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ABSTRACT

The increase in population worldwide has highlighted the inadequacies of sound insulation in buildings. The problem
is particularly evident in medium-high density housing situations, which are projected to become 30% of Auckland’s
housing by 2050. This will have implications on occupants’ health, productivity and quality of life. Prevention of sound
transmission through walls and ceilings in the lower frequency range of human hearing is particularly important, but is a
difficult problem. This problem provides an opportunity to ask the question: Can we design an acoustic insulation system
that provides improved sound insulation performance over a conventional system, within this frequency range? This
paper outlines an investigation into novel meta-materials known as Locally Resonant Structures. These structures can
exhibit acoustic band gaps, or frequency ranges of unusually low sound transmission. One-dimensional mathematical
models are used in conjunction with finite element analysis FEA to develop various locally resonant element concepts
functional below 1kHz. Acoustic testing is then used to experimentally verify the performance of the elements through
comparisons with modelling data. Various resonator elements have shown a peak effective mass up to fifty times greater
than their rest mass. Locally resonant structures have increased peak transmission losses by as much as 40dB over
that of a non-resonant structure of equivalent area density within the designated frequency range. These resonators can
be distributed throughout the wall structure on a scale shorter than the wavelength of structural vibrations in the wall
matrix. The resulting system has the potential to provide significantly higher transmission loss at low frequencies than
conventional wall systems of similar size and weight. The longer term goal is to determine an effective design of local
resonator that can be incorporated into a practical insulation system.

INTRODUCTION

Background

As the population density increases the power of domestic
home entertainment systems grow and automation proliferates,
so does noise pollution. There is increasing concern in New
Zealand [1] and overseas [2], about inadequate sound insula-
tion in buildings and the consequent implications for occupants’
health and well-being both in the public and private sector.
Indications from recent studies [3], [4], [5], show growing dis-
satisfaction from residents regarding the acoustic performance
of their accommodation, reflected by an increasing number of
noise nuisance complaints [5]. The problem is particularly ev-
ident in medium-high density housing situations, which are
projected to become 30% of Auckland’s housing by 2050 [6].

Acoustic intrusion commonly occurs at frequencies below 1
kHz (i.e the bass beat from music systems) where human hear-
ing has its highest sensitivity, but achieving effective insulation
in this range with conventional solutions such as increasing the
density or total mass of the partition is both challenging and ex-
pensive. This provides an opportunity to ask the question: Can
we design an acoustic insulation system that provides improved
sound insulation performance over a system with an equivalent
mass density, within this frequency range?

This paper will focus on the development of locally resonant
structures LRS. Simple analytical models of single- and multi-
resonant spring (linear) mass systems have been used to study
important design trade-offs and response characteristics such

as band width, band positioning and sound transmission loss
during and after the frequency of localised resonance. New
LRS specimens are then subjected to dynamic, plane wave
impedance tube and diffuse field testing methods, to indicate
the performance of the meta-material samples.

Sound insulation

Conventional sound insulation involves a barrier which reflects
sound transmission energy. For plane waves travelling though a
medium the quantity most commonly used for expressing the
performance of a partition’s sound insulation is the transmission
loss TL or sound reduction index R. First defined in the 1950s
[7], the sound reduction index is related to the transmission
coefficient, τ by:

R = 10log10

(
1
τ

)
(1)

The transmission coefficient is a frequency dependent fraction
of the incident sound energy and the transmitted sound energy
through a medium.

In the problem frequency range, reflection properties are domi-
nated by the mass/area. This region may be approximated by
the mass law equation:

Rml = 10log10

[
1+
(

π f Mcosθ

ρaca

)2
]

(2)

where M is the mass per area, ρa, is the density of air, ca, speed
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of sound, f , is the frequency, and θ is the angle of incidence.
The sound reduction index is maximised when sound is trans-
mitted at normal incidence.

