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ABSTRACT 

The Big Brown Bat (Eptesicus fuscus) uses Frequency Modulated (FM) echolocation calls to accurately estimate 
range and resolve closely spaced objects. Recent work by Fontaine and Peremans have shown that a sparse represen-
tation model for bat echolocation calls facilitates distinguishing objects spaced as closely as 2 micro-seconds in time-
delay and was also robust to noise over a realistic range of signal to noise ratios (SNR). Fontaine and Peremans used 
the random FIR filter Compressive Sensing (CS) technique as their input method. Their study demonstrated that the 
undersampled data provided by the FIR filter output still contains sufficient information to accurately reconstruct and 
resolve sparse target signatures using L1 minimization techniques from CS. Their work raises the intriguing question 
as to whether under-sampled sensing approaches structured more like the bat's auditory system still contain the in-
formation necessary for the hyper-resolution observed in behavioral tests.  This research investigates the ability to es-
timate sparse echo signatures using a downsampled filterbank for the sensing basis that is closer to a bat auditory sys-
tem than randomized FIR filters. The returning echoes are sensed using a discrete-time constant-bandwidth filter 
bank followed by downsampling that loosely resembles the filtering and smoothing of the bat's cochlea. L1 minimiza-
tion then reconstructs the sparse target return from this under-sampled signal. Initial simulations demonstrate that this 
filterbank CS model reconstructs sparse sonar targets with a high degree of accuracy while substantially undersam-
pling the filter outputs. In addition, the overdecimated filterbank CS approach has better target resolution than the 
Matched Filter for SNR values ranging from 5-45 dB and has better detection performance than the Inverse Filter 
method.  This is all accomplished while undersampling the return echo signal by as much as a factor of six. The de-
terministic sensing basis has the distinct advantage over the random sensing basis in the respect that the circulant 
structure of the filterbank sensing matrix can easily be implemented in electric circuits.  

I. INTRODUCTION 

The Big Brown Bat (Eptesicus fuscus) operates in complex 
acoustic environments. Using wideband Frequency Modulated 
(FM) echolocation calls in the 20-100 kHz band.  Bats can 
detect target reflections or glints as closely spaced as 2 µs in 
the midst of noise [6].  The task that the bat’s auditory system 
performs very well is the same challenge posed to human made 
active sonar systems.  Active sonar transmits sound and at-
tempts to detect and estimate the range of the ensonified ob-
jects.  In addition, active sonar systems must be able to resolve 
closely spaced targets for complicated multi-target environ-
ments.  

The Matched Filter (MF) or Auto-Correlation Filter optimizes 
the detection and delay estimation for a single known signal in 
additive white noise.  However, it does not optimize the resolu-
tion of closely spaced targets.  The resolution of the MF is de-
termined by the mainlobe of the Auto-Correlation function of 
the transmit waveform.  For bat FM transmit waveforms, the 
mainlobe width is approximately 10-12 µs.   

Target resolution can be optimized by utilizing a linear time 
invariant filter that minimizes the width of the peak of the tar-
get return that results from the convolution of the transmit 
waveform with the impulse response of the filter.  This can be 

obtained by using an inverse filter (IF).  The frequency re-
sponse of the IF is generated by taking the reciprocal of the 
frequency spectrum of the transmit waveform.  Convolving the 
return signal with the impulse response of the IF results in 
scaled and delayed impulse functions that correspond to the 
amplitude and time delay of the target returns.  This results in a 
significant improvement in resolution of closely spaced targets 
for high SNR.  However, as the SNR decreases, the IF ampli-
fies the noise out of the frequency band of the transmit wave-
form and the detection performance is significantly degraded.  
While tapering the out of frequency band response of the IF 
will improve the detection capabilities, its detection perform-
ance still will not rival that of the matched filter and the taper-
ing degrades resolution performance.   

