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ABSTRACT

The coupling between strings and soundboard at the bridge is essential in determining the quality of piano tones. The
objective of the work is to investigate the coupling properties through time domain modeling of a string triplet coupled to
the input admittance. For this purpose, various input admittances were measured on a strung upright piano soundboard
and modelled as a parallel set of oscillators. These oscillators are coupled to a linear finite difference modeling of
slightly detuned strings. The model accounts for the reaction of the bridge on string waveforms, and thus is different
from usual methods were the bridge velocity is obtained through convolution between string forces and admittance
impulse response. A comparison between both methods is presented at the end of the paper. Each oscillator of the
admittance is defined by three parameters: amplitude, frequency and damping factor from which, equivalently, mass,
stiffness and mechanical resistance are derived. Modifying the amplitudes allows studying the effects of variations of
the global mobility pattern, without affecting individual frequencies and damping. Simultaneous variations of mass and
stiffness can be related to variations of thickness of the soundboard. Variations of selected frequencies simulate selected
variations of modes, as in the addition of stiffeners. Finally, variations of frequency-dependent losses in the soundboard
material can be simulated through modifications of the set of damping factors. Simulated string and bridge waveforms
yield a better understanding on the effects of both string tuning and bridge mobility on the amplitude, duration and
decay pattern of the tone. As it is well-known among piano makers and tuners, the bridge show large variations of input
admittance along its compass. As a consequence, tuners try to compensate these variations by acting on string tension,
in order to avoid to much irregularities in sound power and duration in the piano register.

INTRODUCTION AND MOTIVATIONS

The work presented in this paper is an intermediate step of a
complete modeling of the piano, which is currently in progress.
The leading idea is to isolate the subsystem, composed of a
string triplet with realistic boundary conditions at bridge and
agrafe, from the rest of the instrument. The goal is to investi-
gate, through simulations, the bridge-strings coupling and its
influence on piano tones.
In the present study, we restrict ourselves to the linear behav-
ior of the string. The modeling of the nonlinear piano string,
due to large displacement during the attack transient, is pre-
sented in a companion paper [1]. We also neglect the motion
of the string at the agrafe: measurements performed on an up-
right piano show an amplitude level of -20 to -30 dB at the
agrafe, compared to the bridge, and thus this simplification is
justified. Finally, we ignore the transverse lateral motion of the
string. As a consequence, the term “bridge admittance” in what
follows refers to the ratio

Y (ω) =
V (xB,ω)

F(L,ω)
(1)

where V (xB,ω) is the vertical transverse bridge velocity at
bridge point xB corresponding to the attachment point of the
main string lentgh, and where F(L,ω) is the vertical compo-
nent of the force at the string end L due to its transverse verti-
cal motion. Within the context of linear approximation of the
string motion, this force is equal to:

f (L, t) =−T
∂w
∂x

(L, t), (2)

where T is the string tension at rest and w(x, t) is the transverse
vertical component of the string’s displacement (see Figure 1).

For a triplet of strings, the total force acting of the bridge is the
sum:

ftot(L, t) =
3

∑
s=1

Ts
∂ ws

∂x
(L, t). (3)

Remark: in this paper, time-dependent variables (such as f (L, t))
are written in ordinary letters whereas frequency-dependent
quantities (such as F(L,ω)) are written in capital letters. The
admittance Y is usually defined in the frequency domain. Its
inverse Fourier transform is the impulse response denoted h(t)
below.
In a 1-D model of string-bridge coupling, it is customary to

Figure 1: Piano subsystem: a linear 1D model of transverse
string coupled to a punctual bridge admittance at position x =
L. T is the string tension, w(L, t) is the bridge displacement
and f is the transverse string force exciting the bridge.