Meta-materials

Meta-materials are artificial materials engineered to provide
properties which may not be readily available in nature. These
inhomogeneous materials have a non-uniform composition.
Klironomos et al [8] showed the presence of inhomogeneity in
a material can influence the propagation of waves in periodic
material structures. These materials have been developed by
John et al [9] and Kushwaha et al [10] in the areas of electro-
magnetics and acoustics respectively. Meta-materials can form
band gaps enabling the material to prevent wave transmission in
specific frequency ranges of electromagnetic, elastic or acoustic
waves in any direction. There are two current mechanisms that
can be used to create band gap materials [11]:

• Bragg scattering,
• Localised resonance

Analysis of large scale acoustic Bragg scattering was first re-
alised in 1995 by Martinez-sala et al [12] where he described
the sound transmission properties of a large open air sculpture
in Madrid. This sculpture consisted of a periodic crystal-like
arrangement of tall metal rods. Band gap behaviour of these
structures is due to the phenomena of wave diffraction and inter-
ference created by the higher density rods acting as scattering
reflectors. In order to create an acoustic band gap in the audible
range using Bragg scattering, the internal structure of the mate-
rial needs to be large. This is because for the existence of Bragg
scattering, it is required that the lattice constant/arrangement be
a minimum of half the wave length of the incident sound wave
[13]. For low frequency wavelengths in order of metres, this is
simply to large to be practical for insulation applications.

Localised resonances were used to create band gaps in 2000 by
Liu et al. [14] where a three component meta-material, includ-
ing a host material with polymer coated rigid inclusions, was
used to create localised resonances. Essentially the frequency
of the band gap is dictated by the resonant frequency of the
resonators and is independent of periodicity and symmetry. LRS
use internal resonances to alter the effective properties of the
material at different frequencies. One such property is the ability
to inhibit sound transmission in a targeted frequency range. This
was proved in 2000 Liu et al. [14] when a significant improve-
ment in sound transmission loss was found between 200-1000
Hz in a selected 100Hz band using a unique LRS known by Liu
et al.[14] as a locally resonant sonic material LRSM.

Theory

It has been shown by Milton et al. [15], Yao et al. [16], Huang
and Sun [17, 18], Gang et al.[19], Calius et al. [20] that the
essential features of LRS can be captured by spring-mass mod-
els. Figure 1 is a spring-mass model representation of a single
resonance LRS. This model shows a mass attached to a spring
mounted on a backing layer suspended on two more springs.
The point force F applied to the layer represents the pressure
applied by a plane wave sound field on the structure.

The response of the system shown in Figure 1 (where time
dependence eiωt is assumed) can be represented as the stiffness,
damping and mass matrix below:(

F
0

)
=

[
k0 + k1−m0ω2 + iωc1 −k1− iωc1

−k1− iωc1 k1−m1ω2 + iωc1

](
x0
x1

)
F is the total force, x is the displacement, m is the mass, c is the
damping coefficient and k is the spring constant. By rearranging

Figure 1: Spring-mass model

and solving the matrix and assuming no damping it is possible
to obtain the systems effective mass (mT ) as [15]:

mT =
F

amo

= m0 +m1
ω2

1
(ω2

1 −ω2)
(3)

In this equation F is the externally applied force and amo is the
acceleration of the host/layer. ω1 is the resonant frequency of
the spring k1 and mass m1 when attached to a rigid base and
may be found using:

ω1 =

√
k1

m1
(4)

By changing the spring stiffness k1, or internal mass m1 the
resonant frequency and the amplitude may altered. The relative
acceleration and phase of the the layer/host material mo and the
resonator mass m1 from Figure 1 (where the supporting springs,
k0 are neglected ) may be seen in Figure 2.

Figure 2: The logarithm acceleration of the host and resonator
mass of the LRS in Figure 1 when f1 = 400Hz. The plot also
shows the acceleration ratio of the resonator mass to host mate-
rial

It may be seen in Figure 2 and from analysis of equation 3 that
at frequencies well below f1 = ω1

2π
= 400Hz, the acceleration

of the host material and resonator mass is close to equal, and
the effective mass is approximately the sum of the components
mT = m0 +m1. At frequencies far above the resonance fre-
quency, where ω � ω1, the acceleration of the resonator mass
approaches zero and the total effective mass becomes the host
material only, where mT = m0.
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The frequency range most relevant to this research are frequen-
cies around resonance. As ω approaches ω1 the resonator mass
and host components are in-phase with each other. It can be seen
in Figure 2 that the acceleration of the host material drops to-
wards zero whilst the resonator mass acceleration is increasing.
At ω = ω1 the ratio of the resonator mass and host accelera-
tion is at a maximum and the host material is almost stationary.
The host material has a large total effective mass and therefore
sound transmission can be reflected well at this frequency.

