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ABSTRACT 

Our research is to develop a signal processing process for separating musical audio signals into streams of individual 

sound sources. In this paper, we present a method that uses NMF method and some musical cues for musical source 

separation. The conventional separation method based on NMF method classify the separated note events into each 

stream „manually‟, so the conventional methods are difficult to use in the real engineering. However, our method per-

forms „automatically‟ the classification process different from the conventional methods. The proposed process con-

sists of the separation step and the reconstruction step. In the separation step, the audio stream is divided into “musi-

cal events,” groups of the notes which have same frequency structures. The separation method is based on the 

Wang‟s method, which used Non-negative Matrix Factorization (NMF) method. In the reconstruction step, the di-

vided note events are automatically grouped into streams of the individual sound sources using the musical cues. The 

proposed musical cues consist of the timbre features, the temporal features, and the pitch components. The proposed 

separation system is evaluated with some musical signals which contain the multi musical sources. The evaluation 

shows the proposed method can perform „automatically‟ the separation using the proposed cues and have the same 

performance as manual classification. 

INTRODUCTION 

The Blind Source Separation (BSS) problem exists widely in 

many fields in the acoustical engineering such as speech 

recognition, automatic music transcription, music infor-

maiont retrival, 3D audio upmixing and so on. The source 

separation method in the acoustical engineering focused on 

human perception ability, so the separation process was 

achieved through computer model known as Computational 

Auditory Scene Analysis (CASA) [1].  

The BSS problem has attracted a great deal of attention and 

plenty of methods have emerged. There are some crucial 

features, and the one of them is relation between the number 

of the given observed mixtures and the number of the sources. 

The mixtures can be overdetermined, determined or underde-

termined with the relation between the numbers. Certain 

methods require a determined mixture such as most Inde-

pendent Component Analysis algorithms (ICA) [2]. In the 

real world, however, there are often underdetermined mix-

tures, and extremely, one or two obersevations. Therefore, 

the separation of the underdetermined mixtures seems more 

useful. 

To achieve the separation of the mono-channel musical audio 

stream, the separation method using Non-negative Matrix 

Factorization (NMF) was developed [3]. In the separation 

method, the audio stream separated into basis using the NMF 

in the time-frequency domain. And using the basis energy, 

the time-frequency masks are generated and the masks are 

applied to the spectrogram of the mixtures. After that, the 

decomposed component is grouped to each source. The 

method in [3] shows relatively good performance, but the 

component grouping method is not developed. 

In this paper, the mono-channel audio separation method 

using the NMF is presented, and the musical cues of the de-

composed component are studied. To verify the usefulness of 

the cues to grouping the components into the source streams, 

we calculate and present the musical cues of the instrumental 

signals.  

THE NMF METHOD 

The NMF method is decomposition method solving the fol-

lowing factorization problem:  

 V WH  (1) 

where V is a given M by N non-negative matrix to be de-

composed, W and H are non-negative  matrix factors. Let 

the number of the basis is R , and W is a M by R matrix 

and H is a R by N matrix. The purpose of the NMF algo-

rithm is to find W and H which are minimize the distance 

between V and WH as 

 ( , )D V WH  (2) 

where ( , )D a b is a distance function between a and b . If we 

use the Euclidean distance as the distance measure, the cost 

function can be defined as 
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To minimize the cost function, modified gradient algorithm 

as known as multiplicative update rule is derived by Lee and 

Seung [4]. The update process by the multiplicative update 

rule is defined as 
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Setting vector 
rw to be the r -th column of W and vector 

rh to be the r -th row of the H as 

  1 2 RW w w w , (6) 

  1 2

T

RH h h h , (7) 

then decomposed component rv can be presented as 

 r r rv w h , (8) 

and the rv  is the M by N non-negative matrix. The relation 

between given matrix V and component rv is given as 
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THE DECOMPOSITION OF MUSICAL 
STREAMS USING THE NMF 

The NMF method works only for non-negative matrix, but 

the time-domain musical stream is not non-negative data. 

