, w(t) is additive white Gaassnoise,
and c is the velocity of sound in air (~350 m/he amplitude
here is constrained to being positive given thatréflection
coefficient is positive. This is a realistic asqiion for bat
biosonar. Bats are attempting to locate insectso#me solid
objects. The acoustic energy is transferred framedium of
low acoustic impedance (air) to a medium of higbustic
impedance (solid object). This results in a pesitieflection
coefficient.

Given that the target returns are modelled as isgpfulnctions,
the discrete-time return signal x[n] can also bgressed as the
convolution of the transmit waveform with the targepulse
response. Because the target return image in &73uperposi-
tion of impulse functions, it can be considerethécsparse.
The return signal x[n] can then be written as (hgre the

N x N sparse basl¥ is constructed as

s[oT,] 0 0
s[1T] J0T] 0
s[2T] {11 0
: : : ©)
w=|s[(P-)T] (P2 T]
0 s[(P-1)T]
0 0
| 0 0 s[OT,] |

Where T is the discrete-time sampling period, s[n] is dise
crete-time representation of the bat echolocatignas, and P
is the length of s[n]. The sparse basis is es@gnt time
shifted dictionary of the transmit waveform.

The work by Fontaine and Peremans [3] makes useetie
mating random Finite Impulse Response (FIR) filersing
matrix described by Baraniuk and Steeghs [11]. Wik
differs from Fontaine and Peremans approach orfrovis.
First, the sensing matrix is composed of a bantooktant
bandwidth FIR filters. Second, the filter taps modlonger
populated by pseudo random values, but with detestic
coefficients used in traditional FIR filter desigmhe filterbank
comprises of L constant bandwidth FIR filters of utge re-
sponse length \that cover the frequency band of the bat echo-
location call (20-100 kHz) and can be decimateaiynteger
factor D. The sensing matrix carries out the cdutian of the
return waveform with each of the filters as seeRigure 1.

X[n]

y

h[n] ~ 1D =y[n]

y

h[n]——> 1D—>Y,[n|

—— h [ D[]

Figure 1. Filterbank system block diagram.
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Figure 1 implements (3) if we choose
y=[vio] ... YM{1 | (10)
vin=Culd wld-ve[nl] an
x=[{0] {d-AN-1] @

_HO\OE ll l }0'
0 H o o0,
o-=|: H R
i io0jo0
o ]
N - (13

whereO is an L x D matrix of zeros arid, is the L x 1 vector
given by

H, =[h[0]--h [d]] (14)
and
[H], =n[N,- 1] as)

fori=1,...,L and j=1,...,N. The sensing matrix is of size M x N
with M calculated by

(N, +N-1) L
D

(16)

where N, is the length of the filters’ impulse responses the
number of filters, and the integer D is the deciorafactor.
From here the under-sampling factois defined as the ratio of
the number of filters to the decimation factor:

a=b5. (17)

For the case of D = L, the under-sampling factdr &d thus
the size ofd and the sampled signal y isyNP — 1) which is
the length of the return signal after it is comathe filter-
bank impulse response. Whenr~[, the under-sampling fac-
tor is less than 1 and the filterbank has oversdatgd the fil-
tered version of the return signal x[n]. Over-dea&iion results
in aliasing of the discrete-time signal which degsrinforma-
tion contained in x[n].

Applying this to the target image problem resultshe inverse
problem of estimating the target return signal x|sing the
sparse basi¥ and the measurements y. Given the assumption
that the target return signal is spars®jrthis estimation prob-
lem can be solved via convex optimization. Theninimiza-

tion problem can be stated as

mian‘H1 subject toy = ©[a (18)

where @' is the estimate of the sparse vector aisthe return

signal vector. For a noisy target return sigrted,tf; minimiza-
tion problem can be reformulated as follows:

mian'Hl subject td‘y—@[ﬁ‘z <e (19)
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whereg is an adjustable tolerance parameter. This eguati
implies that the sparse solution obtained is aecfitdo the
noisy observations.