At frequencies immediately above resonance components be-
come out-of-phase with each other and it may be seen in Figure
2 that the acceleration of both the host and resonator mass
increases to a maximum. At this point the ratio of the two com-
ponents is zero. The result of this high acceleration in the host
material is a decrease in the effective mass to almost zero and
an increase in transmission though the structure. By substitut-
ing mT = 0 and rearranging equation 3 it can be seen that the
frequency at which this occurs is described by [16]:

ω = ω1

√
(m0 +m)

m0
(5)

The biggest draw backs found in LRS research to date are the
inability to produce attenuation over a wide range of frequen-
cies, the detrimental effects (immediately after resonance) on
transmission loss from the peak acceleration of the the matrix
material, and to a lesser extent, the limiting effect of damping.
LRS performance, including the relative magnitude of these
drawbacks, is strongly affected not only by the characteristics
of the resonator itself, but more importantly by the way these
local resonators are connected together to form the LRS.

The realization of useful LRS-based applications depends on
the combination of cost-effective materials and processes with
modelling tools that enable design, analysis and optimization.
A modelling-driven building block approach is being used to de-
velop LRS designs, with experimental verification at every level.
The locally resonant unit represented schematically in Figure 1
provides the basic building blocks from which groups of reso-
nant units are integrated to form layers which are combined to
form panels.

This paper presents a modelling methodology that predicts the
transmission loss of a variety of resonator arrangements, to-
gether with initial measurements of sound transmission loss in
an impedance tube and a full-scale room-to-room test facility.
This modelling methodology is then used to explore the sensi-
tivity of LRS performance to design parameters, with particular
attention to broadening the transmission loss bandwidth and
reducing detrimental effects outside this frequency band.

METHODOLOGY

It is well known that complex mechanical systems can be rep-
resented by a combination of a large enough number of single-
degree-of-freedom SDOF subsystems such as the one depicted
schematically in Figure 1 [21].

Modelling

A program ComScptv1 has been developed in Comsol script to
calculate the normal incidence transmission loss of a system
of layers and resonators using springs and masses coupled
in various ways. The program enables the user to change the
number of layers, the number of resonators per layer and the
mass and spring stiffness of each component. For each spring-
mass arrangement ComScptv1 calculates the stiffness, damping
and mass matrix. ComScptv1 may then find the displacement

(x) at an arbitrary point. The effective mass (mt ) of the system
is found using the relation:

mT =
F
ẍ
=

F
−w2x

(6)

The effective mass per area (MT ) may then be calculated using:

MT =
mT

S
(7)

where S is the surface area of the layer/panel. Assuming θ = 0
for normal incidence plane waves and π f MT

ρaca
>> 1 for most

well insulating walls, the sound reduction index (R0) of the
system is then found from:

R0 = 20log10

[
π f MT

ρaca

]
(8)

Transmission loss typically varies with angle of incidence.
When predicting the sound reduction index for a sample sub-
jected to diffuse field transmission (Rd) at frequencies in the
mass controlled region, equation 9 [22] was used, where R0 is
plane wave simulation or experimental impedance tube sound
reduction index results and k is the wavenumber.

Rd = R0−10log10

[
ln
(

kS
1
2

)]
+20log10

[
1−
(

ω

ω1

)2
]

(9)

Three resonator configurations have been analysed using this
modelling method. The first configuration is shown in Figure
1. This is a single resonance frequency system. Resonators are
added to the system in parallel, but all resonators have the same
resonant frequencies.

Parallel configuration

The second configuration, shown in Figure 3, incorporates four
resonators in parallel. Each resonator has a different frequency.

Figure 3: Resonators in parallel. These resonators have different
mass and spring stiffnesses. Damping not shown for clarity.

Series configuration

The final arrangement first realised in [16] and shown in Figure
4 includes a number of resonant layers in series. Each resonator
has its own mass (mr) and spring stiffness (kr). The resonators
are attached to layers with mass (mL). The layers are arranged
in series, and separated by a inter-layer coupling spring with
stiffness (kL). In this situation any spring stiffness and mass may
be altered to provide different performance characteristics. In
this configuration the ComScptv1 keeps a constant system mass
by changing the mass of each resonator and layer depending
on the number of units in the system. Multiple high T L bands
may also be created in a single structure by designing systems
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of layers in series with a constant inter-layer coupling spring
stiffness. For example in a 9 layer system it is possible to group
3 lots of 3 layers together by changing the inter-layer coupling
spring stiffness of each group to be equal.