However, the magnitude of the spectrogram is non-negative 

matrix, so the NMF method can be applied to the magnitude 

of the spectrogram. That is, 

  ( , ) ( )V t STFT s t  , (10) 

where ( )s t means the mixed signal, and  STFT means 

short-time fourier transform of the signals. 

When the NMF method is applied to the magnitude of spec-

trum as above, the bases in the W matrix, rw , are features in 

the frequency domain which can be notes, and the bases in 

the H matrix, rh , means the locations in time-domain. In 

addition, the component rv , which is multiplication of rw  

and rh , means the note events of mixed signals. The example 

diagram of the NMF is shown in the Figure 1.  

After the factorization as shown above, we can decompose 

the magnitude spectrogram into the components rv . However, 

the components have the magnitude information only. To 

recover the original audio, the phase information is also 

needed.  

 

 
Figure 1. A diagram of the NMF example. 

To overcome this problem, Wang and Plumbley [3] suggest a 

separation method using masks applied to the original spec-

trogram (not a magnitude spectrogram). The main idea of the 

suggested method is based on the assumption that over a 

small time-frequency region, one source dominates. 

According to [3], each time-frequency point among all the 

bases is compared, and then masks for each component are 

generated. A point of the mask will be marked as 1 if it has 

maximum value among all the bases at the same position, 

otherwise it will be marked as 0. The mask generation proc-

ess can be illustrated as: 
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where 
 k

M is the mask for the basis k . By applying the 

masks to the original spectrogram, the component corre-

sponding to each basis is decomposed. 

MUSICAL CUES FOR AUTOMATIC 
CLUSTERING OF THE DECOMPOSED 
COMPONENTS 

The decomposed component has information about note 

events, but the component does not equal to a source signal. 

In general cases, the number of the components (and it is 

equal to the number of the bases) is larger than the number of 

sound sources. To reconstruction each source signal, the 

components–which are correspond to the note events–must 

be clustered into source groups. In the previous method [3], 

the clustering process performed manually, however, the 

manual clustering is nearly impossible in the real systems. 

Therefore, a study on the automatic clustering process is 

needed. 

We consider a clustering method using some musical cues to 

the automatic clustering process. To develop the clustering 

method, we perform a study on following musical cues which 

can be used to clustering process. 

The spectral flatness and pitch-normalized flatness 

The spectral flatness is defined as the ratio between the geo-

metric and arithmetic mean of the estimated power spectrum 

[5]. While the spectral flatness is generally calculated with 

the fourier transform of signals, we calculate with rw be-

cause it has spectral informations of the decomposed compo-

nents. 
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The spectral flatness is between zero and one, because the 

arithmetic mean of a non-negative values is always greater 

than its geometric mean. The pitch-normalized spectral flat-

ness can be obtained by dividing the spectral flatness with its 

pitch. 

The spectral centroid and pitch-normalized centroid 

The spectral centroid is defined as the „center of gravity‟ of 

the magnitude spectrum, reflect in its „brightness‟ [5]. We 

calculate the spectral centroid with 
rw  because of the same 

reason as the spectral flatness. 
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The pitch-normalized spectral centroid is obtained by divid-

ing the spectral centroid with corresponding pitch. 

The spectral kurtosis 

The kurtosis is well known as a measure from higher-order 

statistics that is based on the fourth and second-order mo-

ments of the signal [5]. 
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The audio noise-likeness index 

The audio noise-likeness index is derived from the frequency 

vector of the components [6]. The noise-likeness index is 

defined as ratio of spectral pitch tone power to the average 

power of the rest. 
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The mel-frequency cepstral coefficient 

The mel-frequency cepstrum is a representation of the short-

term power spectrum of a sound, based on a linear cosine 

transform of a log power spectrum on a nonlinear mel scale 

of frequency. And mel-frequency cepstral coefficient 

(MFCC) is coefficients that collectively make up a mel-

frequency cepstral (MFC) [5]. 

In our analysis, the MFCCs are calculated with rw . First, 

map the powers of the rw onto the mel scale, using triangular 

overlapping windows. And then, take the logs of the powers 

at each of the mel frequencies. Finally, take the discrete co-

sine transform of the list of mel log powers. 