assume xB = L which means that the coupling is reduced to
one single point of fixation. The real situation is rather differ-
ent since the string passes across the bridge (see Figure 2). The
actual segment ℓB of the string in contact with the bridge is de-
termined by two needles (or pins). One of these pins (the left
one p1 on Figure 2) fixes the normal length L of the main part
of the string. It forms an angle α < π/2 with the horizontal
plane so that the string is supposed to be blocked. The second
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pin p2 is bent in the opposite direction to improve the blocking.
It fixes the length ℓD of the “dead ends” (duplex scale) of the
string, the other end being finally attached on the tuning pin.
In some pianos, these “dead ends” are carefully tuned (for ex-
ample to a partial of the main string) whereas they are damped
with felt in others [2]. Because of this geometry, it is plain
that the real boundary conditions of a piano string differ sub-
stantially from the crude 1-D model. Some assumptions can be

Figure 2: Real boundary conditions. In a real piano, the bridge-
string contact is not punctual but is distributed over a length ℓB

between two pins.

made for a more realistic physical description of the end con-
ditions that would need further studies and more experimental
evidence:

• Pins p1 and p2 ensure a zero vertical and lateral dis-
placement of the string, but do not seem to be efficient
in ensuring the nullity of the longitudinal displacement.
As a consequence, the string length to consider for cal-
culating the longitudinal frequencies should be L+ℓB+
ℓD rather than L, as it is usually done. This property is
of almost no consequences in the context of linear mod-
eling of the string, but becomes important with a non-
linear string, where transverse and longitudinal motions
are coupled [1].

• One cannot totally exclude that some dissipation due to
sliding friction between string and pins exist, since the
pins do not prevent from longitudinal string motion.

• The balance of forces at each pin should be reconsid-
ered taking into account the reaction of the pin, which
is not perpendicular to the bridge.

The theory of strings-bridge coupling has been developed by
Weinreich [3]. This author showed, among other things, the
influence of string detuning and bridge admittance on the tem-
poral envelope of piano tones. In this work, arbitrary values
were given to both the real and imaginary parts of the admit-
tance. In more recent studies, the admittance is modeled as a
small number of mechanical oscillators [2]. Physically speak-
ing, the real part of the admittance governs the transfer of en-
ergy from strings to the soundboard and the decay times of the
strings. The imaginary part primarily affects the detuning of
the strings. Both parts thus influence the temporal envelope.
Because of various sources of nonlinearities, which will be
progressively introduced in future versions (hammer-string con-
tact, variation of string length and tension in time), our model
of piano tones was developed in the time domain. In pianos,
the spectrum of the notes is wide with an increasing number
of salient spectral components from treble to the bass range.
Each component of the strings vibrations interacts with those
soundboard modes which are close in frequency. Thus, in or-
der to get an idea of the large simultaneous number of coupling
between strings and soundboard, it is of interest to develop a
wideband model of admittance at the bridge. In summary, we
wish here to extend the above mentioned previous models to
a more general situation where all string modes interact with
an admittance that compares well with measurements, at least
in a significant frequency range. In practice, as shown in the
next section, we are dealing with an admittance model com-
posed of a set of about 100 mechanical oscillators in parallel,

the result agreeing well with measurements in the range 0 to
4 kHz. Each oscillator is defined by a set of three mechanical
parameters (mass, stiffness, resistance) which can be adjusted
independently from the others, thus allowing a large variety
of coupling situations with direct link to both the physics and
making of the instrument.
The second objective of the present paper is to test whether it
is justified or not to model the string-soundboard interaction
by a simple filtering of the string force, as it is currently done
in several studies. For that purpose, the bridge velocity result-
ing from a finite difference modeling of the string coupled to
a physically modeled admittance is compared to the bridge ve-
locity obtained from a direct convolution between a calculated
force at the bridge at its impulse response. In other words, we
compare a bidirectional model (where the motion of the bridge
influences back the motion of the string) with an unidirectional
model which assumes a given string force as input of an “ad-
mittance filter” whose output is the bridge velocity.

MEASUREMENTS AND MODELING

Measurements

Measurements were performed on a strung soundboard of a
PLEYEL upright piano hold vertically (see Figure 3). The keys,
hammers and dampers are removed.