Figure 4: Resonators in Series. The spring stiffness, and mass
of the layers are constant. All resonators have the same stiffness
and mass. Damping is not shown for clarity.

Experimental methods

Two different experimental methods were used to generate per-
formance data and validate the modelling approach. Laboratory
scale evaluations were performed using an impedance tube,
which is suitable for testing single units or small groups of
resonators, and measuring the transmission and reflection of
predominantly plane waves. Full-scale measurements were per-
formed between reverberation rooms, which were suitable for
testing relatively large specimens consisting of many resonators
under diffuse sound field conditions.

Plane wave testing

The impedance tube was adapted for normal incidence trans-
mission loss measurements and designed to conform to the Eu-
ropean Standard ISO 10534-2:2001(E). The dimensions of the
tube shown in Figure 5 are based around the B & K Type 4026
impedance tube. The resonator units being tested were housed
within a 100mm diameter hollow cylinder made from medium
density fibre MDF, which could contain several resonators. Al-
ternative resonator designs were attached to a backing plate that
represented the matrix material of the LRS.

The cylindrical LRS sample was suspended on two rubber rings
between two parts of the impedance tube. A loud speaker gen-
erates plane wave sound that propagates down the first tube.
Part of the signal is transmitted through the sample which is
measured in the second tube using three microphones. Micro-
phones 1, 2 and 3 are used to find the transmitted side complex
wave constants A and B whilst microphones 4, 5 and 6 are
used to find the receiving complex wave constants C and D.
The pressures found from each B&K 4190 microphone may be
written as the equations shown below:

P1 = Ae j(ωt−kx1)+Be j(ωt+kx1)

P2 = Ae j(ωt−kx2)+Be j(ωt+kx2)

P3 = Ae j(ωt−kx3)+Be j(ωt+kx3)

P4 =Ce j(ωt−kx4)+De j(ωt+kx4)

P5 =Ce j(ωt−kx5)+De j(ωt+kx5)

P6 =Ce j(ωt−kx6)+De j(ωt+kx6)

The constants (A,B,C,D) are then found by solving the com-
plex equations using the least squares determinant method. The
receiving side of the impedance tube is in anechoic conditions
where reflections (D) are assumed to be near 0 and hence the
transmission coefficient is found to be near the ratio of A to
C. The transfer coefficient may be found from τ = AC−BD

AA−DD
Where τ is the transmission coefficient. When τ is applied to
R = 20log10(1/|τ|) the sound reduction index may be found.

Figure 5: Impedance tube

Diffuse field testing

The room-to-room testing facility shown in Figure 6 used for
full-scale diffuse field testing was designed to ISO 140-3. Two
reverberation rooms (202 and 208 m3) are used to measure
the sound reduction index of the samples. The test specimen is
placed so as to fill the adjustable gap between two well-insulated
sliding doors that separate the two rooms. A broadband pink
noise source signal is then placed in one of the rooms. The
spatial average sound pressure and reverberation times RT in
the emitting and receiving rooms is then measured using 1/2“
B&K 4190 and 4165 microphone. The process is then repeated
with the noise source in the other room. Data was processed in
third octaves.

Figure 6: The University of Auckland acoustic research centre
(ARC) room to room testing facility.

In order to study the frequency response in more detail than 3rd
octaves, the spectrum was found by calculating the Power spec-
tral density (square of the magnitude of the Fourier transform
of the signal) from the raw time domain pressure signals. The
narrow band RT was found by interpolating the 3rd octave RT
results. The absorption area of the receiving room was found
using:

A =
0.163V

T60
(10)

where T60 is the reverberation time, V is the volume of the
receiving room. The level difference (δL) of the specimen was
then calculated from:

δL = 10log10[P0]−10log10[P1] (11)

where P0 is the incident sound power and P1 is the radiated
sound power. Under the assumption of diffuse sound fields in
the transmitting and receiving rooms the actual sound reduction
index of the specimen may be found using:

Rd = δL+10log10

[
S
A

]
(12)

where S is the area of the wall specimen.

