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ABSTRACT 

Based on a dynamic-homogenization approach, the dispersion spectrum of coherent antiplane waves in an isotropic 
half-space containing random distribution of strip-like cracks within finite depth beneath the surface is calculated and 
analyzed. The disorder inside the damaged region is not uniform but depends on depth. The scattering-induced dis-
persion and attenuation causes the near-surface region to behave as a surface waveguide. As a result, the spectrum re-
sembles that of the Love-waves.  

.

INTRODUCTION 

The present study is concerned with Love-type (surface) 
wave propagation in an isotropic half-space containing cracks 
parallel to the free surface. The cracks are randomly distributed 
in a region beneath the surface. The disorder inside the dam-
aged region is not uniform as in [1] but depends on depth. 
The spatial variation of the distribution is taken into account 
via replacing the damaged region by a stack of effective ho-
mogenous transversely isotropic layers [2, 3]. Propagation in 
each layer is governed by appropriate effective tensors, 
which are derived by using a dynamic-homogenization ap-
proach developed in [4]. The elastic parameters of each layer, 
associated with the coherent antiplane wave motion, are spa-
tially constant but frequency dependant and complex-valued. 
The cracks reduce the velocity and thus create a surface 
waveguide. Frequency dispersion due to the scattering is 
superposed with that due to the wave trapping beneath the 
surface. The resultant dispersion spectrum of coherent Love-
type waves is calculated in a given half-space and its behav-
iour discussed. This method might be an effective approach 
to measure the heterogeneous structure of the Earth's crust.  

A LAYER OF CRACKS: EFFECTIVE MEDIUM 

Consider a homogeneous, isotropic, and linearly elastic solid 
containing a random and uniform distribution of identical and 
parallel strip-like cracks of size 2a , as shown in Figure 1. 
All the cracks are infinitely long in the Y  axis. The crack 
faces are stress-free. The number of cracks per unit area 
(density) is constant and denoted by n .  

An incident monochromatic antiplane (shear) wave propa-
gates along the Z  axis, normal to the crack faces which co-
incide with the X  axis, Figure 1. The propagation in the 
crack-free matrix is governed by the wavenumber T Tk s , 
where   is the angular frequency and Ts  the slowness of the 
shear wave in the matrix.  
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Figure 1. Normally incident antiplane wave on a layer con-
taining a random and uniform distribution of parallel cracks. 

It is well known that, in presence of multiple cracks, the co-
herent plane wave propagation in the damaged medium can 
be described by a complex-valued wavenumber K . This has 
been evaluated analytically [4, 5]. The dissipation is assumed 
to be induced only by the multiple scattering between cracks, 
i.e. the anelastic attenuation is not considered. The coherent 
shear wave is represented by the displacement components 

0x zu u  ,   exp iyu U sz t  , (1) 

where U  is an amplitude factor and s  ( /K  ) is the 
effective slowness that governs antiplane wave propagation 
in the cracked solid. The equation of motion for the effective 
material has the form 

2 2

2 2

y yu u

t z
 
 


 

,  (2) 

where   is the effective mass density and   is the effective 
shear stiffness along the Z  axis. Substituting Eq. (1) into Eq. 
(2), one finds the dispersion relation 

2s  .  (3) 
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Observe that   relates linearly the effective stress compo-
nent yz  to the effective strain component yz yu z    . 

The dynamic mechanical behaviour of the cracked solid sub-
jected to multiple scattering of shear waves can be described 
macroscopically by means of both the effective mass density 
  and the effective shear stiffness  . Due to the geometric 
arrangement of the crack distribution and the symmetry of 
the scattered fields, the cracked solid can be seen macro-
scopically as a transversely isotropic medium. On these 
grounds, we have found the following relations [2, 4] 

0    and   0 2

4
1 0

T

n f
k


 
      

, (4) 

where 0  and 0  are the mass density and the shear stiffness 
of the isotropic matrix. The quantity  0f  indicates the far-
field response of a single crack in the forward direction with 
respect to plane-wave excitation propagating normally to the 
crack faces. The reader is referred to Caleap et al. [6] for 
further details on the derivation of the forward scattering 
shape function  f 

 
for a stress-free strip-like crack. 