IV. SIMULATION RESULTS

As described earlier, the columns ‘#f contain time shifted
version of the original transmit waveform. The @lclcation

call is modelled as a downward sweeping hypertfelitsinu-

soidal signal with a fundamental component sweefioig 50

kHz to 20 kHz and a second harmonic sweeping frotkHz

to 40 kHz in a 1 ms duration. The transmit wavef@(n] is a
loosely modelled version of the types of calls ésditby FM

bats, specifically the big brown bat. The instaetaus fre-
guency and phase of this signal is represented as

f(t)= a% vb) (20)

g (t) =i 2mlog(t +b) (21)

Where i=1, 2 and represents tfe(fuindamental) and" har-
monic of the emitted call. A plot of the transmiveform in
both the time and time-frequency domain is giveFRigure 2.
The amount of noise present in the return signadgéasured by
the SNR given by

SNR dB=10log,, (%J (22)
0

Where E is the energy of the return signal agishhe noise
energy both in units of Joules. In bat echolocasicenarios, a
SNR of 45 dB is considered high, 25 dB is moderatd,5adB
is low.

Bat Echolocation Call

Amplitude

Spectrogram of Bat Echolocation Call

100
“ \
0
0 0.1 02 0.3 04 05 0.6 07 0.8 0.9 1
Time (ms)

Frequency (kHz)

Figure 2. Plot of the bat echolocation call in the time and
time-frequency domain.

In addition to the sparse representation methadsitmulations
also implemented both the MF and IF for comparisois

stated earlier, the MF is the optimum detectioreira but has
a target resolution limited to the main lobe widtfhthe Auto-
Correlation function of the transmit waveform. THe has
significantly better target resolution capabilitiesthe cost of
reduced detection performance.

The simulations implemented the detection systeen se
Figure 3. The system is comprised of 4 main corepts) the
receiver, a magnitude squared block, a peak seleata a
threshold comparator. The return signal x[n] isgea through
either a MF, IF, or the sparse representation vecei The
square of the magnitude of the raw target imaggif{rthen
taken. This is analogous to the full-wave reatifiehich is
used in many human made active sonar receivers.s@hared
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magnitude signal u[n] is next passed through a seddction
algorithm. This algorithm creates v[n] which novaintains
only the peaks of u[n]. This is especially usd@ulthe MF as
the mainlobe of the Auto-Correlation function spaeveral
discrete-time data points and would result in thtedtion sys-
tem indentifying several targets at a time delaerehthere is
only one true target. Lastly, a range of detectimesholdsy
can be applied to test whether a target is present.

X[n] t[n]
—— =  Receiver |

2 | uln]
|

| O

- v[n]
Detection H1 Compare

) -
No Detection HO Threshold

!
y

(Threshold)

Peak Select |«

Figure 3. Block diagram of the detection systersed for all
detection simulations (after Figure 5 of [8]).

It is useful to analyse the signal v[n] that resditbom the peak
detection algorithm. This gives a visual perspectf how

well each receiver is performing. Figure 4 illugtsathe per-
formance of all 3 receivers with the mean (ovetrids) of the

target return signal v[n] with SNR of 25 dB. Thegimal tar-

get response or sparse vector is comprised of hOescwith

time delays of 200, 208, 400, 412, 600, 616, 8@3, 8000,

and 1032 ps. This results in pairs of targets wjithcing 8, 12,
16, 24, and 32 ps. It is important to note heet the sparse
representation implemented a sensing matrix thétndit un-

dersample the return signal (i.e. the number térfl L equals
the decimation factor D).

% i 8HS 1?}15 1§HS 4“5 ,32‘15
E sl

% =S .0 I I | I \
5E | || Discrete-Timg n (samples) | | [
T
5 & osf U 1 M ﬁ

s 2 ‘

g7 L i I "

Inverse
Filter
o
o o
S—
=
— ?» - =
- — > - =

Sparse
Representation
o
o o e
—
== —
e

S

200 400 600 800 1000
Time Delay (us)

Figure 4. Original target impulse response from a returnalign
with 25 dB SNR and the returns v[n] of the MF, IRdahe
sparse representation.

As can be seen by comparing the mean target imhgés the
IF and sparse representation methods successédbnstruct
all targets at their proper location. The MF is lnieao resolve
the targets spaced 8 ps apart in time delay. WhdeMF still
resolves the targets spaced 12 pys and 16 us tgaamplitude
of the targets with 12 ps spacing are well belolf the origi-
nal target amplitudes and the targets with 16 e Is&delobes
from the Auto-Correlation function that add to ceeat false
detection between the two original targets withaanplitude
higher than the original 2 targets. It is impottém point out
that while the IF successfully resolves all targetere are
more spurious spikes in the return than in thesspegpresenta-
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tion. In addition, the sparse representation retranted target
image has more accurate amplitude estimates thanlRh
From this it can be concluded that the sparse septation
appears to have better detection capabilities thanF while

maintaining the same target resolution. To asgesperform-
ance of these detectors more systematically, aerangletec-
tion thresholds can be applied to v[n] to determivteen the
true targets will be detected and when the spunietigns will

be incorrectly determined as a true target.