The single-layer panel consisted of 252 resonators attached to
a 2.65 x 0.95 x 0.01m plasterboard matrix layer using Loctite
401 adhesive.
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The accelerations perpendicular to the panel plane were also
measured while the panel was subjected to pink noise . For each
measurement two PCB A353 B65 accelerometers were attached
at any 2 of 9 different positions on the back of the panel using
wax. As well as the amplitude of the acceleration as a function
of frequency at various locations, these measurements also
allowed the phase difference to be calculated between adjacent
resonators. This testing method gives in-site into the sound
insulating performance of large scale meta-material samples
under a diffuse field.

RESULTS

Single frequency locally resonant structures

The features of a single frequency LRS have been modelled and
are shown in Figure 7. There is a large increase in transmission
loss at 400Hz which occurs at the resonant frequency (ω1) of
the resonator. At this frequency the host material has its lowest
acceleration magnitude and the LRS has a high effective mass.
ω1 may be manipulated by changing the mass and stiffness of
the resonator spring and mass. The large dip in transmission
loss soon after this peak is the result of a high acceleration
magnitude of both the host and resonator mass and therefore
a low total effective mass. The effect of damping in a single
resonant frequency arrangement is also shown in Figure 7. It
can be seen that as damping is increased there is a smoothing
effect on the resonant peak. Higher damping lowers the maxi-
mum peak sound reduction index, but also reduces the sound
reduction index dip.

Figure 7: Comparison of transmission loss verse frequency of a
single resonant frequency LRS showing the effect of increasing
the damping factor ζ from 0.001 to 0.1.

The results for a single-layer panel with 252 nominally iden-
tical resonators arranged in a system essentially like Figure 1
are given in Figure 8. The top graph shows the experimental
transmission loss obtained from full-scale testing of the panel
and the transmission loss for the equivalent diffuse field spring
mass model over the frequency range of interest approximated
by equation 9. It is clear that there is a good match between the
model and experiment above 200 Hz. At frequencies below 200
Hz the uncertainty in the measurements increases significantly
as the wavelength starts to approach the panel and reverberant
room dimensions and the panel mounting resonance is reached.
This effect rapidly escalates at 100 Hz and below. The bottom
graph gives the acceleration of the panel at its centre over the
same frequency range. This graph confirms the acceleration of
the host/panel material is at a minimum when the transmission
loss is at a maximum and visa-versa.

It has been observed from single resonance modelling and ex-
perimental analysis that not only is there a transmission loss
performance gain at around ω1, but before this frequency there

Figure 8: Frequency comparisons of diffuse field transmission
loss and typical panel acceleration for a large single resonant
frequency LRS panel.

are also transmission loss performance benefits. These are in-
dicated by the shaded region in Figure 7. If ω1 is raised in
frequency (by increasing the spring stiffness), both the sound
reduction index performance gains over mass law and frequency
band width increases.

Parallel multi frequency systems

The results of parallel arrangements of non-identical resonators
on a single layer are presented in this section. The predicted
and measured plane wave sound transmission loss for an LRS
with four non-identical resonator units arranged in parallel con-
figuration similar to Figure 3 are compared in Figure 9. The
LRS consisted of four individual resonators spaced at resonant
frequencies of 40Hz apart, each with equal mass, but differing
in spring stiffness. The results from impedance tube testing pro-
vide experimental verification of the spring mass model, with
excellent agreement near the resonant region and above. The
resonance of the compliant rubber suspension system that holds
the LRS test specimen in the impedance tube is responsible for
the additional transmission loss peak and valley observed in the
test data below 200 Hz.

Figure 9: Comparison of transmission loss verses frequency of
modelling and experimental results for a LRS with four non-
identical resonator units arranged in parallel. The host mass law
is also shown.

Figure 10 shows the sound reduction index results when mod-
elling 15 resonators in parallel. All 15 masses are of equal
weight, but their frequency of resonance is defined by the spring
stiffness of the resonator. The resonant frequencies have been
spaced 15 Hz apart, and a small amount of damping ζ = 0.01
has been added to create a more realistic representation of the
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material. Also included in this plot is a single resonator with the
total mass of the sum of all 15 resonators with the same damp-
ing factor. The mass law of the host material and total system is
also shown. It can be seen that the parallel arrangement approx-
imately doubles the bandwidth of attenuation above mass law
with some reduction in T L.