Recent work by Fontaine and Peremans [3] has proposed a 
sparse representation of bat biosonar signals.  This method 
builds from the assumption that the echo return signal can be 
sparsely represented as a convolution of the transmit waveform 
and a small number of impulse functions that model the target 
image return.  The return signal is then reconstructed via ℓ1 
minimization methods.  Simulations showed that this sparse 
representation of bat echolocation calls can resolve targets 
spaced as closely as 2 µs in range separation with performance 
similar to the inverse filter while also showing a significant 
improvement in detection capability for a range of realistic 
SNR’s.  In addition, a compressive sensing technique was ap-
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plied to the sparse representation approach and was able to 
reconstruct the biosonar signals using fewer samples than the 
Nyquist rate requires while largely preserving the resolution 
and detection performance.  Their sampling methodology was 
based off of work done by Baraniuk and Steeghs [11] and was 
shown to yield impressive target return reconstruction results.  
While no claim was made in regard to the biological plausibil-
ity of this method, [3] raises the intriguing question of whether 
a sensing methodology similar to the mammalian auditory sys-
tem contains the necessary information to achieve the resolu-
tion and detection performance reported in observational stud-
ies. 

This paper builds from Fontaine and Peremans’ work and ex-
ploits the sparsity of Biosonar signals using a sensing method-
ology that more closely resembles the physiology of the mam-
malian auditory system.  The sensing method comprises of a 
filterbank of finite impulse response (FIR) filters followed by 
decimation.  The filterbank spans the frequency band of the 
bat’s echolocation call.  The filterbank decimation factor can be 
adjusted to sample at the Nyquist rate (maximally decimated) 
or to sample below the Nyquist rate (over-decimated).  Like 
Fontaine and Peremans, we make no claims to the biological 
plausibility of the compressed sensing algorithm.  The aim of 
this research is to demonstrate that the undersampled outputs of 
a deterministic filterbank still contain sufficient information to 
reconstruct sparse target impulse responses in a manner analo-
gous to that observed in behavioural experiments with bats.  
The simulation results show that this sensing method is able to 
resolve closely spaced targets that the MF cannot and can de-
tect these closely spaced targets with a higher success rate than 
the IF while also undersampling the target return signal. 

II. COMPRESSIVE SENSING 

CS theory asserts that a signal that is sparsely represented in 
some basis Ψ can be acquired from fewer measurements than 
generally required, or undersampling.  A common example is 
that signals containing only a few frequency tones (sparse in 
frequency spectrum) can often be accurately acquired while 
sampling below the Nyquist rate.  Consider an N-length        
bandlimited discrete-time signal x[n] with no additive noise 
sampled at a frequency fs such that the Nyquist criterion is met 
(i.e. that fs is at least twice the highest frequency of x[n]).  Fur-
ther, assume that x[n] is sparse in some basis.  In vector form, x 
can be represented in the sparse basis in vector form as 

         x a= Ψ ⋅                    (1) 

where Ψ is of dimension N x N.  The N x 1 vector a contains S 
non-zero coefficients where S is much less than the length of 
the signal N.  In CS terminology, we say that the sparse vector 
a is S-sparse or x is S-sparse in Ψ.  This particular case as-
sumes a noiseless signal.  In reality almost every signal con-
tains some additive noise and the signal is no longer strictly S-
sparse.  However, the S columns of Ψ represent the vast major-
ity of the signal energy.  In the CS framework this signal is 
then said to be compressible.   

         x a n= Ψ ⋅ +                    (2) 

The sparse or compressible signal is then sampled by a           
M x N sensing matrix Φ where M < N to obtain an under-
sampled signal y[n].  In vector form, y can be written as  

          y x=Φ⋅ .                      (3) 

Substituting (1) in to (3) yields 

                                  y a a= Φ ⋅Ψ ⋅ = Θ⋅                              (4) 

Where Θ=Φ·Ψ.  Finding the signal’s sparse coefficient vec-
tor a becomes a convex optimization problem.  Candes, Rom-
berg, and Tao [4] show that ℓ1 norm minimization exactly re-
covers S-sparse signals and closely approximates compressible 
signals with high probability.  The ℓ1 norm minimization prob-
lem can be solved by the linear program known as Basis Pur-
suit.   