Figure 3: Strung PLEYEL upright piano used for the experi-
ments. The strings are damped with felt during measurements
of the bridge velocity.

Measurements on strings include measurements of length (from
agrafe to bridge) and diameter. The density is derived from
the mass of an element of string measured on a weighing ma-
chine of high precision. The Young’s modulus is derived from
measurements of string’s inharmonicity on the first 20 partials.
Each successive string is set into vibrations by means of var-
ious mallets, all other strings being damped with felt. An ac-
celerometer on the mallet’s head allows to derive the impact
force. The period of the string is estimated from measurements
of the string velocity by means of a laser vibrometer. This
yields an estimation for the string tension. An estimation of
the string’s internal damping was obtained in a previous study
where piano strings were stretched between two rigid supports
[4]. For each impact, the impact position is measured.
In order to check whether the motion of the string can be con-
sidered as transverse, perpendicular to the bridge, at least dur-
ing the initial transient motion, string waveforms are recon-
structed from the measured impact force (see Figure 4). The
reconstructed string velocity is obtained by deriving the initial
velocity pulses from the mallet’s force, and by adding (or sub-
stracting) the successive pulses taking the reflections at bridge
and agrafe and the propagation times into account, in the the-
oretical context of a single vertical polarisation of the string
motion. In this simple reconstruction, attenuation at the bridge
and dispersion along the string are ignored. The comparison
between measured and reconstructed waveforms yields a vi-
sual justification for a transverse vertical motion of the string.
The procedure of admittance measurements was presented in
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Figure 4: Reconstruction of string waveforms. String C2. The
black curve represents the string velocity excited at x = L/4
with a mallet and measured with a laser vibrometer at position
x = L/2. The red curve is reconstructed from measurements of
the mallet’s force pulse and addition of the reflected pulses at
bridge and agrafe, with the assumption of perfect reflexion.

detail in a previous paper [5] and will be only briefly reviewed
here. In all measurements, the strings are damped with felt.
The bridge velocity is measured with a laser vibrometer. Mea-
surements of admittance in the low-frequency range (below
750 Hz) are obtained through bridge excitation with an im-
pulse hammer. The impulse response is then obtained through
inverse Fourier transform of the transfer function between ve-
locity and force. The effective frequency range is limited by
the width of the force impulse. This impulse can be reduced
by using a smaller (miniature) impact hammer though, in this
case, the quality of admittance determination is mainly limited
by the signal-to-noise ratio, a consequence of the little energy
contained in the force impulse. From 0.75 to 4 kHz, the best re-
sults were obtained when the bridge is excited by a shaker LDS
V406 driven by random noise. Because the soundboard is rigid
and heavy, a powerful shaker is necessary in order to set the
bridge with sufficient velocity amplitude. on an upright piano,
the admittance is of the order or magnitude of 10−3 s/kg (or
even less at some locations where ribs are fixed to the sound-
board). The magnitude of the force delivered by the shaker is
in the range 50 to 100 N. An initial calibration procedure is
conducted in order to obtain the velocity and force gains GV
(in m.s−1/V) and GF (in N/V) of each measurement channel.
Here again, the impulse response is the inverse Fourier trans-
form of the transfer function between velocity and force. The
force is measured by an impedance head fixed on the shaker.
The shaker is decoupled from the soundboard by means of a
rigid rod. The quality of the transfer function determination is
assessed by estimating the coherence between force and veloc-
ity signals. This allows to detect nonlinearities and/or insuffi-
cient signal-to-noise ratio.