Figure 10: Comparison of single frequency and 15 frequencies
LRS. The latter has 15 resonant frequencies generated by res-
onators arranged in parallel. The total system mass is constant
with a damping factor ζ = 0.01

The sound transmission loss for a LRS with 8 different res-
onators is shown in Figure 11. Note the damping factor of
ζ = 0.05 is significantly higher than for the similar system
whose response is given in Figure 10. The plot also shows a
more gradual reduction in transmission loss that avoids the de-
velopment of a dip in transmission loss around 950Hz. This is
due to the use of mass tail-off where the mass of the highest
frequency resonator is lowered from 0.03 to 0.004 relative to
the lowest. A table of the relevant variables for the resonators
are shown in table 1.

Figure 11: Comparison of transmission loss verses frequency
for parallel LRS with equal mass resonators and tapered mass
resonators. Damping ζ = 0.05 is used.

Series systems

Systems consisting of series-coupled resonators are investi-
gated in this section. The predicted transmission loss for series-
coupled systems are shown in Figures 12-15. Figure 12 shows
the predicted transmission loss for a multilayer system similar
to Figure 4. The plot shows the sound reduction index as a func-
tion of frequency for increasing numbers of layers. The total
mass of the system is held constant as the number of layers is
increased. A low damping factor of 0.001 is applied throughout
the arrangement. There is high attenuation present between ap-
proximately 400 and 500Hz. As the number of layers increases

the band gap increases in attenuation, however the width of
this region remains similar. With an increase in the number of
layers there is an increase in the number of transmission loss
dips before and after the band gap.

Figure 12: Comparison of transmission loss verses frequency
for 2 and 10 layer LRS. Inter-layer coupling spring and resonator
spring stiffnesses are all constant and a damping factor ζ of
0.001 is used.

Figure 13 shows sound transmission loss of a three layer system
with variation in the inter-layer coupling spring stiffness, kL. As
kL is reduced, while the spring stiffness of the resonators, kr
remains constant, the frequency band width of high attenuation
increases by a factor of 3 while the peak attenuation remains
constant. The band width is dictated by the ratio of kL to kr and
kL must be lower than kr for a wide attenuation band to occur.

Figure 13: Comparison of transmission loss verses frequency
of a 3 layer LRS. The frequency of resonance of the resonators
(fr) remains constant while the inter-layer coupling frequencies
of resonance (fl) are tuned to resonant frequencies from 400-
800Hz by adjusting kL. The model uses a damping factor ζ of
0.001.

A three layer system with the addition of damping is shown in
Figure 14. High damping was applied (ζ = 0.1) to the inter-
layer coupling springs. Damping in the resonator springs re-
mained low(ζ = 0.001). Transmission loss dips before and after
the band of high T L are significantly reduced without effecting
the high T L band magnitude.

An example of a system with multiple band gaps is shown in
Figure 15. This system consists of a total of 9 layers created
by coupling 3 groups of 3 layers. The inter-layer coupling
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Table 1: Table of resonator variables

Frequency(Hz) 400 450 510 580 670 770 890 1010

Mass(kg) 0.03 0.027 0.023 0.019 0.014 0.01 0.007 0.004

Damping(ζ ) 0.0464 0.0458 0.0475 0.0505 0.0594 0.0723 0.0894 0.1379

Figure 14: Comparison of the effect damping in the inter-layer
coupling springs has on transmission loss verses frequency of a
3 layer LRS. The damping factor ζ in the inter-layer coupling
springs ranges from 0.001 to 0.1.

springs in each group are tuned to the same resonant frequency
fl and resonators in each group are tuned to the same resonant
frequency fr. For the first group f1=400Hz and fr=500Hz, for
the second group f1=800Hz and fr=900Hz and for the last group
f1=1200Hz and fr=1300Hz.

Figure 15: Comparison of transmission loss verses frequency
for a 9 layer multi-band-gap LRS. 3 layer groups tuned at 3
different frequencies. There is a damping factor ζ of 0.001 and
0.1 in the inter-layer coupling springs.