Receiver Operating Characteristic (ROC) curves ploptiob-
ability of detection versus the probability of falalarms [12]
quantifying the performance of a sonar receiveiguie 5 be-
low illustrates the ROC curves for the 3 receivens SNR
values of 45, 25, 15, and 5 dB respectively for 8G0s of the
return target impulse response shown in the uppeelpof
Figure 4. As with the previous simulation, thersparepresen-
tation did not undersample the return signal befdorming
reconstruction. As expected from the second parigure 4,
the MF rarely detects the two most closely spacakpeat
around 200 us, giving a maximun, Bf about 0.8. As the
thresholds increases, some true targets are réjbgt¢he MF
system. Thus the MF ROC curves exhibit a stair casee at
SNR’s 45, 25, and 15 dB that occur fay Palues of approxi-
mately 0.8, 0.7, 0.6, and 0.5.

The IF and sparse representation have ideal shafp ®@ves
over a wide range of thresholds for 25 and 45 dBRSNhe
probability of false alarm is always zero and thebability of
detection is always unity. This results in an RO@/euwvhich

is on top of the left and top axis of the plot. iSTimplies that
the strongest false detection amplitude is stitdo than the
weakest true target return and thus there are gerahthresh-
oldsy such that all true targets can be detected whi@iging

0 false detections. At 15 dB, the IF no longer hasideal
curve but it still retains solid detection performa with a B

of 0.95 for a B, of 10 The sparse representation curve at 15
dB is significantly sharper than the IF's ROC curvedd?, of
0.95 for a B, of 10°. For 5 dB, the inverse filter's detection
performance is significantly diminished and canyamuster at
best a B~0.85 for a Ry > 0.3. The ROC curve for the sparse
representation at 5 dB SNR maintainsaoP 1.0 for a R, of
approximately 1.2x18 It is clear from these ROC curves that
not only does the sparse representation resolveclibeely
spaced targets where the MF cannot, but also hzexisu de-
tection capabilities compared to the MF and IF.

SNR = 45 dB SNR = 25 dB
1 1
o° 05 o° 05
0 0
0 1 2 3 4 5 0 1 2 3 4 5
Pra x10° Pra x10°
SNR = 15 dB SNR =5 dB
1 1
3 ]
o 05 205, [ MF
IF
CS Method
0 0
0 1 2 3 4 5 0 0.1 0.2 0.3
Pra x10° Pra

Figure 5. ROC curves of all 3 receivers for SNR values of 45,
25,15, and 5 dB. Note the change in thgdXis in the lower
right plot.
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Thus far all experimental results created by tregsprepresen-
tation were implemented without undersampling #tam
signal. To illustrate the performance of this noetlvhen un-
dersampling the return signal, Figures 6-9 show RQ€es

for 500 randomly generated sparse vect@rsvith a SNR of

25 dB with sparsity values of 10, 15, 20, and 25lie MF, IF,
and sparse representation with undersampling ratodsl/1
(not undersampled), Y2, ¥, and 1/6. The targetadah sparse
vector can be spaced as closely as 8 us or awégras 100
ps. The amplitude for each nonzero element ofplaese vec-
tor varies randomly between 0.5 and 1.0. Therefarewing
that the MF can'’t resolve these closely spacecetard is ex-
pected that the IF and sparse representationowithwill out-
perform the matched filter.

Sparsity S = 10
1 , , I ; ;
—
0.95 F ]
0.9 ~
0.85 B
0.8 B
a® 075} 1
0.7 B
a=1
0.65} a=1/2]
a=1/4
osr a=1/6|
0.55 MF ~
IF
05 . . . . |
0 0.05 0.1 0.15 0.2 0.25 0.3

PFA

Figure 6. ROC curves for the MF, IF, and the sparse represen-
tation for undersampling ratiesof 1, ¥, ¥, and 1/6 for 500
trials with randomly generated sparse vectors afsty S=10.