The coefficients of the auto-correlation function 

The auto-correlation coefficient is a sort of normalized auto-

correlation [5]. In our research, the auto-correlation coeffi-

cients are calculated with time envelope, 
rh . 
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The percussiveness 

The percussiveness feature is extracted from the time-domain 

amplitude envelope. To calculate the percussiveness, the 

percussive impulse template is modelled first. This model 

template is convoluted with local maxima of the amplitude 

envelope. And then, the correlation coefficient of the con-

volved model and the original envelope is calculated. The 

calculated correlation coefficient represents the degree of the 

percussiveness [7]. 

The peak time and the peak fluctuation 

The peak time means an average length in the time envelope 

and peak fluctuation is a deviation between the length of 

these peaks. The peak is defined as an area where the time 

envelope is above a threshold of 0.8*maximum [8: drum 

NMF]. 

The perceptual linear prediction coefficients 

The perceptual linear prediction (PLP) coefficient is a kind of 

linear prediction coeffiecient (LPC) which consider a human 

perception property. The PLP coefficient calculation process 

consists of the four steps: critical-band analysis, equal-

loudness preemphasis, intensity-loudness conversion, and 

calculation of the LPC. 

To calculate the PLP coefficient, the short-time power spec-

trum ( )P  is warped along its frequency axis into Bark 

frequency by [9 : PLP] 

    
0.5

2
6ln 1200 1200 1    

        
 (17) 

After that, the power spectrum in the Bark frequency domain 

 P  is convoluted with critical-band masking curves 

   into    . Next, The calculated     is preem-

phasized by the simulated equal-loudness curve  E  as 

        E       . (18) 

The last operation prior to the all-pole modelling (which 

means linear prediction) is the cubic-root amplitude compres-

sion  

    
0.33

     . (19) 

Finally, the PLP coefficients can be obtained by all-pole 

modelling of    . In our research, the frequency compo-

nent rw  is used instead of the power spectrum ( )P  . 
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Table 1. The values of the musical cues of each source. 

Musical 

cues 

Piano Cello 

Average Std. Average Std. 

Flatness 0 0 0 0.0002 

Flatnessn 0 0 0 0 

Centroid 0.0698 0.0167 0.1028 0.0374 

Centroidn 0.0002 0.0001 0.0005 0.0002 

Kurtosis 461.26 119.65 383.92 128.67 

ANLI 0.0032 0.0012 0.0050 0.0026 

MFCCmax 17.640 2.0404 20.597 2.9373 

MFCCavg 2.0460 0.6078 2.5595 0.4945 

ACF 1.0918 1.5677 0.0470 0.0920 

Percuss. 0.5068 0.1359 0.5544 0.1036 

Peak time 1.8120 1.1786 2.0103 1.8957 

Peak fluc. 0.3878 0.7148 0.3099 0.4712 

MFCCnorm 503.27 66.040 533.26 88.487 

DPLP 0.0462 0.0235 0.0234 0.0118 

EXPERIMENTS 

To verify the usefulness of the musical cues, we performed 

experiments with some piano and cello music. The 15 piano 

music pieces including partita and fugue are used, and the 10 

cello music pieces are used for our experiments. The total 

153 piano notes and 101 cello notes are analysed. 

Most of the musical cues applied as shown above, but the 

ACF and PLP are slightly modified. In the case of the ACF, 

we analysed the time lag which maximize the ACF, and in 

the case of the PLP, we analysed the norm of the derivative 

of the PLP as following: 
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where 
aN is an order of the PLP model. 

The experimental result is shown in the Table 1 and 2. As 

shown in the Table 1, the pitch-normalized centroid, the 

maximum MFCC, the time-lag which maximizes the ACF, 

and the squared derivative of the PLP (DPLP) can be used to 

separate the piano and cello signal. Table 2 shows the result 

divided into the low-frequency band and the high-frequency 

band. As shown in the Table 2, some cues such as pitch-

normalized centroid are more useful if the frequency-band is 

considered. 