A sufficient condition that allows for sparse signal reconstruc-
tion is for the sensing matrix to obey the Restricted Isometry 
Property (RIP).  The RIP states [5] 

For each integer S=1,2,… (sparsity), define an isometry con-
stant δs of the matrix Θ such that: 

                   ( ) ( )2 2 2

2 2 2
1 1s sa a aδ δ− ≤ Θ ⋅ ≤ +                (5) 

holds for all S-sparse vectors. 

This theorem states that if Θ satisfies the RIP, then any subset 
of S columns of Θ are approximately orthogonal [5].  Conse-
quently, no S-sparse vector has a significant amount of energy 
in the null space of Θ, and it should be possible to at least ap-

proximately reconstructa from y .  A related measure known 

as coherence requires that “the rows of Φ cannot sparsely rep-
resent the columns of Ψ” [9].  The coherence of the sensing 
matrix is computed as 

          ( )
1 ,
max ,k j

k j N
Nµ φ ψ

≤ ≤
Φ Ψ =,                   (6) 

where ψj are the columns of Ψ and φk are the rows of Φ. 

The coherence measures the largest inner product between the 
rows of Φ and the columns of Ψ. The coherence µ can take on 
values between 1 and √N.  If Φ and Ψ contain common values, 
the coherence tends towards √N.  The columns of the 2 matri-
ces are then said to be mutually coherent.  When Φ and Ψ do 
not share common values, the coherence tends towards 1 and 
they are said to be mutually incoherent. A sensing matrix with 
low coherence will obey the RIP with high probability.  Candes 
and Wakin [5] show that sensing matrices with i.i.d Bernoulli 
or Gaussian random entries with variance 1/N maintain a low 
coherence and thus obeys the RIP with high probability.  Most 
of the CS literature revolves around utilizing random sensing 
matrices due to their ability to guarantee reconstruction of 
sparse or compressible signals.  However, work by Devore [9] 
has shown that sensing matrices with deterministic structures 
can also obey the RIP. 

III. SPARSE REPRESENTATION AND SENSING 
METHOD 

The sparse representation exploited in this paper assumes that 
the echolocation return signal can be expressed as a linear su-
perposition of the echoes.  The echoes are modelled as impulse 
functions with amplitude corresponding to the strength of the 
target return.  It is also assumed that the phase of the transmit-
ted signal is not altered when reflected.  The return target im-
age can be modelled as a sum of scaled and time-delayed im-
pulse functions and the return signal x[n] in turn can be written 
as 

            ( ) [ ] ( )
1

2 /
S

i i
i

x t a s t r c w t
=

= − +∑        (7)               

     [ ] ( )sx n x n T= ⋅                   (8)            
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where ai  represents the amplitude of the echo reflected by 

target i with delay 2ri/c where ri is the range of target i,         

s(t-2ri/c) is the transmit waveform with time delay 2ri/c, S is the 
number of reflections, w(t) is additive white Gaussian noise, 
and c is the velocity of sound in air (~350 m/s).  The amplitude 
here is constrained to being positive given that the reflection 
coefficient is positive.  This is a realistic assumption for bat 
biosonar.  Bats are attempting to locate insects and other solid 
objects.  The acoustic energy is transferred from a medium of 
low acoustic impedance (air) to a medium of high acoustic 
impedance (solid object).  This results in a positive reflection 
coefficient. 

Given that the target returns are modelled as impulse functions, 
the discrete-time return signal x[n] can also be expressed as the 
convolution of the transmit waveform with the target impulse 
response.  Because the target return image in (7) is a superposi-
tion of impulse functions, it can be considered to be sparse.  
The return signal x[n] can then be written as (1) where the       
N x N sparse basis Ψ is constructed as 

        

[ ]
[ ] [ ]
[ ] [ ]

( ) ( )
( )
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⋯

⋯

⋮ ⋮ ⋮

⋯

      (9) 

Where Ts is the discrete-time sampling period, s[n] is the dis-
crete-time representation of the bat echolocation signal, and P 
is the length of s[n].  The sparse basis is essentially a time 
shifted dictionary of the transmit waveform. 