Sparsity S = 15
1c : : : : :
0.95 r_’—_ ]
0.9} B
0.85}
0.8 B
2° 075 B
0.7 B
a=1
0.65 a=1/2|1
=1/4
0.6 =g
a=1/6
0.55 ME
IF
05 ‘ ‘ ‘ ‘ ‘
0 0.05 0.1 0.15 0.2 0.25 0.3

P FA

Figure 7. ROC curves for the MF, IF, and the sparse represen-
tation for undersampling ratiesof 1, %2, ¥4, and 1/6 for 500
trials with randomly generated sparse vectors afsty S=15.
Note the change in both the Raxis.
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Sparsity S = 20
1

0.9F B
0.8 q

0.7 B

0.6 B

o° 05 g

0.4 q
a=1

a=1/2 |
a=1/4
a=1/6 ]

0.3

0.2}

0.1f B

0 I I I I I I I 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 8. ROC curves for the MF, IF, and the sparse represen-
tation for undersampling ratiesof 1, %, ¥4, and 1/6 for 500
trials with randomly generated sparse vectors afsfy S=20.
Note the change in both thefand R axis.

Sparsity S = 25

’r-—

0.9F q

0.8 q

0.7 q

0.6 q

0.4 ,
a=1
a=1/2 |7
a=1/4
0.2 a=1/6| |
— MF

—F

0.3

0.1

0 I I I I I I I I I
0 01 02 03 04 05 06 07 0.8 0.9 1

P

FA

Figure 9. ROC curves for the MF, IF, and the sparse represen-
tation for undersampling ratiesof 1, %, ¥4, and 1/6 for 500

trials with randomly generated sparse vectors afsfy S=25.

Based on Figures 6 and 7, it is clear that for spaestors with
sparsity up to 15, the return signal x[n] can bdarsampled by
as much as ¥ and maintain better detection perfuzentnan
the MF. The IF and the sparse representationrfdetsam-
pling ratios of 1/1 and %2 have a nearly ideal RO@etor all
sparsity values. Using an undersampling valug®fields a
detection performance that is inferior to the Mier¥or S=10,
but it is still maintains acceptable detection perfance. Un-
dersampling at ¥4 and lower does not yield acceptadbtection
probabilities for sparsity 20 and higher.

V. DISCUSSION

The results of the previous section clearly shoat the sparse
representation method has target resolution capebilfar
beyond that of the MF as well as maintaining supatetection
performance to that of the IF or MF for closely cpé target
returns. There are 2 main reasons for this. ,Rinstl; mini-
mization allows for accurate reconstruction of gparse target
return impulse response and thus provides exceiteget re-
turn resolution. Second, the detection performaacgreatly
aided by the nature of the sensing methodologyiliziog a
filterbank of FIR filters spanning only the frequgnicand of
the transmit waveform removes any noise locatedoduhe
frequency band of the transmit waveform. This ltssin a
further improvement of the SNR and thus should mlewan
improvement in B. The IF utilizes taper weights that attenuate
the frequency response out of the frequency bartteofrans-
mit waveform and provides an improvement in detecter-
formance at a cost of reduced resolution. Thislltgsn less
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accurate target impulse response amplitudes and sparious
sidelobes located around a target return.

Figures 6-9 illustrate the sparse representati@bgity to
achieve high p while undersampling the return signal. This
demonstrates a deterministic sensing basis thatezamstruct
a sparsely represented signal at undersampling astéow as
1/6 for a sparsity values up to S=10. It is indérgy to note
that this sensing matrix has high coherence valnethe order
of YN yet still allows for sparse reconstruction. Thisprising
result has been noted in [7] where intense nunlesioaulation
verified that the decimating random filter allowfmat success-
ful reconstruction of sparse signals in spite @hh¢oherence.
Work by DeVore [9] shows that sensing matrices determi-
nistic structure can obey the RIP with high prokighil A thor-
ough mathematical proof was introduced for sensiagrices
of a circulant nature. A circulant matrix is detémed by its
first K columns and has the property

D =P (23)
where i and j are respectively the rows and coluofrtie ma-
trix ®. The sensing matrix comprised of the filterbatdoas
circulant in nature and has the property

q)i+L,j+D = CD\ J (24)
where L and D are the number of filters and theirdation
factor respectively. It appears that the filtetbaansing matrix
possesses similar structure to what was analysg] and may
be the reason why the filterbank sensing matriavadl for un-
dersampling and reconstructing a sparsely repredesignal.