From Figure 2 to Figure 5 show distribution of each feature 

value. The x-axis means the sample number to discriminate 

each note event, and the y-axis means the value of each cue. 

Therefore, the distribution along the y-axis is important im-

formation. The blue circle means the piano data, and the red 

square means the cello data. And the x-marked value inside 

the circle or the square means that the data is in a high fre-

quency band. The blue dashed line means the average value 

of the piano data, and the red solid line means the average 

value of the cello data. As shown in the distribution diagrams, 

the pitch-normalized centroid and DPLP show good proper-

ties, but it is hard that any feature is used solely. Therefore, it 

is expected that the performance is good when three or four 

features are used together. 

In the Figure 6, an example of the separation result by hard 

threshoud is shown. (a) is a waveform of the original piano 

source, (b) is a waveform of the original cello source. (c) is a 

artificial mixture of (a) and (b), (d) and (e) is a separation 

result. As shown in Figure 6, the separation and categoriza-

tion process works properly, but there are some errors with 

separation result.  

Table 2. The musical cues correspond to frequency band. 

Freq.-

band 

Musical 

cues 

Piano Cello 

Avg. Std. Avg. Std. 

Low 

Freq. 

Flatness 0 0 0.0001 0.0002 

Flatnessn 0 0 0 0 

Centroid 0.0617 0.0131 0.0976 0.0363 

Centroidn 0.0002 0.0001 0.0006 0.0002 

Kurtosis 432.22 134.47 353.62 131.23 

ANLI 0.0035 0.0014 0.0054 0.0028 

MFCCmax 17.441 1.6607 20.542 3.1906 

MFCCavg 2.2325 0.6742 2.8101 0.3800 

ACF 1.0367 1.3642 0.0456 0.0936 

Percuss. 0.5284 0.1283 0.5602 0.0983 

Peak time 2.2147 1.4074 2.0837 1.2685 

Peak fluc. 0.6261 0.9084 0.3555 0.4944 

MFCCnorm 505.88 59.762 536.04 96.600 

DPLP 0.0494 0.0269 0.0237 0.0124 

High 

Freq. 

Flatness 0 0 0 0 

Flatnessn 0 0 0 0 

Centroid 0.0778 0.0159 0.1092 0.0377 

Centroidn 0.0001 0.0000 0.0003 0.0001 

Kurtosis 490.30 94.139 421.44 114.83 

ANLI 0.0029 0.0010 0.0046 0.0024 

MFCCmax 17.838 2.3430 20.666 2.5879 

MFCCavg 1.8596 0.4635 2.2493 0.4411 

ACF 1.1496 1.7459 0.0488 0.0899 

Percuss. 0.4852 0.1399 0.5451 0.1090 

Peak time 1.4093 0.6879 1.9194 2.4568 

Peak fluc. 0.1495 0.2882 0.2533 0.4343 

MFCCnorm 500.66 71.676 529.81 77.124 

DPLP 0.0431 0.0190 0.0231 0.0110 

The main cause of the errors is as following: If there is some 

region of the mixture spectrogram where the power of each 

source is about the same – it means that any source do not 

dominant, the decomposed component corresponding to the 

region has information about both sources – piano and cello 

here. And the values of the musical cues are dubious. To 

solve this problem, further research about the better decomp-

sotion method is needed. 

CONCLUSION 

In this paper, a study on the the musical source separation 

system including the automatic categorization is performed. 

To compose the automatic categorization process, several 

musical cues are applied and evaluated. The piano music 

samples and the cello music samples are used to evaluate the 

musical cues. As a result of the study, the fact that some of 

the musical cues may be useful to the musical source separa-

tion system is revealed. 

There are some future works to enhance the musical source 

separation system. One of that is enhancement of the compo-

nent decomposition system, and another task is developement 

of the categorization method which use the several musical 

cues together. 
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Figure 2. The result of the pitch-normalized centroid. 
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Figure 3. The result of the maximum value of the MFCC. 
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Figure 4. The result of the ACF. 
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Figure 5. The result of the DPLP. 
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Figure 6. The result of the separation process with auto-

matic categorization system. 

 

 

 

 