Model

Admittance

In future versions of the piano model, the load of the strings
at the bridge will be represented as a 2-D linear vibrating sys-
tem composed of a prestressed soundboard with bridges and
ribs. In this context, and assuming that the damping is small
enough, the velocity at a given point (and thus the admittance,
for a unitary driving force) can be represented by the sum of
modal contributions, where the magnitude Vi of each contribu-
tion depends on both excitation and measurement locations, of
the form [6]:

V (ω) =
N

∑
i=1

Vi

ω2 −ω2
i +2 jζiωωi

. (4)

where ωi and ζi are the modal frequencies and damping fac-
tors, respectively. In the time-domain, the corresponding im-

pulse response is of the form:

h(t) =
N

∑
i=1

Aie−αit sin(2π fit +ϕi) with tanϕi =
αi

4π fi
. (5)

Therefore, the subsystem of the piano composed of a string
coupled at the bridge can be represented by the string with
a boundary impedance (or admittance) with impulse response
h(t) similar to (5). It is well-known that the impulse response
of any SDOF mechanical oscillator made of the association
of a mass, a stiffness and a resistance, is a damped sinusoid.
Thus, h(t) can be viewed as the sum of impulse responses of N
oscillators, each oscillator being defined by three mechanical
parameter. Assuming the condition αi ≪ 2π fi, we have:

Mi = 1/Ai ; Ki =
4π2 f 2

i
Ai

; Ri =
2αi

Ai
, (6)

where Mi is the mass (in kg), Ki the stiffness (in N/m) and Ri
the resistance (in Ns/m).
Several strategies are possible for determining the number N
of appropriate oscillators and the 3N of associated mechanical
parameters [5]. One general class of methods consists in ad-
justing a FIR filter (in time or frequency domain) close to the
measured admittance. The parameters are then derived from
the complex poles and magnitude of the pole decomposition of
the admittance. These methods give fair results, but the main
difficulty, in the context of plate vibrations, is related to the dif-
ficulty of distributing the poles adequately over the frequency
range under examination, in view of the modal density of the
physical system. In addition, the order of the filter increases
rather dramatically if the admittance contains lightly damped
modes with a sharp frequency peak.
Here, we use alternatively the ESPRIT method [7] which is
particularly suitable for the analysis and modeling of free vi-
brations and transients, and whose main advantage is that only
a small portion of the signal is necessary. This method is very
efficient in modeling rapidly decaying sinusoids correspond-
ing to highly damped modes, as those encountered in the vi-
brations of wooden plates like soundboard. With this method
the signal is directly modeled as a sum of N sinusoids with
4N parameters corresponding to amplitude, frequency, damp-
ing factor and phase for each term.
The main difference with h(t) in (5) is that, in the latter case,
the phase is imposed, which leads to 3N independent param-
eters. In fact, input admittance at the bridge are determined
with force and velocity measured at the same point (in prac-
tice, very close points) so that the phases should be near zero.
Based on these physical considerations, we thus nullify the
phases after application of the ESPRIT method to the impulse
response, which is equivalent to consider that the measurement
noise primarily affects the phase coefficients, the amplitudes,
frequencies and damping factors being more robust. Finally,
the number N of sinusoids can be estimated by various meth-
ods: preliminary Fourier transform, estimation of the modal
density from the typical geometrical and material parameters
of the soundboard [5], or signal processing techniques through
the ESTER criterion [8].

String model. Finite differences method

The transverse vertical motion w(x, t) of a linear string of length
L is modeled by the standard string wave equation, with initial
tension T and linear mass density µ . Standard refinements such
as lineic resistance r and stiffness EI can be added without any
difficulty. The action of the exciter (mallet or hammer) is repre-
sented by a force density term f (x, t) in the wave equation [9].
Depending on the purpose, the force can be either derived from
measurements or mathematically imposed. In either cases, the
force impulse is distributed over a small portion of the string
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and its duration is comparable to those measured on usual ham-
mers (typically 1 ms). A condition of zero displacement and
bending moment is assumed at the agrafe. At the bridge, each
oscillator is modeled by a second-order differential equation
driven by the string force. The string motion at the bridge is
equal to the sum of the displacement contributions wBi of the
N oscillators. Because of this moving boundary condition, the
motion of the string is influenced back by the motion of the
bridge. The observed quantities of interest are essentially the
string force at the bridge and the bridge velocity. In summary,
the continuous model of string coupled to the soundboard is
the following:

µwtt = Twxx + f (x, t)+ rwt +EIwxxxx,

w(0, t) = 0 ; wxx(0, t) = 0,
for i=0 to i=N :

Mi
d2wBi

dt2 +KiwBi +Ri
dwBi

dt
=−T

∂w
∂ x

(L, t),

w(L, t) =
N

∑
i=0

wBi(t).