The effective shear slowness of the coherent wave motion in 
the direction normal to the crack faces is then obtained by 
combining Eqs. (3) and (4), i.e. 

 
1

2

4
1 0T

T

s s n f
k


      

.  (5) 

We recall that the formulae (4) have been derived by viewing 
the cracked region as a homogeneous layer embedded in the 
matrix. This perspective implies that the bulk parameters (4), 
and the linear effective constitutive law yz yz   (involv-
ing the spectra of the non-zero stress and strain components, 

yz  and yz ), guarantee the coherent stress vector to be con-
tinuous across each interface.  

Because the scattering amplitude  0f  is complex-valued, it 
follows from Eq. (4) that the wave dissipation in the cracked 
solid is described by the complex-valued effective shear 
stiffness  .  

As expected, the mass density   is equal to that of the ma-
trix: the negligibly small volumes of the cracks do not change 
the apparent dynamic inertia of the equivalent homogeneous 
medium. Observe from Eq. (4) that   depends on the fre-
quency and on the crack density number n .  

The phase velocity and the scattering-induced attenuation of 
the shear bulk waves in the damaged layer can be calculated 
as follows 

    1= Rec s  ,    = Ims    . (6) 

Note that an antiplane wave propagating parallel to the plane 
of the cracks is not scattered at all. In such case we have 

0  , 0   and Ts s . (7) 

This can also be verified analytically by replacing  0f  in 
Eqs. (4) and (5) with  /2f  , and observing from [6] that 
 /2 0f   . 

The high frequency asymptotic trend of the effective stiffness 
is [4] 
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Figure 2. Schematic representation of a multilayered half-
space. Each of the ( 1)p   homogeneous transversely iso-
tropic layers has material parameters ( , , )j xj zj    and a con-
stant thickness jh . The p th layer is of semi-infinite extent. 

   0

2i
1

Ts
   



       
  (8) 

i.e., it tends to the matrix value 0 , whence the effective 
phase velocity  c   tends to 1

T Tc s  while the effective 
attenuation     approaches a constant value  

  2na   .  (9) 

DISPERSION SPECTRUM FOR p–LAYERS  

Consider an elastic half-space composed of p  parallel ho-
mogeneous and transversely isotropic layers. The p th layer is 
of semi-infinite extent. The total thickness of the ( 1)p   
layers overlying the half-space is finite and is denoted by H . 
The geometry under consideration and the numbering of the 
layers and interfaces is illustrated in Figure 2. The lateral 
dimensions of the layers are assumed to be infinite. The layer 
interfaces are horizontal and parallel to the  ,X Y  plane. 
Let 1j j jh z z    be the thickness of the j th layer ( jz  
being their depth, with the Z  axis pointing into the medium). 
Associated with the j th layer are its effective mass density 

j  and its effective shear stiffnesses xj  and zj  along the 
X and Z  axes. The effective slowness of coherent shear 
bulk wave in the j th layer satisfies the equation  

2 2

j
j

x xj z zj

s


 


 
,  (10) 

where x  and z  are the direction cosines from the X  and 
Z  axes. For overall isotropy, x z     and s   

/  , since 2 2 1x z   . 

The equation of the Love-type motion in the j th layer is 

2 2

2

2 2
0y y

xj xj j y

j j

u u
u

x z
   

 
  

 
, 

1j j
z z z


  . (11) 

The guided waves are sought of the form  

     i i i, e e ezj zj x
S z S z S x t

y j ju x z A B      , (12) 

where jA  and jB  are complex-valued amplitudes and 

 2 2 2xj
zj xj x

zj

S s S



  .  (13) 
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The following technique is similar to that developed by Has-
kell [7] for simple isotropic layers. Let us introduce the dis-
placement-stress vector 

y

yz

u



 
   
  

F .  (14) 

In the following, we will relate the displacement-stress vec-
tors at the bottom and top interface of each layer. This rela-
tion plus the interface and radiation conditions are sufficient 
to determine motion at depth in terms of the surface condi-
tions. It is immediately realized that 0pB   to avoid expo-
nential growth with depth, and 1 1B A  from the traction 
free surface condition. The other  2 2p   constants are 
determined from the interface continuity conditions on dis-
placement and stress.  