The work by Fontaine and Peremans [3] makes use the deci-
mating random Finite Impulse Response (FIR) filter sensing 
matrix described by Baraniuk and Steeghs [11].  This work 
differs from Fontaine and Peremans approach on two fronts.  
First, the sensing matrix is composed of a bank of constant 
bandwidth FIR filters.  Second, the filter taps are no longer 
populated by pseudo random values, but with deterministic 
coefficients used in traditional FIR filter design.  The filterbank 
comprises of L constant bandwidth FIR filters of impulse re-
sponse length Nh that cover the frequency band of the bat echo-
location call (20-100 kHz) and can be decimated by an integer 
factor D.  The sensing matrix carries out the convolution of the 
return waveform with each of the filters as seen in Figure 1. 

[ ]1h n D↓

D↓

D↓

[ ]2h n

[ ]kh n

⋮ ⋮⋮

[ ]1y n

[ ]2y n

[ ]ky n

⋮

[ ]x n

 

Figure 1.  Filterbank system block diagram. 

Figure 1 implements (3) if we choose 

          [0] [1] [ ]
T

My Y Y Y L
 =  …                  (10) 

       [ ] [ ] [ ] [ ]1 2 L y n
T

Y n y n y n =  ⋯               (11) 

                          [ ] [ ] [ ]0  1 1
T

x x x x N = − ⋯                 (12) 

 

         (13) 

where O is an L x D matrix of zeros and H0 is the L x 1 vector 
given by 

     [ ] [ ]0 1 0 0
T

LH h h =  ⋯                 (14) 

and  

   [ ] [ ]i hij
H h N j= −                 (15) 

for i=1,…,L and j=1,…,Nh. The sensing matrix is of size M x N 
with M calculated by  

                              
( )1hM
N N L

D
=

+ −
                (16) 

where Nh is the length of the filters’ impulse response, L is the 
number of filters, and the integer D is the decimation factor.  
From here the under-sampling factor α is defined as the ratio of 
the number of filters to the decimation factor: 

           L
Dα = .                 (17) 

For the case of D = L, the under-sampling factor is 1 and thus 
the size of Φ and the sampled signal y is (Nh + P – 1) which is 
the length of the return signal after it is convolved the filter-
bank impulse response.  When D ˃ L, the under-sampling fac-
tor is less than 1 and the filterbank has over-decimated the fil-
tered version of the return signal x[n].  Over-decimation results 
in aliasing of the discrete-time signal which destroys informa-
tion contained in x[n]. 

Applying this to the target image problem results in the inverse 
problem of estimating the target return signal x[n] using the 
sparse basis Ψ and the measurements y.  Given the assumption 
that the target return signal is sparse in Ψ, this estimation prob-
lem can be solved via convex optimization.  The ℓ1 minimiza-
tion problem can be stated as  

           '

1
min  subject to a y a= Θ ⋅                        (18) 

where 'a is the estimate of the sparse vector and r is the return 
signal vector.  For a noisy target return signal, the ℓ1 minimiza-
tion problem can be reformulated as follows: 

      '

21
min  subject to a y a ε− Θ ⋅ ≤               (19) 
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where ε is an adjustable tolerance parameter.  This equation 
implies that the sparse solution obtained is a close fit to the 
noisy observations. 