(7)

where wtt (resp. wxx) means second-order derivative vs time
(resp. space). The set of equations (7) is solved with a second-
order explicit finite difference scheme [10]. For such a scheme,
the stability is guaranteed is the following so-called CFL con-
dition is fulfilled: √

T
µ

Ns

fsL
< 1 (8)

where Ns is the number Ns of discrete elements on the string,
and fs the sampling frequency in time. In order to limit as much
as possible the risk of numerical dispersion (frequency warp-
ing), Ns is selected in order so that the CFL condition (8) is as
close as possible to unity. Notice that the CFL condition be-
comes more severe if the string equation contains a stiffness
term [10].

RESULTS AND DISCUSSION
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(a) Admittance (0-4 kHz).
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(b) Admittance (0-1 kHz).
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(c) Coherence.
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Figure 5: Bridge admittance measurements - string F3 -

Figure 5-(a) shows the measured bridge admittance at the end
of string F3, whose measured fundamental frequency is f1 =
169 Hz. The string length is L = 0.95 m and the diameter is
Φ=1.083 mm. Assuming a density ρ = 7850 kg/m3 (steel), this
yields an estimated tension T =746 N and a linear mass density
µ=7.23 g/m. The admittance is measured with random noise

excitation. The coherence displayed in Figure 5-(c) assesses
that the measurements are valid in the range 70 Hz-4 kHz. The
negative slope near 4 kHz in both figures is due to low-pass
filtering of the signal. This admittance is typical of those mea-
sured on an upright piano [5]. It exhibits sharp peaks due to
well-separated soundboard modes below 500 Hz. The admit-
tance decreases slightly between 500 and 2000 Hz, followed
by a slight increase between 2 and 4 kHz. Figure 5-(b) is an
expanded view of the (a)-plot between 0 and 1 kHz. The or-
der of magnitude of the admittance (around -70 dB re. 1s/kg,
or, equivalently nearly 4 10−4 s/kg) is consistent with previous
measurements [11]. It has been shown in a previous study that
it is also coherent with typical geometrical and material data
of piano soundboard [5]. Figure 5-(d) shows the real part of
the admittance, which is positive between 0 and 4 kHz. The
positivity of this term is a supplementary confirmation of the
validity of the measurements, since it accounts for the transfer
of energy from strings to soundboard and air.
Figure 6-(a) shows a comparison between the measured im-
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(a) Impulse Response ; measured (top) and
model with 200 oscillators (bottom).
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(b) Admittance ; measured (top) and model with
200 oscillators (bottom).
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(d) Simulated string velocity ; time-domain.

Figure 6: Impulse response modeling and synthesis through
convolution - string F3.

pulse response (top) at the end of string F3, which corresponds
to the inverse Fourier transform of the admittance shown in
Figure 5, and its modeling as a sum of 200 impulse responses
of decoupled SDOF damped oscillators (bottom) as in Equa-
tion (5). The corresponding spectra are shown in Figure 6-(b).
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From this model, the mechanical parameters of the bridge ad-
mittance are derived, following the procedure described in the
previous Section. The string motion is simulated with explicit
finite differences, the number of spatial steps being equal to
Ns=141, with a sampling rate fs=48 kHz. This yields a CFL
number equal to 0.993, and thus the condition of stability (8)
is fulfilled. Figure 6-(d) shows the bridge velocity simulated
through convolution between the total force acting on the bridge
due to three slightly detuned strings, following Equation (3),
and the impulse response. The corresponding spectrum is shown
in Figure 6-(c). The spectral envelope is coherent with the fact
that the excitation impulse is located at x0=10 cm from the
agrafe, which corresponds roughly to L/10. As a consequence,
the string partials which are integer multiples of 10 are only
very weakly excited. A zoom on each peak would show, in ad-
dition, the presence of three close sharp peaks, each of them
corresponding to one string of the triplet. The coupling with
the soundboard is only visible below 500 Hz. However, modi-
fications of the admittance above this frequency, which cannot
be easily displayed, are clearly audible.
In Figure 7, the bridge velocity (for string C2) is directly
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(b) Reduced soundboard mass.
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(c) Reference spectrum.
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Figure 7: Bridge velocity String C2 - Finite differences simu-
lations and mass variations.