Taking the origin of Z  at the  1j  th interface we have, at 
this interface, 

 1 i
j j

j
zj zj j j

A B

S A B 

      
F ,  (15) 

and at the j th interface 

 
i i

i i

e e

i e e

zj j zj j

zj j zj j
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j j

j S h S h
zj zj j j
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 

  





      
F . (16) 

By eliminating jA  and jB  between Eqs. (15) and (16), we 
obtain 

  1, , , ,j j zj j zj x jm h S S  F F , (17) 

where  

sincos

sin cos

zj j

zj zj
zj j

j

zj zj zj j zj j

S h

S
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S S h S h


 



   

 
   
   

. (18) 

Equation (18) relates the stress-displacement vectors at the 
top to that at the bottom of the j th

 layer. By repeated applica-
tion, we have 

 1 0,p xS F m F ,  (19) 

where 

   
1

1

, , , , ,x j zj j zj x
j p

S m h S S  
 

 m  (20) 

is the transfer matrix through the layers. By combining Eqs. 
(14) and (19), we obtain 

 
 

   
   

11 121 0 0

21 221 0 0

y y yzp

yz y yzp

u u

u
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 





              

m m
m m

, (21) 

where ijm  are the elements of the matrix m . Taking into 
account the traction-free condition at the upper surface, and 
assuming that there are no sources at z   , Eq. (21) 
simplifies to  

 
 

11 0

21 0
i

p y

zp zp p y

A u

S A u 

   
      
      

m

m
,  (22) 

 
Figure 3. Profiles of the crack density number  n z :  
(a) uniform; (b) exponential; (c) Gaussian. 

which yields to an equation for 2
xS  

21 11i zp zpS m m .  (23) 

This is the Love-wave dispersion equation for p  transversely 
isotropic layers. Although Love waves are surface waves, Eq. 
(23) contains bulk wave information. In the case of two-layer 
half-space, 1mm  and Eq. (23) reduces to [1, 8] 

1 1 1 1 2 2i tanz z z z zS S h S   .  (24) 

In the long-wave limit, each matrix jm  becomes the identity 
matrix. Therefore, Eq. (20) reduces to 

1

1

1 0

0 1j
j p

m
 

      
 m ,  (25) 

and the dispersion equation becomes  

0zp zpS   ,  (26) 

or 

Re x zpS s  and Im 0xS  .  (27) 

DEPTH-VARYING HALF-SPACE 

Suppose that strip-like cracks are randomly distributed under 
the free surface of in isotropic half-space up to a certain 
depth H   a . All the cracks are parallel to the free sur-
face. The disorder inside the damaged region is not uniform 
but depends on depth.  

The depth-varying half-space is discretized into p  layers in 
which the random distribution of the cracks is uniform (cf. 
Figure 1). The surrounding medium is the matrix. In view of 
the coherent antiplane wave propagation with frequency  , 
each uniformly-damaged layer may be seen as a transversely 
isotropic homogeneous layer of the effective material. The  
p th layer is a semi-infinite substrate of the matrix material. 
For each layer j 1,2,..., 1p  , / ( 1)jh H p   is the 
constant thickness and  j jn z n  is the constant number of 
cracks per unit area. Propagation in each layer is governed by 
the effective slowness of the coherent shear bulk wave. The 
elastic parameters of each layer, associated with the coherent 
antiplane wave motion, are spatially constant but frequency 
dispersive and complex-valued. According to Eqs (4), (5) and 
(7) the effective slowness zjs  of the coherent shear bulk wave 
and the effective shear stiffness zj  depend on the number 
density of cracks jn  and on the frequency, while j  and xj  
are constant functions. We have 

Z

H

0 n
0

(a) (b) (c)

Z

0 n
0

Z

0 n
0
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0j  , 0xj  , xj Ts s ,    
02