IV. SIMULATION RESULTS 

As described earlier, the columns of Ψ contain time shifted 
version of the original transmit waveform.  The echolocation 
call is modelled as a downward sweeping hyperbolic FM sinu-
soidal signal with a fundamental component sweeping from 50 
kHz to 20 kHz and a second harmonic sweeping from 100 kHz 
to 40 kHz in a 1 ms duration.  The transmit waveform s[n] is a 
loosely modelled version of the types of calls emitted by FM 
bats, specifically the big brown bat.  The instantaneous fre-
quency and phase of this signal is represented as 

   ( ) ( )i
a if t

t b
⋅= +

                (20) 

              ( ) ( )2 logi t i a t bθ π= ⋅ +                 (21) 

Where i=1, 2 and represents the 1st (fundamental) and 2nd har-
monic of the emitted call.  A plot of the transmit waveform in 
both the time and time-frequency domain is given in Figure 2.  
The amount of noise present in the return signal is measured by 
the SNR given by 

          ( ) 10
0

2
10log

E
SNR dB

N

 
=  

 
                (22) 

Where E is the energy of the return signal and N0 is the noise 
energy both in units of Joules.  In bat echolocation scenarios, a 
SNR of 45 dB is considered high, 25 dB is moderate, and 5 dB 
is low.   

 
Figure 2.  Plot of the bat echolocation call in the time and 

time-frequency domain. 

In addition to the sparse representation method, the simulations 
also implemented both the MF and IF for comparison.  As 
stated earlier, the MF is the optimum detection receiver but has 
a target resolution limited to the main lobe width of the Auto-
Correlation function of the transmit waveform.  The IF has 
significantly better target resolution capabilities at the cost of 
reduced detection performance.   

The simulations implemented the detection system seen in 
Figure 3.  The system is comprised of 4 main components; the 
receiver, a magnitude squared block, a peak selector, and a 
threshold comparator.  The return signal x[n] is passed through 
either a MF, IF, or the sparse representation receiver.  The 
square of the magnitude of the raw target image t[n] is then 
taken.  This is analogous to the full-wave rectifier which is 
used in many human made active sonar receivers.  The squared 

magnitude signal u[n] is next passed through a peak selection 
algorithm.  This algorithm creates v[n] which now maintains 
only the peaks of u[n].  This is especially useful for the MF as 
the mainlobe of the Auto-Correlation function spans several 
discrete-time data points and would result in the detection sys-
tem indentifying several targets at a time delay where there is 
only one true target.  Lastly, a range of detection thresholds γ 
can be applied to test whether a target is present.   

2
  ⋅

[ ]u n

[ ]v n

γ

[ ]t n[ ]x n

 

Figure 3.  Block diagram of the detection system used for all 
detection simulations (after Figure 5 of [8]). 

It is useful to analyse the signal v[n] that results from the peak 
detection algorithm.  This gives a visual perspective of how 
well each receiver is performing. Figure 4 illustrates the per-
formance of all 3 receivers with the mean (over 10 trials) of the 
target return signal v[n] with SNR of 25 dB.  The original tar-
get response or sparse vector is comprised of 10 echoes with 
time delays of 200, 208, 400, 412, 600, 616, 800, 824, 1000, 
and 1032 µs.  This results in pairs of targets with spacing 8, 12, 
16, 24, and 32 µs.  It is important to note here that the sparse 
representation implemented a sensing matrix that did not un-
dersample the return signal (i.e. the number of filters L equals 
the decimation factor D). 
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Figure 4. Original target impulse response from a return signal 
with 25 dB SNR and the returns v[n] of the MF, IF, and the 

sparse representation.  

As can be seen by comparing the mean target images, both the 
IF and sparse representation methods successfully reconstruct 
all targets at their proper location. The MF is unable to resolve 
the targets spaced 8 µs apart in time delay.  While the MF still 
resolves the targets spaced 12 µs and 16 µs apart, the amplitude 
of the targets with 12 µs spacing are well below half the origi-
nal target amplitudes and the targets with 16 µs have sidelobes 
from the Auto-Correlation function that add to create a false 
detection between the two original targets with an amplitude 
higher than the original 2 targets.  It is important to point out 
that while the IF successfully resolves all targets, there are 
more spurious spikes in the return than in the sparse representa-
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tion.  In addition, the sparse representation reconstructed target 
image has more accurate amplitude estimates than the IF.  
From this it can be concluded that the sparse representation 
appears to have better detection capabilities than the IF while 
maintaining the same target resolution.  To assess the perform-
ance of these detectors more systematically, a range of detec-
tion thresholds can be applied to v[n] to determine when the 
true targets will be detected and when the spurious returns will 
be incorrectly determined as a true target.  