computed with finite differences, with the bridge admittance
modeled as a set of oscillators. Unlike in the previous exam-
ple, there is no convolution between simulated string force and
measured (or modeled) impulse response at the bridge. Fig-
ures 7-(a) is the reference velocity signal, and 7-(b) shows the
change in waveform consecutive to a division of all mass coef-
ficients of the oscillators by a factor 10. This would correspond
to a use of a much lighter soundboard. This intentionally exag-
gerated factor has been selected in order to emphasize the ef-
fects on the figures, although smaller factors also induce clear
audible effects. The corresponding spectra are shown in Fig-
ure 7-(c) and Figure 7-(d). As expected, the decrease in mass
soundboard increases the impedance matching of string and
bridge which induces a stronger coupling between both ele-
ments. This can be viewed, for example, in Figure 7-(d) where
the coupling between string and soundboard modes are visible
below 500 Hz. These simulations are made for a single string
C2, with fundamental frequency f1 = 64 Hz, tension T =844 N,
length L=1.07 m and linear string mass density µ = 45.2 g. The
excitation position is at x0= 15 cm, roughly equal to L/6. With
a sampling frequency fs=10 kHz and a number Ns=78 spa-
tial points, we obtain a CFL coefficient of 0.9959. The bridge,
here, is the “small” bridge of the soundboard, where only the

lowest strings are attached. The modeling of the bridge admit-
tance is restricted here to the low frequencies (below 750 Hz)
and the impulse response is fairly reproduced with a set of 56
oscillators.
The results shown in Figure 8 are aimed at illustrating the ef-
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(b) Thickness multiplied by 2.
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Figure 8: Bridge velocity - String C#5 - Variations of sound-
board thickness.

fects of change in soundboard thickness on string-bridge cou-
pling and bridge velocity. These effects are simulated for the
string C#5 of length L=32.8 cm, with fundamental frequency
f1=535 Hz. The diameter of the string is Φ=0.922 mm, with
a linear mass density µ = 5.24 g. The estimated tension is
T =649 N. A force pulse excites the string at position x0=3.28
cm (L/10). With sampling frequency fs=48 kHz, and Ns=44
spatial points, the CFL coefficient is 0.9835. The low-frequency
part of the bridge admittance (below 750 Hz) is modeled with
58 oscillators. The reference bridge velocity is shown in Figure
9-(d). For a given surface, the mass of the soundboard varies
as the thickness h whereas the stiffness varies roughly as h3.
Therefore, in order to compare the reference bridge velocity
with the one resulting from the coupling of the string with a
soundboard of thickness divided by 2, the mass coefficients of
the oscillators are divided by 2, while the stiffness coefficients
are divided by 8. This results in the waveform shown in Figure
8-(a) with corresponding spectrum in Figure 8-(c). A similar
process for thickness doubling results in the waveform shown
in Figure 8-(b) with spectrum shown in Figure 8-(d). It can be
seen that the change in thickness modifies both the spectral and
temporal envelope of the sound.
Figure 9-(a) shows an example of simulation of bridge veloc-

ity excited by three slightly detuned strings for the note C#5.
The length is identical for all three strings, and the tensions
(estimated from measurements) are 649, 647.5 and 652 N, re-
spectively. A double decay is clearly identified on the temporal
envelope. Finally, Figure 9-(b) shows a comparison between
the results obtained for computing the bridge velocity, using
two different methods. The waveform on top is calculated with
a finite difference model of the string loaded by the system
of diiferentail equations that represents the admittance, as in
Equation 7. The waveform at the bottom is obtained by con-
voluting the string force (obtained with finite differences) with
the measured impulse response. This comparison show some
obvious differences. The corresponding spectra in Figure 9-
(c) show that the periodicity of both signals are identical, as
the spectral envelope above the second partial. The main dif-
ferences are located below the fundamental of the string, in
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Figure 9: Simulation of bridge velocity - String C#5.