,
,

zj j
zj j n

s n 
 

  , (28) 

for j =1,2,..., 1p   and  

0p  , 0xp zp    , xj zj Ts s s  . (29) 

The dispersion relation for coherent Love-type waves, when 
the depth-varying distribution of cracks is seen as a stack of 
effective layers bonded to the substrate, is given by 

   2 2
21 0 11, i ,x T x xS s S S   m m . (30) 

Unlike the standard case of Love waves, the effective layer-
parameters zj  and zjs  are dispersive and also complex-
valued, hence all the solutions xS  of Eq. (30) are generally 
complex-valued. Equation (30) admits different families of 
formal solutions related to two Riemann sheets of 

2 2
zp T xS s S  . We are concerned only with the Love-type 

dispersion branches    i
xS  , 0,1,...i  , which describe 

waves decaying into the depth of the substrate. Imposing the 
inequality condition 

   22Im = Im 0i i
zp T xS s S  , (31) 

we observe that the found solutions satisfy  Im 0i
xS   (for 

 Re 0i
xS   and the axes ,X Z  as in Figure 2), i.e. they also 

decrease in amplitude along the propagation direction due to 
the attenuation within the layers.  

ATTENUATION DISPERSION CURVES  

As an example, Love-type branches are calculated for cracks 
with width = 1a mm, which are randomly distributed within 
a region of thickness = 15H mm in an aluminium matrix 
with 0 = 2.7 g/cm3 and 0 = 26.45 GPa.  

The results are displayed in terms of the effective phase ve-
locity and the effective attenuation  

    = Re 1 /i i
x xc S ,    = Imi i

x xS  , (32) 

as functions of H . In this paper, three profiles of the crack 
density number  n z  are exemplified, i.e.,  

uniform:   0n z n ; (33) 

exponential:    0expn z n z  ; (34) 

Gaussian:    
2

0
/2exp z Hn z n


 

  
  

, (35) 

with 0 z H  , 0 50000n   cracks/m2, 0.3  mm 
and   3 mm. These profiles are displayed in Figure 3. 

Note that the scattering dispersion parameter Ts a   is 
less than 6  when the frequency is less than 3 MHz (with 

H  less than 284 rad.mm/s). 

The non-uniform multi-cracked half-space is viewed as stack 
of p  layers. When the number of layers increases, the differ-
ence between the acoustic impedance of each pair of con-
secutive layers tends to zero. Therefore, the results should 
converge for a very fine discretization. In the following, the 
number of layers p  is chosen to be equal to 101 . 

 
Figure 4. Dispersion branches of the phase velocity  ic  and 
the attenuation  i  for the coherent Love-type waves guided 
by a near-surface uniform distribution of cracks (as shown in 
Fig. 3a). Solid red curves are the dispersion branches; dashed 
blue curves are the velocity  c   and the attenuation     
of bulk waves in the effective layer material; a dotted hori-
zontal line is the effective phase velocity for the matrix (sub-
strate). 

Figures 4-6 show the dispersion branches of the effective 
phase velocity  ic  and the effective attenuation  i  for the 
coherent waves guided by a near-surface distribution of 
cracks for the crack density profiles shown in Figure 3.  

Fundamental branch 

Figure 3 shows the Love-type branches calculated for the 
uniform profile of the crack density (Figure 2a). Note that the 
dispersion equation (23) for  1p   layers of constant 
thickness / ( 1)h H p   and uniform crack densities 0n  
is equivalent to Eq. (24) for the same density number 0n  of 
cracks, distributed uniformly within a layer of thickness H  
[1]. The effective velocity  c   and the effective attenua-
tion     of coherent shear bulk waves in the effective 
layer material are also displayed in Figure 3. 