Series Parallel systems

Series and parallel arrangements may be combined to incor-
porate their different performance characteristics. Figure 16
shows the performance of a 15 layer system. The inter-layer
coupling spring stiffnesses are constant throughout the system.
The resonator resonant frequency increases with layer number
in increments of 15Hz via changing the resonator spring stiff-
ness. The band of large transmission loss has been widened to
between approximately 400 and 650Hz compared with 400 and
500Hz for the conventional 10 layer series system shown in 12
with the same total system mass.

Figure 17 shows 8 layers of parallel arranged resonators in
series. There are 15 parallel resonators on each layer. Each

Figure 16: Comparison of transmission loss verses frequency
of a 15 layer LRS. As the layer number increase so does the
frequency of resonance of the resonators. Resonators are tuned
at increments of 15Hz by changing the resonator spring stiff-
ness. The inter-layer coupling spring stiffness remains constant
throughout the system. A damping factor ζ of 0.001 is used.

layer has the individual performance shown in Figure 10. When
the layers are combined in series with a constant inter-layer
coupling spring stiffness, there is an increase in transmission
loss over the equivalent single layer parallel arrangement for
the same frequency range (between 400 and 650Hz).

Figure 17: Comparison of transmission loss verses frequency
of a 8 layer LRS with 15 parallel resonators on each layer. The
parallel resonators on each layer are tuned at incremental reso-
nant frequencies of 15Hz while the inter-layer coupling spring
stiffness remains constant throughout the system. A damping
factor ζ = 0.1 in the resonators is used.

DISCUSSION

The results obtained for single-frequency LRS through both
experimental observations and analysis indicates that when
ω <= ω1, where ω1 is the resonant frequency of the resonator,
the LRS transmission loss is equal or greater than that of a
homogeneous material with the equivalent mass area density.
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At frequencies approaching ω1, the host material and resonator
mass are in phase with each other. It may be seen by modelling
shown in Figure 2 that the acceleration of the resonator mass
gradually increases in this frequency region while the host
material reduces in acceleration. At the resonant frequency of
the resonator mass, experimental results shown in Figure 8
indicate the acceleration of host material becomes zero and
the LRS has large effective mass. The result of this is a high
transmission loss which is clearly indicated in Figure 7 and 8
around 400Hz. It is interesting to note that at this frequency
the resonator mass has not yet reached its peak acceleration. At
frequencies above this area the motion of the host material and
resonator mass are out of phase with each other. It may be seen
in Figure 7 and Figure 8 that at 600Hz there is a significant
drop in transmission loss. This feature is the result of a peak in
acceleration of both the resonator mass and host material shown
in Figure 2 and Figure 8. At this point the effective mass of the
LRS becomes zero. The frequency of zero effective mass may
be calculated using equation 5. At much higher frequencies the
resonator mass acceleration approaches zero and the effective
mass of the LRS is approximately equal to the mass of the host
material.

The comparisons between modelling and experimental results
given in the top graph of Figure 8 and Figure 9, together with
the experimental results obtained by Yao et al.[16], confirm that
systems of linear spring-mass models such as those represented
schematically in Figures 1 through 4 can be used to obtain an
accurate estimate of LRS sound transmission behaviour, whether
it is in an impedance tube or between reverberant chambers.

The key question for practical applications is how to maximize
the frequency band over which the LRS is effective while also
achieving a large enough increase in sound attenuation within
that frequency range. Ideally the LRS will have a multiplicity of
resonances at frequencies that are so close together that the res-
onant peaks overlap. This can be achieved by designing systems
of resonant units with incremental closely spaced frequencies
and an appropriate amount of damping. Other researchers [23]
[24] [25] have approached this problem by constructing multi-
layer LRS where each layer has a single resonance frequency,
that is the resonators in any given layer are all tuned to the
same frequency, but this frequency is different from layer to
layer. The limitation inherent in this approach is that increasing
the system’s bandwidth requires additional layers, each layer
increases the thickness of the system, and building applications
impose practical limits on the total thickness.