the frequency domain where the soundboard modes are weakly
damped. In this domain, the underlying approximations made
with the use of convolution are probably not justified, due to
amplitude of bridge motion relative to the string. More numer-
ical experiments are needed here for supporting this claim with
more evidence.

CONCLUSION AND FUTURE WORK

In this paper, a model of strings-soundboard coupling has been
presented and discussed. This model is based on a linear model
of transverse string displacement coupled at one end to a me-
chanical representation of the bridge admittance. The admit-
tance model is derived from measurements on an strung up-
right piano.
Admittance measurements at the piano bridge are difficult, main-
ly because of the inertia of the soundboard which, in turn, in-
duces low values of the bridge velocity. For that reason, mea-
surements are usually limited to the range 0-4 kHz. A standard
modal analysis approach would yield an accurate modeling of
the admittance up to a maximum of 1.0 to 1.5 kHz, but would
fail for higher frequencies, due to the internal losses in the ma-
terial. This frequency range is not appropriate in the context
of the piano, where the fundamental frequencies are within the
interval 27-4200 Hz, and in view of the particular sensitivity
of the human ear in the range 300 Hz-3 kHz, among other
things. Therefore, another approach was preferred here, where
the the inverse Fourier transform of the measured admittance
(the impulse response IR at the bridge) is directly represented
as a sum of exponentially decaying sinusoids, using the ES-
PRIT method [7] [8]. The quality of this representation is as-
sessed by a comparison between measured and simulated IR,
with constraints on the phase inspired by the physical situation
where force and velocity are measured at the same point on the
bridge. This comparison is based on a least-square estimation:
a least-square error of -20 dB (or less) is considered as accept-
able.
The major aim of the modeling is to investigate the effect of
structural changes in the soundboard on the bridge velocity.
For that purpose, a simple finite differences model of the string
is constructed where the end condition at the bridge is mod-
eled as a set of N second-order differential equations (DE).
Each DE represents a SDOF damped oscillator whose IR is a
damped sinusoid, the sum of the N IR being equal to the mod-

eled admittance IR. In this paper, a few examples of the effects
of variations of mass and stiffness parameters of these oscil-
lators were presented. These variations are related to specific
geometrical and/or material modifications of the soundboard.
Here, the variations of parameters are intentionally exagger-
ated for visual purposes. Examples of synthesis with more re-
alistic conditions will be played during the oral presentation.
In real pianos, one can observe large variations of bridge ad-
mittance from bass to treble. This results in significant differ-
ences in decay time from one note to the next: such fluctu-
ations are generally judged as undesirable by players. In the
near future we wish to use our model of three strings coupled
to various admittances, in order to account quantitatively for
the procedure used by piano tuners for compensating, at least
partially, these unwanted fluctuations. As shown theoretically
by Weinreich, the temporal envelope of the sound depend, in
fact on both bridge admittance and string detuning.
Preliminary experiments were also made in order to compare
the bridge velocity obtained through convolution between string
force and bridge IR (see, for example, [12]), with the one re-
sulting from full “bidirectional” finite differences model. It
turns out that some differences exist, if the magnitude of the
bridge displacement becomes comparable to the one of the
string. This might be the case for particular weakly damped
low-frequency modes of the soundboard, and, in general, for
light soundboards.
Finally, the present “subsystem” model is intended to serve as
reference case of a more complete modeling of the piano that
couples togther a nonlinear model of strings with a 2D model
of bridge and soundboard.
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