Starting from high frequency, the fundamental phase-velocity 
curve    0

xc   trails above the bulk-wave effective-velocity 
in the effective layer  c  . This is as would be expected for 
Love waves in a homogeneous layer [8]. However, for the 
case in hand  c   is dispersive. With increasing frequency 
the velocity reaches a minimum at 1/2e   [5] and then 
curves upwards by approaching the velocity in the matrix 
from below. Hence so does the branch    0

xc  . The funda-
mental branches  0

xc  corresponding to non-uniform profiles 
of the crack density, Figures 5 and 6, show similar trends, 
however, with increasing frequency, they oscillate to ap-
proach the effective velocity in the matrix from above.  

The attenuation curve    0
x   in Figure 4, corresponding to 

the fundamental branch, is close to the attenuation 
   = Im zs     of coherent shear bulk waves in the 

effective layer. The later can be considered as an approxima-
tion of the fundamental attenuation curve, i.e.,    0

x  
   , or vice-versa. In particular, for the case of non-

uniform profiles of the crack density, the attenuation curves 
   0
x   in Figures 5 and 6 might be considered as an ap-

proximation of the effective attenuation of coherent shear 
bulk waves in the depth-varying distribution of cracks corre-
sponding to Figures 3b and 3c, respectively.  
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Figure 5. Dispersion branches of the effective phase velocity 

 ic  and the effective attenuation  i  for the coherent waves 
guided by a near-surface depth-varying distribution of cracks. 
The crack density follows an exponential profile, see Fig. 3b. 
Solid red curves are the dispersion branches; dotted curves 
are the branches of nonphysical solutions which increase both 
into the depth and along the propagation direction; a dotted 
horizontal line is the effective phase velocity for the matrix 
material (substrate). 

Non-fundamental branches 

Scattering-induced attenuation underlies an unusual layout of 
the origin points (cutoffs) of the dispersion curves with 

> 0i . Denote the frequency and velocity at these points by 
 i
x  and       ii i

x xc c  . In the absence of absorption, all 
the cutoffs lie on the constant line p Tc c  ( 3.13 m/ms) 
corresponding to the grazing propagation = 0zp zpk S  in 
the substrate [8]. This is no longer the case due to the layer 
attenuation. The Love-type branches satisfy the conditions 

 Im 0i
xS   and  Im 0i

zpS  . For an elastic substrate (with 
real ps ),  Im i

xS  and  Im i
zpS  vanish simultaneously. Thus 

the cutoff points (    , i i
xc ) occur when 

   Im = 0 Im = 0i i
x zpS S ,  (36) 

i.e. the imaginary part of the slowness vector S  in the sub-
strate turns to zero. Its real part has positive components 

   Re = 1 /i i
x xS c  and    22Re =i i

zp p xS s S   whence 
  >i
x pc c . That is why the cutoff points (36) lie above the 

substrate velocity pc .  

Beyond the cutoffs, the Love-type velocity and attenuation 
branches are continued by the branches of non-physical solu-
tions (i.e. solutions that are not localized at the surface) with 

 Im < 0i
xS  and  Im < 0i

zpS , which increase both into the 
depth and along the propagation direction. These branches 
are displayed only in Figures 4 and 5 for clarity.  

Figures 4-6 show that the cutoff velocity  i
xc  increases for 

the first few branches and then oscillates around a constant 
value. It is interesting to note that the envelope curve of cut-
off  i

xc  has similar shape as the attenuation curve    0
x   

corresponding to the fundamental branch. 

It is also seen that all the attenuation branches    i
x   with 

> 0i , which start from zero value at the successive cutoff 
frequencies  i  increase with growing   in a similar man-
ner. The high-frequency extent of all the branches    i

xc   
approach the limit pc . 

 
Figure 6. Same as in Figure 5. The crack density follows a 
Gaussian profile, see Fig. 3c.  

CONCLUSION 

A dynamic-homogenization approach has been used for cal-
culating the spectrum of coherent antiplane waves in a half-
space which contains a random distribution of strip-like 
cracks within finite depth beneath the surface. The disorder 
inside the damaged region is not uniform but depends on 
depth. It is shown that the effect of the dispersion and at-
tenuation caused by the scattering leads to some unusual 
spectral features such as a curved high-frequency asymptotic 
of the fundamental branch and supersonic cutoffs of the high-
order branches starting above the substrate velocity.  
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