Receiver Operating Characteristic (ROC) curves plot the prob-
ability of detection versus the probability of false alarms [12] 
quantifying the performance of a sonar receiver.  Figure 5 be-
low illustrates the ROC curves for the 3 receivers for SNR 
values of 45, 25, 15, and 5 dB respectively for 500 trials of the 
return target impulse response shown in the upper panel of 
Figure 4.  As with the previous simulation, the sparse represen-
tation did not undersample the return signal before performing 
reconstruction.  As expected from the second panel in Figure 4, 
the MF rarely detects the two most closely space peaks at 
around 200 µs, giving a maximum PD of about 0.8.  As the 
thresholds increases, some true targets are rejected by the MF 
system.  Thus the MF ROC curves exhibit a stair case curve at 
SNR’s 45, 25, and 15 dB that occur for PD values of approxi-
mately 0.8, 0.7, 0.6, and 0.5. 

The IF and sparse representation have ideal sharp ROC curves 
over a wide range of thresholds for 25 and 45 dB SNR.  The 
probability of false alarm is always zero and the probability of 
detection is always unity.  This results in an ROC curve which 
is on top of the left and top axis of the plot.  This implies that 
the strongest false detection amplitude is still lower than the 
weakest true target return and thus there are a range of thresh-
olds γ such that all true targets can be detected while acquiring 
0 false detections.  At 15 dB, the IF no longer has an ideal 
curve but it still retains solid detection performance with a PD 
of 0.95 for a PFA of 10-4.  The sparse representation curve at 15 
dB is significantly sharper than the IF’s ROC curve for a PD of 
0.95 for a PFA of 10-6. For 5 dB, the inverse filter’s detection 
performance is significantly diminished and can only muster at 
best a PD ≈0.85 for a PFA ≥ 0.3.  The ROC curve for the sparse 
representation at 5 dB SNR maintains a PD of 1.0 for a PFA of 
approximately 1.2x10-3.  It is clear from these ROC curves that 
not only does the sparse representation resolve the closely 
spaced targets where the MF cannot, but also has superior de-
tection capabilities compared to the MF and IF.    
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Figure 5. ROC curves of all 3 receivers for SNR values of 45, 
25, 15, and 5 dB.  Note the change in the PFA axis in the lower 

right plot. 

 

 

 

Thus far all experimental results created by the sparse represen-
tation were implemented without undersampling the return 
signal.  To illustrate the performance of this method when un-
dersampling the return signal, Figures 6-9 show ROC curves 

for 500 randomly generated sparse vectors a  with a SNR of 
25 dB with sparsity values of 10, 15, 20, and 25 for the MF, IF, 
and sparse representation with undersampling ratios α of 1/1 
(not undersampled), ½, ¼, and 1/6.  The targets in each sparse 
vector can be spaced as closely as 8 µs or as far away as 100 
µs.  The amplitude for each nonzero element of the sparse vec-
tor varies randomly between 0.5 and 1.0.  Therefore, knowing 
that the MF can’t resolve these closely spaced targets, it is ex-
pected that the IF and sparse representation with α=1 will out-
perform the matched filter. 
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Figure 6. ROC curves for the MF, IF, and the sparse represen-
tation for undersampling ratios α of 1, ½, ¼, and 1/6 for 500 

trials with randomly generated sparse vectors of sparsity S=10. 
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Figure 7. ROC curves for the MF, IF, and the sparse represen-
tation for undersampling ratios α of 1, ½, ¼, and 1/6 for 500 

trials with randomly generated sparse vectors of sparsity S=15.  
Note the change in both the PFA axis. 
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Figure 8. ROC curves for the MF, IF, and the sparse represen-
tation for undersampling ratios α of 1, ½, ¼, and 1/6 for 500 

trials with randomly generated sparse vectors of sparsity S=20.  
Note the change in both the PFA and PD axis. 
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Figure 9. ROC curves for the MF, IF, and the sparse represen-
tation for undersampling ratios α of 1, ½, ¼, and 1/6 for 500 

trials with randomly generated sparse vectors of sparsity S=25.  