So the question was whether sets of resonant units with different
but closely spaced resonant frequencies arranged in a single
layer could produce a similar effect. The experimental and
model results presented in this paper demonstrate that this is the
case. When resonators are placed in parallel with only a small
amount of damping, Figure 10 shows that the band of increased
attenuation becomes several times wider than for the previous
single resonator arrangement, but has a significantly lower peak
magnitude. Similar to the single-frequency LRS, there is also
a significant drop in the transmission loss after resonance due
to a drop in the effective mass of the structure. Eventually the
LRS curve asymptotically approaches the host material mass
law. Note that the merging of the separate resonant peaks in
this parallel system is strongly influenced by the amount of
damping, as is easily seen by comparing Figures 9, 10 and 11.

One method of shaping the transmission loss curve and reduc-
ing the transmission loss dip around 1000 Hz is to use different
masses in the resonators tuned to different frequencies. Figure
11 shows that by tapering off the weights of the parallel res-
onator masses gradually from the bottom to the top over the
LRS high T L band and with the addition of damping, the result

is a smoothing effect over the T L dip after localised resonance.
It has been already shown that practical methods of implement-
ing these design features are possible and will be studied in
future work.

Single-frequency and parallel multi-frequency LRS both consist
of a single reflective layer with a specific effective mass spectra.
In a series arrangement a sound wave will interact with multiple
reflective layers each with there own effective mass frequency
spectra. The result is a band gap of high attenuation. As the
number of layers in the series increases, the magnitude of this
attenuation approaches infinity, an effect that can be seen in
Figure 12. It is important to note that the width of the band
gap, when measured between its shoulders, does not change
significantly with the number of layers in series. Figure 13
demonstrates that this bandwidth is actually determined by
the stiffness of the coupling between the layers in series. It is
evident from these results that the inter-layer coupling spring
has to be of equal stiffness or softer than the resonator spring
for a band gap to fully develop, and the softer the inter-layer
coupling relative to the resonator, the wider the band width.

In a multilayer system there are multiple transmission loss dips
outside the transmission band gap, and their number increases
with the number of layers. Because these dips are the result of
layer movement within the structure, increasing the damping
factor significantly in the inter-layer coupling (ζ = 0.1−0.5)
reduces the adverse effects of these transmission loss dips while
having no visible effect on the sound reduction index perfor-
mance within the band gap. It is clear in Figures 16 and 17
that combinations of series and parallel arrangements is what
yielded systems with the largest amount of attenuation over
large band widths. Therefore, by designing a LRS system with
the following elements

• Several layers in series
• Offset spring stiffness between resonators and layers
• Damping between each layer

a stop band filter response is effectively created that has a
wide enough bandwidth to be suitable for practical applications.
Experimental verification of the model predictions has yet to be
conducted. Implementations of this series-parallel LRS are still
at the design stage due to the complexity of the problem when
considering practical constraints such as structural integrity,
construction materials and cost.

CONCLUSION

Locally resonant structures (LRS) exhibit a significant improve-
ment in sound attenuation over what can be achieved with a
homogeneous material of similar mass, albeit in a limited fre-
quency band width. The magnitude of improvement is strongly
dependent on the ratio of host:resonator mass, the damping of
the resonator mass and the overall design of the LRS. To guide
design, a modelling approach was developed based on systems
of interconnected single-degree-of-freedom linear spring, mass
and damper units, each of which represents one or a group of
identical locally resonators.

Good correlation was obtained between modelling and various
experimental methods showing that this modelling approach
can be used to estimate both plane wave and diffuse field trans-
mission through an LRS in the frequency domain of interest.
Different LRS system configurations were analysed using this
modelling method for the purposes of widening the frequency
band of improved transmission loss, increasing the magnitude
of transmission loss in this band and reducing adverse effects
outside this band.

Parallel systems were shown through modelling and testing to
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produce transmission loss gains over a much wider frequency
range, with a reduction in the transmission loss dips at other
frequencies by tapering the resonator mass distribution and
damping across frequencies. Series resonators developed very
high peak transmission loss, leading to transmission band gaps
or stop bands. These complex designs need more detailed mod-
elling and further experimental analysis to develop practical
implementations.

The realization of LRS applications requires the use of mod-
elling to optimise the geometry, material properties, perfor-
mance and cost of the materials, as well as to understand the
tolerances of these variables. The ideal final outcome would be
a cost-effective method for the fabrication and implementation
of a locally resonant meta-material that satisfies the qualities
described previously.
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