Of the 3 receivers analysed, the MF was the meatigsitfor-

ward to implement. The impulse response of thei§/dr time-

reversed version of the transmit waveform. It fiem imple-

mented in the frequency domain to exploit the cotaponal

efficiency of the FFT especially when the returgnsil x[n] is

already in the frequency domain. When implemenganglF

however, several issues need to be addressed. di$tiete-

time version of the transmit waveform has zerosdmsand

outside the unit circle. A discrete-time signathwzeros out-
side the unit circle cannot have a stable and tauserse sys-
tem [2, Sec. 5.6]. This implies that a stable ilspuesponse
for the IF is non-causal, infinitely long, and exgatially-

decaying. The exponential decay rate is determimgdhe

location of the zeros of the transmit waveform.e Tarther the
zeros are from the unit circle the faster the decay

The IF is typically implemented in the frequencyndon so
that the efficiency of the FFT can be exploitedreduency
domain sampling will result in periodic aliasing the time
domain of the receiver impulse response. TherefoeeIF
frequency response must be sampled often enoudhasdhe
periodic aliasing of the IF impulse response isligége. This
is done by selecting an FFT sizegNsuch that the IF impulse
response decays to nearly zero by the discreteitioex N/2.
Thus the location of zeros of the transmit wavefaignal
heavily determines M. For these simulations, it was deter-
mined that in order to assure the IF impulse respatecayed
to approximately 0.001, a FFT size needed to binewrder of
about 2° and therefore M- was set to 2 to ensure sufficient
decay. This large FFT size resulted in a compraiime for
the IF that was several orders of magnitude lattggan the MF.

The sparse representation’s superior detectionopeance
comes at a cost of a significant computational l&ogck via
utilization of the Basis Pursuit algorithm. Basisrit has
computational complexit®(N?) [10] which is much less effi-
cient than the FFT implementations for the MF aRd Creat-
ing more computationally efficiertt; minimization methods is
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a current topic of research. Recent work [13] hesnbable to
reduce the complexity t®(N) for sensing matrices with spe-
cific properties. The main result from the spareggesentation
is that sparse reconstruction of the undersammadmn signal
allows for resolving closely spaced targets atghéi resolu-
tion than that of the return signal measureme®sducing the
computational complexity of the Basis Pursuit aldpon for
sparse reconstruction coupled with undersamplireg réturn
signal would facilitate a practical real-time impientation of
this receiver.

VI. CONCLUSION

The sparse representation of bat biosonar allowsrdoon-
structing sparse target impulse responses with feghlution
and superior detection performance than what caacoem-
plished using either an MF or IF receiver. Thesgam method
allows for undersampling the return signal as mashl/6 of
the Nyquist rate while largely maintaining resabatiand detec-
tion performance for a modest range of sparsityesl

This research demonstrates a proof of concept apprapply-
ing a deterministic sensing methodology that lopsabdels
the mammalian auditory system. The return sigaal loe re-

constructed vid; minimization methods such as Basis Pursuit.

The advantage of this method is that closely sptaepbts can
be detected and resolved at a precision much htgherthat of
the measurements. The simulations demonstrate et
undersampled filterbank outputs can contain suffitinforma-
tion to allow high resolution reconstruction ofgat impulse
responses using basis pursuit to exploit the dyas$ithe im-
pulse response. This result is qualitatively samtb the tem-
poral resolution bats achieve on the order of a fearosec-
onds using auditory system neural processing wposeision
can be on the order of hundreds of microsecondsis Jug-
gests that bats may also be exploiting sparsityrapgon in
processing their echolocation signals. We wisiakke it quite
clear that we are not suggesting the bat auditgsies imple-
ments basis pursuit or another sparse reconstruatgorithm.
Quite the opposite- we feel it is extraordinarityprobable that
such computation is implemented by the bat's augiggstem.
What we do note is that coupling the degraded ti@selution
of an undersampled filterbank with an assumptiorsprsity
produces temporal hyper-acuity analogous to thaaté natu-
ral echolocation systems.

Based on the evidence presented in this paperuthera con-
clude that the application of a deterministic segsinethodol-
ogy to the sparse bat biosonar problem is quiteisiiiée.

There are a number of areas of focus to fully deiee if bat

echolocation is indeed based on the sparse repatioen
model. The first is adding more complexity to thensing
method so as to more accurately model the mammaligii

tory system. Second, performing analysis at highsolution

levels shown and/or replicating the results offf8]the deter-
ministic sensing method would further solidify thegitimacy

of this model. If these efforts yield successksults, behav-
ioural experiments could then be designed to asbesaccu-
racy of the model to what is observed in the natucald.
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