Based on Figures 6 and 7, it is clear that for sparse vectors with 
sparsity up to 15, the return signal x[n] can be undersampled by 
as much as ¼ and maintain better detection performance than 
the MF.  The IF and the sparse representation for undersam-
pling ratios of 1/1 and ½ have a nearly ideal ROC curve for all 
sparsity values.  Using an undersampling value of 1/6 yields a 
detection performance that is inferior to the MF even for S=10, 
but it is still maintains acceptable detection performance.  Un-
dersampling at ¼ and lower does not yield acceptable detection 
probabilities for sparsity 20 and higher.   

V. DISCUSSION 

The results of the previous section clearly show that the sparse 
representation method has target resolution capabilities far 
beyond that of the MF as well as maintaining superior detection 
performance to that of the IF or MF for closely spaced target 
returns.  There are 2 main reasons for this.  First, the ℓ1 mini-
mization allows for accurate reconstruction of the sparse target 
return impulse response and thus provides excellent target re-
turn resolution.  Second, the detection performance is greatly 
aided by the nature of the sensing methodology.  Utilizing a 
filterbank of FIR filters spanning only the frequency band of 
the transmit waveform removes any noise located out of the 
frequency band of the transmit waveform.  This results in a 
further improvement of the SNR and thus should provide an 
improvement in PD.  The IF utilizes taper weights that attenuate 
the frequency response out of the frequency band of the trans-
mit waveform and provides an improvement in detection per-
formance at a cost of reduced resolution.  This results in less 

accurate target impulse response amplitudes and more spurious 
sidelobes located around a target return.   

Figures 6-9 illustrate the sparse representation’s ability to 
achieve high PD while undersampling the return signal.  This 
demonstrates a deterministic sensing basis that can reconstruct 
a sparsely represented signal at undersampling rates as low as 
1/6 for a sparsity values up to S=10.  It is interesting to note 
that this sensing matrix has high coherence values on the order 
of √N yet still allows for sparse reconstruction.  This surprising 
result has been noted in [7] where intense numerical simulation 
verified that the decimating random filter allowed for success-
ful reconstruction of sparse signals in spite of high coherence.  
Work by DeVore [9] shows that sensing matrices of a determi-
nistic structure can obey the RIP with high probability.  A thor-
ough mathematical proof was introduced for sensing matrices 
of a circulant nature.  A circulant matrix is determined by its 
first K columns and has the property 

         
1, ,i j K i j+ +Φ = Φ                                 (23) 

where i and j are respectively the rows and columns of the ma-
trix Φ.  The sensing matrix comprised of the filterbank also is 
circulant in nature and has the property 

        
, ,i L j D i j+ +Φ = Φ                  (24) 

where L and D are the number of filters and the decimation 
factor respectively.  It appears that the filterbank sensing matrix 
possesses similar structure to what was analysed in [9] and may 
be the reason why the filterbank sensing matrix allows for un-
dersampling and reconstructing a sparsely represented signal.   

Of the 3 receivers analysed, the MF was the most straightfor-
ward to implement.  The impulse response of the MF is a time-
reversed version of the transmit waveform.  It is often imple-
mented in the frequency domain to exploit the computational 
efficiency of the FFT especially when the return signal x[n] is 
already in the frequency domain.  When implementing an IF 
however, several issues need to be addressed.  The discrete-
time version of the transmit waveform has zeros inside and 
outside the unit circle.  A discrete-time signal with zeros out-
side the unit circle cannot have a stable and causal inverse sys-
tem [2, Sec. 5.6].  This implies that a stable impulse response 
for the IF is non-causal, infinitely long, and exponentially-
decaying.  The exponential decay rate is determined by the 
location of the zeros of the transmit waveform.  The farther the 
zeros are from the unit circle the faster the decay.   

The IF is typically implemented in the frequency domain so 
that the efficiency of the FFT can be exploited.  Frequency 
domain sampling will result in periodic aliasing in the time 
domain of the receiver impulse response.  Therefore the IF 
frequency response must be sampled often enough so that the 
periodic aliasing of the IF impulse response is negligible.  This 
is done by selecting an FFT size NFFT such that the IF impulse 
response decays to nearly zero by the discrete-time index N/2.  
Thus the location of zeros of the transmit waveform signal 
heavily determines NFFT.  For these simulations, it was deter-
mined that in order to assure the IF impulse response decayed 
to approximately 0.001, a FFT size needed to be on the order of 
about 220 and therefore NFFT was set to 221 to ensure sufficient 
decay.  This large FFT size resulted in a computation time for 
the IF that was several orders of magnitude larger than the MF. 

The sparse representation’s superior detection performance 
comes at a cost of a significant computational bottleneck via 
utilization of the Basis Pursuit algorithm.  Basis Pursuit has 
computational complexity O(N3) [10] which is much less effi-
cient than the FFT implementations for the MF and IF.  Creat-
ing more computationally efficient ℓ1 minimization methods is 
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a current topic of research.  Recent work [13] has been able to 
reduce the complexity to O(N) for sensing matrices with spe-
cific properties.  The main result from the sparse representation 
is that sparse reconstruction of the undersampled return signal 
allows for resolving closely spaced targets at a higher resolu-
tion than that of the return signal measurements.  Reducing the 
computational complexity of the Basis Pursuit algorithm for 
sparse reconstruction coupled with undersampling the return 
signal would facilitate a practical real-time implementation of 
this receiver. 

VI. CONCLUSION 

The sparse representation of bat biosonar allows for recon-
structing sparse target impulse responses with high resolution 
and superior detection performance than what can be accom-
plished using either an MF or IF receiver.  The sensing method 
allows for undersampling the return signal as much as 1/6 of 
the Nyquist rate while largely maintaining resolution and detec-
tion performance for a modest range of sparsity values. 

This research demonstrates a proof of concept approach apply-
ing a deterministic sensing methodology that loosely models 
the mammalian auditory system.  The return signal can be re-
constructed via ℓ1 minimization methods such as Basis Pursuit.  
The advantage of this method is that closely spaced targets can 
be detected and resolved at a precision much higher than that of 
the measurements.  The simulations demonstrate that even 
undersampled filterbank outputs can contain sufficient informa-
tion to allow high resolution reconstruction of target impulse 
responses using basis pursuit to exploit the sparsity of the im-
pulse response.  This result is qualitatively similar to the tem-
poral resolution bats achieve on the order of a few microsec-
onds using auditory system neural processing whose precision 
can be on the order of hundreds of microseconds.  This sug-
gests that bats may also be exploiting sparsity assumption in 
processing their echolocation signals.  We wish to make it quite 
clear that we are not suggesting the bat auditory system imple-
ments basis pursuit or another sparse reconstruction algorithm.  
Quite the opposite- we feel it is extraordinarily improbable that 
such computation is implemented by the bat’s auditory system.  
What we do note is that coupling the degraded time resolution 
of an undersampled filterbank with an assumption of sparsity 
produces temporal hyper-acuity analogous to that of bat’s natu-
ral echolocation systems. 

Based on the evidence presented in this paper, the authors con-
clude that the application of a deterministic sensing methodol-
ogy to the sparse bat biosonar problem is quite plausible.  
There are a number of areas of focus to fully determine if bat 
echolocation is indeed based on the sparse representation 
model.  The first is adding more complexity to the sensing 
method so as to more accurately model the mammalian audi-
tory system.  Second, performing analysis at higher resolution 
levels shown and/or replicating the results of [3] for the deter-
ministic sensing method would further solidify the legitimacy 
of this model.  If these efforts yield successful results, behav-
ioural experiments could then be designed to assess the accu-
racy of the model to what is observed in the natural world. 
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